Helix-Like Receptors for Perrhenate Recognition Forming Hydrogen Bonds with All Four Oxygen Atoms †
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis of Boc-Protected Amine 4
2.3. Receptor 1
2.4. Receptor 2
2.5. Receptor 3
3. Results
Design and Synthesis
4. Discussion
4.1. Anion Binding Studies
4.2. DFT Calculations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sessler, J.L.; Gale, P.; Cho, W.-S. Anion Receptor Chemistry; RSC Publishing: Cambridge, UK, 2006; ISBN 978-0-85404-974-5. [Google Scholar]
- Gale, P.A. Anion receptor chemistry: Highlights from 2008 and 2009. Chem. Soc. Rev. 2010, 39, 3746–3771. [Google Scholar] [CrossRef] [Green Version]
- Kubik, S. Anion recognition in water. Chem. Soc. Rev. 2010, 39, 3648–3663. [Google Scholar] [CrossRef]
- Rehm, T.H.; Schmuck, C. Ion-pair induced self-assembly in aqueous solvents. Chem. Soc. Rev. 2010, 39, 3597–3611. [Google Scholar] [CrossRef] [PubMed]
- Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P.A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038–8155. [Google Scholar] [CrossRef]
- Morozov, B.S.; Namashivaya, S.S.R.; Zakharko, M.A.; Oshchepkov, A.S.; Kataev, E.A. Anthracene-Based Amido−Amine Cage Receptor for Anion Recognition under Neutral Aqueous Conditions. ChemistryOpen 2019, 9, 171–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayev, E.A.; Kolesnikov, G.V.; Sessler, J.L. Molecular recognition of pertechnetate and perrhenate. Chem. Soc. Rev. 2009, 38, 1572–1586. [Google Scholar] [CrossRef] [PubMed]
- Ravi, A.; Oshchepkov, A.S.; German, K.E.; Kirakosyan, G.A.; Safonov, A.V.; Khrustalev, V.N.; Kataev, E.A. Finding a receptor design for selective recognition of perrhenate and pertechnetate: Hydrogen vs. halogen bonding. Chem. Commun. 2018, 54, 4826–4829. [Google Scholar] [CrossRef]
- Volkert, W.A.; Hoffman, T.J. Therapeutic Radiopharmaceuticals. Chem. Rev. 1999, 99, 2269–2292. [Google Scholar] [CrossRef]
- Blower, P.J.; Prakash, S. The chemistry of rhenium in nuclear medicine. In Perspectives on Bioinorganic Chemistry; JAI Press: London, UK, 1999; Volume 4, pp. 91–143. [Google Scholar]
- Heeg, M.J.; Jurisson, S.S. The Role of Inorganic Chemistry in the Development of Radiometal Agents for Cancer Therapy. Accounts Chem. Res. 1999, 32, 1053–1060. [Google Scholar] [CrossRef]
- Schwochau, K. Technetium Chemistry and Radiopharmaceutical Applications; Wiley-VCH: Weinheim, Germany, 2008; ISBN 978-3-527-61337-3. [Google Scholar]
- Johannsen, B.; Spies, H. Technetium(V) chemistry as relevant to nuclear medicine. In Technetium and Rhenium Their Chemistry and Its Applications; Yoshihara, K., Omori, T., Eds.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 1996; Volume 176, pp. 77–121. ISBN 978-3-540-59469-7. [Google Scholar]
- Reichert, D.E.; Lewis, J.S.; Anderson, C.J. Metal complexes as diagnostic tools. Coord. Chem. Rev. 1999, 184, 3–66. [Google Scholar] [CrossRef]
- Jurisson, S.S.; Lydon, J.D. Potential technetium small molecule radiopharmaceuticals. Chem. Rev. 1999, 99, 2205–2218. [Google Scholar] [CrossRef]
- Rodríguez-Hermida, S.; Lago, A.B.; Pino-Cuevas, A.; Hagenbach, A.; Cañadillas-Delgado, L.; Carballo, R.; Abram, U.; Vázquez-López, E.M. A Hexameric Cationic Copper(II) Metallacrown as a Pertechnetate and Perrhenate Scavenger. Chem. A Eur. J. 2016, 22, 1847–1853. [Google Scholar] [CrossRef]
- Ghosh, S.; Roehm, B.; Begum, R.A.; Kut, J.; Hossain, A.; Day, V.W.; Bowman-James, K. Versatile Host for Metallo Anions and Cations. Inorg. Chem. 2007, 46, 9519–9521. [Google Scholar] [CrossRef] [PubMed]
- Gawenis, J.A.; Holman, K.T.; Atwood, J.L.; Jurisson, S.S. Extraction of Pertechnetate and Perrhenate from Water with Deep-Cavity [CpFe(arene)]+-Derivatized Cyclotriveratrylenes. Inorg. Chem. 2002, 41, 6028–6031. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.; Gloe, K.; Gloe, K.; Goretzki, G.; McKee, V.; Nelson, J.; Nieuwenhuyzen, M.; Pal, I.; Stephan, H.; Town, R.M.; et al. Towards promising oxoanion extractants: Azacages and open-chain counterparts. Dalton Trans. 2003, 1961–1968. [Google Scholar] [CrossRef]
- Holman, K.T.; Halihan, M.M.; Jurisson, S.S.; Atwood, J.L.; Burkhalter, R.S.; Mitchell, A.R.; Steed, J.W. Inclusion of Neutral and Anionic Guests within the Cavity of π-Metalated Cyclotriveratrylenes. J. Am. Chem. Soc. 1996, 118, 9567–9576. [Google Scholar] [CrossRef]
- Gorden, A.E.V.; Davis, J.; Sessler, J.L.; Král, V.; Keogh, D.W.; Schroeder, N.L. Monoprotonated Sapphyrin–Pertechnetate Anion Interactions in Aqueous Media. Supramol. Chem. 2004, 16, 91–100. [Google Scholar] [CrossRef]
- Kolesnikov, G.V.; German, K.E.; Kirakosyan, G.; Tananaev, I.G.; Ustynyuk, Y.A.; Khrustalev, V.N.; Katayev, E.A. Macrocyclic receptor for pertechnetate and perrhenate anions. Org. Biomol. Chem. 2011, 9, 7358–7364. [Google Scholar] [CrossRef]
- Hamilton, B.H.; Wagler, T.A.; Espe, M.P.; Ziegler, C.J. Sequestering Perrhenate with a Borate-Based Coordination Polymer: A Model for Pertechnetate Separation. Inorg. Chem. 2005, 44, 4891–4893. [Google Scholar] [CrossRef]
- Kataev, E.A.; Pantos, P.; Karnas, E.; Kolesnikov, G.V.; Tananaev, I.G.; Lynch, V.M.; Sessler, J.L. Perrhenate and pertechnetate anion recognition properties of cyclo[8]pyrrole. Supramol. Chem. 2014, 27, 346–356. [Google Scholar] [CrossRef]
- Alberto, R.; Bergamaschi, G.; Braband, H.; Fox, T.; Amendola, V. 99TcO4−: Selective Recognition and Trapping in Aqueous Solution. Angew. Chem. Int. Ed. 2012, 51, 9772–9776. [Google Scholar] [CrossRef]
- Thevenet, A.; Marie, C.; Tamain, C.; Amendola, V.; Miljkovic, A.; Guillaumont, D.; Boubals, N.; Guilbaud, P. Perrhenate and pertechnetate complexation by an azacryptand in nitric acid medium. Dalton Trans. 2020, 49, 1446–1455. [Google Scholar] [CrossRef]
- Desai, A.M.; Singh, P.K. Ratiometric fluorescence turn-on sensing of perrhenate anion, a non-radioactive surrogate of hazardous pertechnetate, in aqueous solution. Sens. Actuators B Chem. 2018, 277, 205–209. [Google Scholar] [CrossRef]
- Riel, A.M.S.; Decato, D.A.; Berryman, O.B. Protonation and Alkylation Induced Multidentate C-H—Anion Binding to Perrhenate. Cryst. Growth Des. 2016, 16, 974–980. [Google Scholar] [CrossRef]
- Sheng, D.; Zhu, L.; Xu, C.; Xiao, C.; Wang, Y.; Wang, Y.; Chen, L.; Diwu, J.; Chen, J.; Chai, Z.; et al. Efficient and Selective Uptake of TcO4− by a Cationic Metal-Organic Framework Material with Open Ag+ Sites. Environ. Sci. Technol. 2017, 51, 3471–3479. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, C.; Dai, X.; Li, J.; Gui, D.; Sheng, D.; Chen, L.; Zhou, R.; Chai, Z.; Albrecht-Schmitt, T.E.; et al. Exceptional Perrhenate/Pertechnetate Uptake and Subsequent Immobilization by a Low-Dimensional Cationic Coordination Polymer: Overcoming the Hofmeister Bias Selectivity. Environ. Sci. Technol. Lett. 2017, 4, 316–322. [Google Scholar] [CrossRef]
- Zhu, L.; Sheng, D.; Xu, C.; Dai, X.; Silver, M.A.; Li, J.; Li, P.; Wang, Y.; Wang, Y.; Chen, L.; et al. Identifying the Recognition Site for Selective Trapping of 99TcO4– in a Hydrolytically Stable and Radiation Resistant Cationic Metal-Organic Framework. J. Am. Chem. Soc. 2017, 139, 14873–14876. [Google Scholar] [CrossRef]
- Yu, P.; Wang, S.; Alekseev, E.V.; Depmeier, W.; Hobbs, D.T.; Albrecht-Schmitt, T.E.; Phillips, B.L.; Casey, W.H. Technetium-99 MAS NMR Spectroscopy of a Cationic Framework Material that Traps TcO4−Ions. Angew. Chem. Int. Ed. 2010, 49, 5975–5977. [Google Scholar] [CrossRef]
- Drout, R.J.; Otake, K.; Howarth, A.J.; Islamoglu, T.; Zhu, L.; Xiao, C.; Wang, S.; Farha, O.K. Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal-Organic Framework and Examination of Anion Binding Motifs. Chem. Mater. 2018, 30, 1277–1284. [Google Scholar] [CrossRef]
- Desai, A.V.; Manna, B.; Karmakar, A.; Sahu, A.; Ghosh, S.K. A Water-Stable Cationic Metal-Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angew. Chem. Int. Ed. 2016, 55, 7811–7815. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, J.; Tuo, D.; Yuan, Q.; Wang, L.; Wang, X.; Ao, Y.; Wang, Q.; Wang, D. Macrocycle-Directed Construction of Tetrahedral Anion–π Receptors for Nesting Anions with Complementary Geometry. Chem. A Eur. J. 2019, 25, 13275–13279. [Google Scholar] [CrossRef]
- Jia, C.; Zuo, W.; Zhang, D.; Yang, X.-J.; Wu, B. Anion recognition by oligo-(thio)urea-based receptors. Chem. Commun. 2016, 52, 9614–9627. [Google Scholar] [CrossRef]
- Custelcean, R.; Bock, A.; Moyer, B.A. Selectivity Principles in Anion Separation by Crystallization of Hydrogen-Bonding Capsules. J. Am. Chem. Soc. 2010, 132, 7177–7185. [Google Scholar] [CrossRef]
- Hay, B.P.; Firman, T.K.; Moyer, B.A. Structural Design Criteria for Anion Hosts: Strategies for Achieving Anion Shape Recognition through the Complementary Placement of Urea Donor Groups. J. Am. Chem. Soc. 2005, 127, 1810–1819. [Google Scholar] [CrossRef] [PubMed]
- Martell, A.E.; Motekaitis, R.J.; Lu, Q.; Nation, D.A. Phosphate anion binding by macrocyclic dinucleating ligands and their metal complexes. Polyhedron 1999, 18, 3203–3218. [Google Scholar] [CrossRef]
- Qin, L.; Hartley, A.; Turner, P.; Elmes, R.B.P.; Jolliffe, K.A. Macrocyclic squaramides: Anion receptors with high sulfate binding affinity and selectivity in aqueous media. Chem. Sci. 2016, 7, 4563–4572. [Google Scholar] [CrossRef] [Green Version]
- Schaly, A.; Belda, R.; García-España, E.; Kubik, S. Selective Recognition of Sulfate Anions by a Cyclopeptide-Derived Receptor in Aqueous Phosphate Buffer. Org. Lett. 2013, 15, 6238–6241. [Google Scholar] [CrossRef]
- Katayev, E.A.; Ustynyuk, Y.A.; Sessler, J.L. Receptors for tetrahedral oxyanions. Coord. Chem. Rev. 2006, 250, 3004–3037. [Google Scholar] [CrossRef]
- Chen, G.; Lean, J.T.; Alcala, M.; Mallouk, T.E. Modular Synthesis of π-Acceptor Cyclophanes Derived from 1,4,5,8-Naphthalenetetracarboxylic Diimide and 1,5-Dinitronaphthalene. J. Org. Chem. 2001, 66, 3027–3034. [Google Scholar] [CrossRef]
- Schmuck, C.; Machon, U. Amino Acid Binding by 2-(Guanidiniocarbonyl)pyridines in Aqueous Solvents: A Comparative Binding Study Correlating Complex Stability with Stereoelectronic Factors. Chem. A Eur. J. 2005, 11, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Szyszkowska, M.; Czaplewski, C.; Wiczk, W. Photophysical and theoretical studies of diphenylacetylene derivatives with restricted rotation. J. Mol. Struct. 2017, 1138, 81–89. [Google Scholar] [CrossRef]
- John, E.A.; Massena, C.J.; Berryman, O.B. Helical Anion Foldamers in Solution. Chem. Rev. 2020, 120, 2759–2782. [Google Scholar] [CrossRef] [PubMed]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Ulatowski, F.; Dąbrowa, K.; Bałakier, T.; Jurczak, J. Recognizing the Limited Applicability of Job Plots in Studying Host–Guest Interactions in Supramolecular Chemistry. J. Org. Chem. 2016, 81, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
Anion a | Receptor 1 | Receptor 2 | Receptor 3 |
---|---|---|---|
Cl− | 2.57(1); 1.51(3) a | 2.44(1); 1.20(1) a | 3.40(1); <1 a |
Br− | 1.99(1) | 2.77(1); 1.19(8) a | 2.87(1); <1 a |
I− | 1.46(1) | 2.94(1) | 2.56(1) |
HSO4− | 1.96(1) | 2.90(1) | 3.27(1) |
ReO4− | 2.88(3) | 3.92(1) | 3.06(1) |
ClO4− | - b | - b | - b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozov, B.S.; Ravi, A.; Oshchepkov, A.S.; Rüffer, T.; Lang, H.; Kataev, E.A. Helix-Like Receptors for Perrhenate Recognition Forming Hydrogen Bonds with All Four Oxygen Atoms. Chemosensors 2021, 9, 93. https://doi.org/10.3390/chemosensors9050093
Morozov BS, Ravi A, Oshchepkov AS, Rüffer T, Lang H, Kataev EA. Helix-Like Receptors for Perrhenate Recognition Forming Hydrogen Bonds with All Four Oxygen Atoms. Chemosensors. 2021; 9(5):93. https://doi.org/10.3390/chemosensors9050093
Chicago/Turabian StyleMorozov, Boris S., Anil Ravi, Aleksandr S. Oshchepkov, Tobias Rüffer, Heinrich Lang, and Evgeny A. Kataev. 2021. "Helix-Like Receptors for Perrhenate Recognition Forming Hydrogen Bonds with All Four Oxygen Atoms" Chemosensors 9, no. 5: 93. https://doi.org/10.3390/chemosensors9050093
APA StyleMorozov, B. S., Ravi, A., Oshchepkov, A. S., Rüffer, T., Lang, H., & Kataev, E. A. (2021). Helix-Like Receptors for Perrhenate Recognition Forming Hydrogen Bonds with All Four Oxygen Atoms. Chemosensors, 9(5), 93. https://doi.org/10.3390/chemosensors9050093