Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Apparatus
2.3. Voltammetric Measurements
3. Results and Discussion
3.1. Differential Pulse Adsorptive Stripping Voltammetry of Ni(II)
3.2. Interference Study
3.3. Analysis of a Wastewater Certified Reference Material by Using a SPCE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J. Stripping Analysis: Principles, Instrumentation and Applications; VCH: Deerfield Beach, FL, USA, 1985. [Google Scholar]
- Barek, J.; Fogg, A.G.; Muck, A.; Zima, J. Polarography and voltammetry at mercury electrodes. Crit. Rev. Anal. Chem. 2001, 31, 291–309. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water–an electrochemical approach. Sens. Actuators B 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Ariño, C.; Serrano, N.; Díaz-Cruz, J.M.; Esteban, M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal. Chim. Acta 2017, 990, 11–53. [Google Scholar] [CrossRef] [PubMed]
- Metters, J.P.; Kadara, R.O.; Banks, C.E. New directions in screen printed electroanalytical sensors: An overview of recent developments. Analyst 2011, 136, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.; González García, M.B.; Hernández Santos, D.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta 2016, 183, 503–517. [Google Scholar] [CrossRef]
- Liu, X.; Yao, Y.; Ying, Y.; Ping, J. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. Trends Anal. Chem. 2019, 115, 187–202. [Google Scholar] [CrossRef]
- Duffus, J.H. “Heavy metals”—A meaningless term? Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; Volume 3, pp. 133–164. [Google Scholar]
- Lambert, M.; Leven, B.A.; Green, R.M. New methods of cleaning up heavy metal in soils and water. In Environmental Science and Technology Briefs for Citizens; Kansas State University: Manhattan, KS, USA, 2000. [Google Scholar]
- Ansari, M.I.; Malik, A. Seasonal variation of different microorganisms with nickel and cadmium in the industrial wastewater and agricultural soils. Environ. Monit. Assess. 2010, 167, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, T.M.; Ukonmaanaho, L.; Rausch, N.; Shotyk, W. Metal Ions in Life Sciences; John Wiley & Sons, Ltd.: New York, NY, USA, 2007; Volume 2, pp. 1–30. [Google Scholar]
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary concept of nickel toxicity—An overview. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 141–152. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Nickel; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2005.
- Das, K.K.; Buchner, V. Effect of nickel exposure on peripheral tissues: Role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev. Environ. Health 2007, 22, 133–149. [Google Scholar] [CrossRef]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel: Molecular diversity, application, essentiality and toxicity in human health. In Biometals: Molecular Structures, Binding Properties and Applications; Blanc, G., Moreau, D., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 33–58. [Google Scholar]
- IARC (International Agency for Research on Cancer). IARC Monograph on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1990; Volume 49, pp. 318–411. [Google Scholar]
- Pihlar, B.; Valenta, P.; Nürnberg, H.W. Electrochemical reduction of Ni(II) on the hanging mercury drop electrode in the presence of dimethylglyoxime. J. Electroanal. Chem. Interf. Electrochem. 1986, 214, 157–177. [Google Scholar] [CrossRef]
- Zhang, H.; Wollast, R.; Vire, J.C.; Patriarche, G.J. Simultaneous determination of cobalt and nickel in sea water by adsorptive cathodic stripping square-wave voltammetry. Analyst 1989, 114, 1597–1602. [Google Scholar] [CrossRef]
- Serrano, N.; Alberich, A.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Coating methods, modifiers and applications of bismuth screen-printed electrodes. Trends Anal. Chem. 2013, 46, 15–29. [Google Scholar] [CrossRef]
- Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Antimony-based electrodes for analytical determinations. Trends Anal. Chem. 2016, 77, 203–213. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J. Bismuth film electrodes for adsorptive stripping voltammetry of trace nickel. Electrochem. Commun. 2000, 2, 390–393. [Google Scholar] [CrossRef]
- Hutton, E.A.; Hocevar, S.B.; Ogorevc, B.; Smyth, M.R. Bismuth film electrode for simultaneous adsorptive stripping analysis of trace cobalt and nickel using constant current chronopotentiometric and voltammetric protocol. Electrochem. Commun. 2003, 5, 765–769. [Google Scholar] [CrossRef]
- Morfobos, M.; Economou, A.; Voulgaropoulos, A. Simultaneous determination of nickel(II) and cobalt(II) by square wave adsorptive stripping voltammetry on a rotating-disc bismuth-film electrode. Anal. Chim. Acta 2004, 519, 57–64. [Google Scholar] [CrossRef]
- Hutton, E.A.; Hocevar, S.B.; Ogorevc, B. Ex situ preparation of bismuth film microelectrode for use in electrochemical stripping microanalysis. Anal. Chim. Acta 2005, 537, 285–292. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Speliotis, T. Disposable mercury-free cell-on-a-chip devices with integrated microfabricated electrodes for the determination of trace nickel(II) by adsorptive stripping voltammetry. Anal. Chim. Acta 2008, 622, 111–118. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Speliotis, T. Novel disposable microfabricated antimony-film electrodes for adsorptive stripping analysis of trace Ni(II). Electrochem. Commun. 2009, 11, 250–253. [Google Scholar] [CrossRef]
- Korolczuk, M.; Rutyna, I.; Tyszczuk, K. Adsorptive stripping voltammetry of nickel at an in situ plated bismuth film electrode. Electroanalysis 2010, 22, 1494–1498. [Google Scholar] [CrossRef]
- Sopha, H.; Jovanovski, V.; Hocevar, S.B.; Ogorevc, B. In-situ plated antimony film electrode for adsorptive cathodic stripping voltammetric measurement of trace nickel. Electrochem. Commun. 2012, 20, 23–25. [Google Scholar] [CrossRef]
- Alves, G.M.S.; Magalhães, J.M.C.S.; Soares, H.M.V.M. Simultaneous determination of nickel and cobalt using a solid bismuth vibrating electrode by adsorptive cathodic stripping voltammetry. Electroanalysis 2013, 25, 1247–1255. [Google Scholar] [CrossRef]
- Dal Borgo, S.; Sopha, H.; Smarzewska, S.; Hočevar, S.B.; Švancara, I.; Metelka, R. Macroporous bismuth film screen-printed carbon electrode for simultaneous determination of Ni(II) and Co(II). Electroanalysis 2015, 27, 209–216. [Google Scholar] [CrossRef]
- Bas, B.; Wegiel, K.; Jedlinska, K. The renewable bismuth bulk annular band working electrode: Fabrication and application in the adsorptive stripping voltammetric determination of nickel(II) and cobalt(II). Anal. Chim. Acta 2015, 881, 44–53. [Google Scholar] [CrossRef]
- Barceló, C.; Serrano, N.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Ex-situ antimony screen-printed carbon electrode for voltammetric determination of Ni(II)—Ions in wastewater. Electroanalysis 2016, 28, 640–644. [Google Scholar] [CrossRef]
- Baldwin, R.P.; Christensen, J.K.; Kryger, L. Voltammetric determination of traces of nickel(II) at a chemically modified electrode based on dimethylglyoxime-containing carbon paste. Anal. Chem. 1986, 58, 1790–1798. [Google Scholar] [CrossRef]
- Bing, C. Chemical accumulation and voltammetric determination of traces of nickel(II) at glassy carbon electrodes modified with dimethylglyoxime containing polymer coatings. Talanta 1999, 49, 651–659. [Google Scholar] [CrossRef]
- Tien, H. The application of chelating agent incorporated polymer modified electrodes in the detection of trace metals. J. Chin. Chem. Soc. 1998, 45, 39–46. [Google Scholar] [CrossRef]
- González, P.; Cortínez, V.A.; Fontán, C.A. Determination of nickel by anodic adsorptive stripping voltammetry with a cation exchanger-modified carbon paste electrode. Talanta 2002, 58, 679–690. [Google Scholar] [CrossRef]
- Tartarotti, F.O.; De Oliveira, M.F.; Balbo, V.R.; Stradiotto, N.R. Determination of nickel in fuel ethanol using a carbon paste modified electrode containing dimethylglyoxime. Microchim. Acta 2006, 155, 397–401. [Google Scholar] [CrossRef]
- Ferancová, A.; Hattuniemi, M.K.; Sesay, A.M.; Räty, J.P.; Virtanen, V.T. Rapid and direct electrochemical determination of Ni(II) in industrial discharge water. J. Hazard. Mater. 2016, 306, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Pokpas, K.; Jahed, N.; Baker, P.G.; Iwuoha, E.I. Complexation-based detection of nickel(II) at a graphene-chelate probe in the presence of cobalt and zinc by adsorptive stripping voltammetry. Sensors 2017, 17, 1711. [Google Scholar] [CrossRef] [PubMed]
- Rosal, M.; Cetó, X.; Serrano, N.; Ariño, C.; Esteban, M.; Díaz-Cruz, J.M. Dimethylglyoxime modified screen-printed electrodes for nickel determination. J. Electroanal. Chem. 2019, 839, 83–89. [Google Scholar] [CrossRef]
- Korolczuk, M. Voltammetric method for direct determination of nickel in natural waters in the presence of surfactants. Talanta 2000, 53, 679–686. [Google Scholar] [CrossRef]
- Mahajan, R.K.; Dhawan, P. Adsorptive stripping voltammetric determination of nickel(II) using N-2-pyridyl-benzamidine as a complexing reagent. Indian J. Chem. 2002, 41, 981–984. [Google Scholar]
- Korolczuk, M. Voltammetric determination of nickel in the flow system in the presence of an extremely large excess of cobalt and zinc. Electroanalysis 2000, 12, 1502–1504. [Google Scholar] [CrossRef]
- Bobrowski, A.; Królicka, A.; Maczuga, M.; Zarȩbski, J. A novel screen-printed electrode modified with lead film for adsorptive stripping voltammetric determination of cobalt and nickel. Sens. Actuators B 2014, 191, 291–297. [Google Scholar] [CrossRef]
- Ochab, M.; Gęca, I.; Korolczuk, M. The new micro-set for adsorptive stripping voltammetric simultaneous determination of nickel and cobalt traces in aqueous media. Electroanalysis 2019, 31, 1769–1774. [Google Scholar] [CrossRef]
Sensitivity (a.u. µg−1 L) | 1.007 (0.002) |
---|---|
R2 | 0.9998 |
Linear range (µg L−1) a | 1.7–150 |
LOD (µg L−1) | 0.5 |
Reproducibility (from slopes, n = 3, %) | 0.3 |
Repeatability (at 20 µg L−1, n = 5, %) | 0.4 |
Repeatability (at 20 µg L−1, n = 15, %) | 1.5 |
Electrode | Technique | Linear Range (µg L−1) | LOD (µg L−1) | Deposition Time (s) | Ref. |
---|---|---|---|---|---|
Bismuth film glassy carbon electrode | AdSV | 0–80 | 0.8 | 180 | [23] |
Bismuth film glassy carbon electrode | AdSV | 2–12 | 0.26 | 60 | [24] |
CCAdSCP | |||||
Rotating-disc bismuth-film electrode | SWAdSV | 1–14 | 0.1 | 300 | [25] |
Exsitu bismuth film microelectrode | SWAdCSV | 0.2–2 | 0.09 | 120 | [26] |
Sputtered bismuth film electrode | SWAdSV | 5–40 | 0.1 | 90 | [27] |
Sputtered antimony film electrodes | SWAdSV | 0–30 | 0.2 | 60 | [28] |
In-situ bismuth film glassy carbon electrode | SWAdSV | 0.3–3 | 0.06 | 120 | [29] |
In-situ antimony film glassy carbon electrode | SWAdSV | 2–20 | 0.11 | 60 | [30] |
Solid bismuth vibrating electrode | SWAdCSV | 0–10 | 0.6 | 30 | [31] |
Macroporous bismuth film screen-printed carbon electrode | AdCSV | 1–10 | 0.027 | 180 | [32] |
Renewable bismuth bulk annular band working electrode | DPAdSV | 0.6–41 | 0.18 | 30 | [33] |
Ex-situ antimony film screen-printed carbon electrode | DPAdSV | 3.1–197 | 0.9 | 120 | [34] |
Ex-situ bismuth film screen-printed carbon electrode | 9.8–226 | 2.9 | |||
Sputtered bismuth screen-printed electrode | 15.6–226 | 4.7 | |||
Chemically modified electrode based on dimethylglyoxime-containing carbon paste | DPV | 2.9–293.5 | 2.9 | 240 | [35] |
Glassy carbon coated with dimethylglyoxime-containing polymers | SWAdCSV | 18–180 | 18 | 240 | [36] |
Chelating agent-modified Nafion-coated mercury-film electrode | SWASV | 0.1–100 | 0.1 | 300 | [37] |
Cation exchanger-modified carbon paste electrode | AAdSV | 0.025–6 | 0.005 | 720 + 300 a | [38] |
6–600 | 0.006 | ||||
Carbon paste modified electrode containing dimethylglyoxime | DPV | 0.29–29.3 | 0.16 | 1500 | [39] |
Screen-printed electrodes modified with dimethylglyoxime in nafion | DPV | 60–500 | 30 | 120 | [40] |
Nafion-graphene dimethylglyoxime modified glassy carbon electrode | AdCSV | 2–20 | 1.5 | 120 | [41] |
Dimethylglyoxime modified screen-printed electrodes | DPAdSV | 7.6–200 b 23.6–200 c | 2.3 b 7.1 c | 60 | [42] |
Hanging mercury drop electrode | SWAdSV | --- | 0.003 | 60–180 | [20] |
Hanging mercury drop electrode | CSWV | 0.3–6 0.06–6 | 0.1 0.01 | 30 120 | [43] |
Hanging mercury drop electrode | AdSV | 0.3–3 | 0.06 | 180 | [44] |
Hanging mercury drop electrode | SWV | 0–18 | 0.07 | 120 | [45] |
Screen-printed electrode modified with lead film | SWAdSV | 5.9–35.2 0.6–2.9 | 0.6 0.2 | 60 90 | [46] |
In-situ plated lead film on carbon fiber working microelectrode | SWAdSV | 0.1–6 | 0.05 | 240 | [47] |
Screen-printed carbon electrode | DPAdSV | 1.7–150 | 0.5 | 120 | This work |
c (µg L−1) | RSD (%) | Relative Error (%) | |
---|---|---|---|
SPCE | 4954.0 | 0.4 | 0.9 |
Certified metal value | 5000.0 | 0.5 | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padilla, V.; Serrano, N.; Díaz-Cruz, J.M. Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode. Chemosensors 2021, 9, 94. https://doi.org/10.3390/chemosensors9050094
Padilla V, Serrano N, Díaz-Cruz JM. Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode. Chemosensors. 2021; 9(5):94. https://doi.org/10.3390/chemosensors9050094
Chicago/Turabian StylePadilla, Víctor, Núria Serrano, and José Manuel Díaz-Cruz. 2021. "Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode" Chemosensors 9, no. 5: 94. https://doi.org/10.3390/chemosensors9050094
APA StylePadilla, V., Serrano, N., & Díaz-Cruz, J. M. (2021). Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode. Chemosensors, 9(5), 94. https://doi.org/10.3390/chemosensors9050094