A Novel Multi-Ionophore Approach for Potentiometric Analysis of Lanthanide Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Membrane Compositions
2.3. Potentiometric Measurements
3. Results and Discussion
3.1. Sensor Sensitivity
3.2. Selectivity of Ln3+ Determination
3.3. Binary Mixtures Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crespo, G.A. Recent Advances in Ion-selective membrane electrodes for in situ environmental water analysis. Electrochim. Acta 2017, 245, 1023–1034. [Google Scholar] [CrossRef]
- Gallardo, J.; Alegret, S.; Del Valle, M. Application of a potentiometric electronic tongue as a classification tool in food analysis. Talanta 2005, 66, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Oleneva, E.; Savosina, J.; Agafonova-Moroz, M.; Lumpov, A.; Babain, V.; Jahatspanian, I.; Legin, A.; Kirsanov, D. Potentiometric multisensor system for tetra- and hexavalent actinide quantification in complex rare earth metal mixtures related to spent nuclear fuel reprocessing. Sens. Actuators B Chem. 2019, 288, 155–162. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, X.; Zhang, X.; Liu, Y.; Yu, M. Extraction of rare earth ions from phosphate leach solution using emulsion liquid membrane in concentrated nitric acid medium. J. Rare Earths 2018, 36, 1190–1197. [Google Scholar] [CrossRef]
- He, J.; Li, Y.; Xue, X.; Ru, H.; Huang, X.; Yang, H. A novel Ce(IV) ion-selective polyvinyl chloride membrane electrode based on HDEHP and HEH/EHP. J. Rare Earths 2017, 35, 934–940. [Google Scholar] [CrossRef]
- Kirsanov, D.; Khaydukova, M.; Tkachenko, L.; Legin, A.; Babain, V. Potentiometric Sensor Array for Analysis of Complex Rare Earth Mixtures. Electroanalysis 2012, 24, 121–130. [Google Scholar] [CrossRef]
- Hoh, Y.C.; Nevarez, M.; Bautista, R.G. A Predictive Thermodynamic Model for the Distribution Coefficients of Neodymium in the Nd(NO3)3-HNO3-H2O-1 M HDEHP-Amsco Liquid-Liquid Extraction System. Ind. Eng. Chem. Process Des. Dev. 1978, 17, 88–91. [Google Scholar] [CrossRef]
- Bakker, E.; Simon, W. Selectivity of ion-sensitive bulk optodes. Anal. Chem. 1992, 64, 1805–1812. [Google Scholar] [CrossRef]
- Alyapyshev, M.; Babain, V.; Borisova, N.; Eliseev, I.; Kirsanov, D.; Kostin, A.; Legin, A.; Reshetova, M.; Smirnova, Z. 2,2′-Dipyridyl-6,6′-dicarboxylic acid diamides: Synthesis, complexation and extraction properties. Polyhedron 2010, 29, 1998–2005. [Google Scholar] [CrossRef]
- Alyapyshev, M.Y.; Babain, V.A.; Boyko, V.I.; Eliseev, I.I.; Kirsanov, D.O.; Klimchuk, O.V.; Legin, A.V.; Mikhailina, E.S.; Rodik, R.V.; Smirnov, I.V. Calixarenes functionalized with phosphine oxide and diamide functions as extractants and ionofores for rare-earth metals. J. Incl. Phenom. Macrocycl. Chem. 2010, 67, 117–126. [Google Scholar] [CrossRef]
- Legin, A.V.; Babain, V.A.; Kirsanov, D.O.; Mednova, O.V. Cross-sensitive rare earth metal ion sensors based on extraction systems. Sens. Actuators B Chem. 2008, 131, 29–36. [Google Scholar] [CrossRef]
- Khaydukova, M.; Militsyn, D.; Karnaukh, M.; Grüner, B.; Selucký, P.; Babain, V.; Wilden, A.; Kirsanov, D.; Legin, A. Modified Diamide and Phosphine Oxide Extracting Compounds as Membrane Components for Cross-Sensitive Chemical Sensors. Chemosensors 2019, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Babain, V.A.; Legin, A.V.; Kirsanov, D.O.; Rudnitskaya, A.M.; Tatuev, Y.M.; Baulin, V.E. New chemical sensors based on extraction systems for stable fission products analysis. Radiochim. Acta 2009, 97, 479–484. [Google Scholar] [CrossRef]
- Kirsanov, D.O.; Borisova, N.E.; Reshetova, M.D.; Ivanov, A.V.; Korotkov, L.A.; Eliseev, I.I.; Alyapyshev, M.Y.; Spiridonov, I.G.; Legin, A.V.; Vlasov, Y.G.; et al. Novel diamides of 2,2′-dipyridyl-6,6′-dicarboxylic acid: Synthesis, coordination properties, and possibilities of use in electrochemical sensors and liquid extraction. Russ. Chem. Bull. 2013, 61, 881–890. [Google Scholar] [CrossRef]
- Kirsanov, D.O.; Legin, A.V.; Babain, V.A.; Vlasov, Y.G. Polymeric sensors based on extraction systems for determination of rare-earth metals. Russ. J. Appl. Chem. 2005, 78, 568–573. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K. Synergistic Solvent Extraction of Lanthanides (III) with Mixtures of Tetraphenylmethylenediphosphine Dioxide and Picrolonic Acid from HCl Solutions. Solvent Extr. Ion Exch. 2017, 35, 104–116. [Google Scholar] [CrossRef]
- Lumetta, G.J.; Carter, J.C.; Gelis, A.V.; Vandegrift, G.F. Combining Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide and bis-(2-ethylhexyl)phosphoric acid extractants for recovering transuranic elements from irradiated nuclear fuel. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2010; Volume 1046, pp. 107–118. [Google Scholar]
- Tkac, P.; Vandegrift, G.F.; Lumetta, G.J.; Gelis, A.V. Study of the Interaction between HDEHP and CMPO and Its Effect on the Extraction of Selected Lanthanides. Ind. Eng. Chem. Res. 2012, 51, 10433–10444. [Google Scholar] [CrossRef]
- Borisova, N.E.; Eroshkina, E.A.; Korotkov, L.A.; Ustynyuk, Y.A.; Alyapyshev, M.Y.; Eliseev, I.I.; Babain, V.A. Actinide-Lanthanide Separation by Bipyridyl-Based Ligands: DFT Calculations and Experimental Results. In Proceedings of the 10th International Conference Toward and over the Fukushima Daiichi accident, Chiba, Japan, 11–16 December 2011. [Google Scholar]
- Hyun Han, S.; Shin Lee, K.; Sig Cha, G.; Liu, D.; Trojanowicz, M. Potentiometric detection in ion chromatography using multi-ionophore membrane electrodes. J. Chromatogr. A 1993, 648, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Cuartero, M.; Crespo, G.A.; Bakker, E. Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes. Anal. Chem. 2016, 88, 1654–1660. [Google Scholar] [CrossRef]
- Jadhav, S.; Bakker, E. Selectivity Behavior and Multianalyte Detection Capability of Voltammetric Ionophore-Based Plasticized Polymeric Membrane Sensors. Anal. Chem. 2001, 73, 80–90. [Google Scholar] [CrossRef]
- Crespo, G.A.; Cuartero, M.; Bakker, E. Thin Layer Ionophore-Based Membrane for Multianalyte Ion Activity Detection. Anal. Chem. 2015, 87, 7729–7737. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.; Slater, J.M. Multi-Ionophore Membrane Electrode. U.S. Patent No. DE60311517T2, 28 November 2002. [Google Scholar]
- Bakker, E.; Pretsch, E. Ion-Selective Electrodes Based on Two Competitive Ionophores for Determining Effective Stability Constants of Ion−Carrier Complexes in Solvent Polymeric Membranes. Anal. Chem 1998, 70, 295–302. [Google Scholar] [CrossRef]
- Legin, A.V.; Kirsanov, D.O.; Babain, V.A.; Borovoy, A.V.; Herbst, R.S. Cross-sensitive rare-earth metal sensors based on bidentate neutral organophosphorus compounds and chlorinated cobalt dicarbollide. Anal. Chim. Acta 2006, 572, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Horwltz, E.P.; Martin, K.A.; Diamond, H.; Kaplan, L. Extraction of Am from Nitric Acid by Carbamoyl-Phosphoryl Extractants: The Influence of Substituents on The Selectivity of Am Over Fe and Selected Fission Products. Solvent Extr. Ion Exch. 1986, 4, 449–494. [Google Scholar] [CrossRef]
- Babain, V.A.; Alyapyshev, M.Y.; Kiseleva, R.N. Metal extraction by N,N′-dialkyl-N,N′-diaryl-dipicolinamides from nitric acid solutions. Radiochim. Acta 2007, 95, 217–223. [Google Scholar] [CrossRef]
- Richards, E.; Bessant, C.; Saini, S. Multivariate data analysis in electroanalytical chemistry. Electroanalysis 2002, 14, 1533–1542. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Ciosek, P.; Mamińska, R.; Dybko, A.; Wróblewski, W. Potentiometric electronic tongue based on integrated array of microelectrodes. Sens. Actuators B Chem. 2007, 127, 8–14. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E.; Bühlmann, P. Selectivity of potentiometric ion sensors. Anal. Chem. 2000, 72, 1127–1133. [Google Scholar] [CrossRef]
- Kirsanov, D.; Panchuk, V.; Agafonova-Moroz, M.; Khaydukova, M.; Lumpov, A.; Semenov, V.; Legin, A. A sample-effective calibration design for multiple components. Analyst 2014, 139, 4303–4309. [Google Scholar] [CrossRef]
- Suzuki, H.; Naganawa, H.; Tachimori, S. Role of hydrophobic counteranions in the ion pair extraction of lanthanides(III) with an electrically neutral extractant. Phys. Chem. Chem. Phys. 2003, 5, 726–733. [Google Scholar] [CrossRef]
- Lumetta, G.J.; Gelis, A.V.; Braley, J.C.; Carter, J.C.; Pittman, J.W.; Warner, M.G.; Vandegrift, G.F. The TRUSPEAK Concept: Combining CMPO and HDEHP for Separating Trivalent Lanthanides from the Transuranic Elements. Solvent Extr. Ion Exch. 2013, 31, 223–236. [Google Scholar] [CrossRef]
- Alyapyshev, M.Y.; Babain, V.A.; Tkachenko, L.I.; Eliseev, I.I.; Didenko, A.V.; Petrov, M.L. Dependence of Extraction Properties of 2,6-Dicarboxypyridine Diamides on Extractant Structure. Solvent Extr. Ion Exch.e 2011, 29, 619–636. [Google Scholar] [CrossRef]
- Faber, K.; Kowalski, B.R. Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares. J. Chemom. 1997, 11, 181–238. [Google Scholar] [CrossRef]
# | mionophore, mg | mplasticizer | mPVC | mlipophilic additive | ||
---|---|---|---|---|---|---|
DPCMPO | TODGA | DPA | ||||
M1 | 5.6 | - | - | 194.5 | 97.2 | 1.5 |
M2 | - | 8.7 | - | 192.4 | 96.2 | 1.5 |
M3 | - | - | 6.1 | 194.1 | 97.1 | 1.5 |
M4 | 1.8 | 2.9 | 2.0 | 193.7 | 96.8 | 1.5 |
M5 | 2.8 | 4.4 | - | 193.4 | 96.7 | 1.5 |
M6 | 2.8 | - | 3.1 | 194.3 | 97.1 | 1.5 |
M7 | - | 4.4 | 3.1 | 193.2 | 96.6 | 1.5 |
Primary Ln3+ion/Sensor no. | M1 | M2 | M3 | M4 | M5 | M6 | M7 |
---|---|---|---|---|---|---|---|
Ce | 0.4 | 3.2 | 0.4 | 0.8 | 1.6 | 0.4 | 0.4 |
Pr | 0.8 | >>10 | 1.6 | >>10 | >>10 | 3.2 | 10.0 |
Nd | 0.3 | 0.2 | 0.6 | 0.3 | 0.5 | 0.5 | 0.3 |
Sm | 1.6 | 0.3 | 1.0 | 0.6 | 0.6 | 1.3 | 0.6 |
Eu | 0.5 | 0.1 | 0.2 | 0.1 | 0.1 | 1.0 | 0.1 |
Gd | 1.0 | 0.3 | 0.3 | 0.2 | 0.2 | 1.0 | 0.2 |
Er | 3.9 | 0.4 | 1.0 | 0.4 | 0.2 | 5.0 | 0.1 |
Sensor Set | La3+ | Nd3+ | ||||||
---|---|---|---|---|---|---|---|---|
Slope | RMSEP (logC) | R2 | N | Slope | RMSEP (logC) | R2 | N | |
Complete array (M1–M7) | 0.69 | 0.12 | 0.85 | 4 | 1.14 | 0.15 | 0.89 | 2 |
light-sensitive (M1 + M3 + M6) | 0.84 | 0.09 | 0.90 | 3 | 0.31 | 0.35 | 0.40 | 3 |
heavy-sensitive (M2 + M4 + M5 + M7) | 0.37 | 0.24 | 0.55 | 2 | 1.06 | 0.13 | 0.91 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashina, J.; Babain, V.; Kirsanov, D.; Legin, A. A Novel Multi-Ionophore Approach for Potentiometric Analysis of Lanthanide Mixtures. Chemosensors 2021, 9, 23. https://doi.org/10.3390/chemosensors9020023
Ashina J, Babain V, Kirsanov D, Legin A. A Novel Multi-Ionophore Approach for Potentiometric Analysis of Lanthanide Mixtures. Chemosensors. 2021; 9(2):23. https://doi.org/10.3390/chemosensors9020023
Chicago/Turabian StyleAshina, Julia, Vasily Babain, Dmitry Kirsanov, and Andrey Legin. 2021. "A Novel Multi-Ionophore Approach for Potentiometric Analysis of Lanthanide Mixtures" Chemosensors 9, no. 2: 23. https://doi.org/10.3390/chemosensors9020023
APA StyleAshina, J., Babain, V., Kirsanov, D., & Legin, A. (2021). A Novel Multi-Ionophore Approach for Potentiometric Analysis of Lanthanide Mixtures. Chemosensors, 9(2), 23. https://doi.org/10.3390/chemosensors9020023