Development of a MIP-Based QCM Sensor for Selective Detection of Penicillins in Aqueous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of MIPs’ Thin Films
2.3. Preparing the Sensors
2.4. Coating Process of Thin Films on QCM
2.5. AFM Analysis
2.6. QCM Measurement Setup
3. Results and Discussion
3.1. Optimization of MIP Thin Film
3.2. Polymer Surface Analysis
3.3. Sensor Characteristics
3.4. Sensing Thermodynamics
3.5. Selectivity
3.6. Comparison of Data with Previous Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review; Antibiotic Pollution in the Environment: A Review. Clean–Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Yao, L.; Wang, Y.; Tong, L.; Li, Y.; Deng, Y.; Guo, W.; Gan, Y. Seasonal variation of antibiotics concentration in the aquatic environment: A case study at Jianghan Plain, central China. Sci. Total Environ. 2015, 527, 56–64. [Google Scholar] [CrossRef]
- Beta-lactam antibiotics. In Meyler’s Side Effects of Drugs, 6th ed.; Elsevier: Oxford, UK, 2016; pp. 928–956.
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, S. (Ed.) Handbook of Pharmacogenomics and Stratified Medicine; Academic Press: San Diego, CA, USA, 2014; pp. 405–435. [Google Scholar]
- Finch, R.; Greenwood, D.; Norrby, R.; Whitley, R. Preface. In Antibiotic and Chemotherapy, 9th ed.; Finch, R.G., Greenwood, D., Norrby, S.R., Whitley, R.J., Eds.; W.B. Saunders: London, UK, 2010; pp. 200–226. [Google Scholar]
- Zhang, J.; Wang, H.; Liu, W.; Bai, L.; Ma, N.; Lu, J. Synthesis of Molecularly Imprinted Polymer for Sensitive Penicillin Determination in Milk. Anal. Lett. 2008, 41, 3411–3419. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Wu, S.; Sun, Z.; Gong, B. Preparation of Ampicillin Surface Molecularly Imprinted Polymers for Its Selective Recognition of Ampicillin in Eggs Samples. Int. J. Anal. Chem. 2018, 2018, 73–81. [Google Scholar] [CrossRef]
- Pottegård, A.; Broe, A.; Aabenhus, R.; Bjerrum, L.; Hallas, J.; Damkier, P. Use of antibiotics in children: A Danish nationwide drug utilization study. Pediatric Infect. Dis. J. 2015, 34, e16–e22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.; Hsia, Y.; Bielicki, J.A.; Ellis, S.; Stephens, P.; Wong, I.C.K.; Sharland, M. Estimating global trends in total and childhood antibiotic consumption, 2011-2015. BMJ Glob. Health 2019, 4, e0012–e0041. [Google Scholar] [CrossRef] [Green Version]
- Mackuľak, T.; Cverenkárová, K.; Vojs Staňová, A.; Fehér, M.; Tamáš, M.; Škulcová, A.B.; Gál, M.; Naumowicz, M.; Špalková, V.; Bírošová, L. Hospital Wastewater—Source of Specific Micropollutants, Antibiotic-Resistant Microorganisms, Viruses, and Their Elimination. Antibiotics 2021, 10, 1017. [Google Scholar] [CrossRef]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563, 366–376. [Google Scholar] [CrossRef]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect Drug Resist 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, S.C.; Zembower, T.R. Global increases in antibiotic consumption: A concerning trend for WHO targets. Lancet Infect. Dis. 2021, 21, 10–11. [Google Scholar] [CrossRef]
- Klein, E.Y.; Milkowska-Shibata, M.; Tseng, K.K.; Sharland, M.; Gandra, S.; Pulcini, C.; Laxminarayan, R. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–2015: An analysis of pharmaceutical sales data. Lancet Infect. Dis. 2021, 21, 107–115. [Google Scholar] [CrossRef]
- Tong, L.; Li, P.; Wang, Y.; Zhu, K. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere 2009, 74, 1090–1097. [Google Scholar] [CrossRef]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Bidshahi, H.S.; Mesdaghinia, A. An optimized SPE-LC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology- central composite design. J. Environ. Health Sci. Eng. 2017, 15, 21. [Google Scholar] [CrossRef]
- Çe Unutkan, T.; Bakırdere, S.; Keyf, S. Development of an Analytical Method for the Determination of Amoxicillin in Commercial Drugs and Wastewater Samples, and Assessing its Stability in Simulated Gastric Digestion. J. Chromatogr. Sci. 2018, 56, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Unger, C.; Lieberzeit, P.A. Molecularly imprinted thin film surfaces in sensing: Chances and challenges. React. Funct. Polym. 2021, 161, 104855. [Google Scholar] [CrossRef]
- Haupt, K.; Linares, A.V.; Bompart, M.; Bui, B.T. Molecularly imprinted polymers. Top Curr. Chem. 2012, 325, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Kadhem, A.J.; Xiang, S.; Nagel, S.; Lin, C.-H.; Fidalgo de Cortalezzi, M. Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers 2018, 10, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021, 26, 5612. [Google Scholar] [CrossRef]
- Hussain, M.; Wackerlig, J.; Lieberzeit, P.A. Biomimetic strategies for sensing biological species. Biosensors 2013, 3, 89–107. [Google Scholar] [CrossRef] [PubMed]
- Buntkowsky, G.; Vogel, M. Small Molecules, Non-Covalent Interactions, and Confinement. Molecules 2020, 25, 3311. [Google Scholar] [CrossRef] [PubMed]
- Lieberzeit, P.A.; Jungmann, C.; Schranzhofer, L. Molecular Imprinting on the Nanoscale–Rapid Detection of Ag Nanoparticles by QCM Sensors. Procedia Eng. 2014, 87, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review. Chemosensors 2021, 9, 123. [Google Scholar] [CrossRef]
- Afzal, A.; Mujahid, A.; Schirhagl, R.; Bajwa, S.Z.; Latif, U.; Feroz, S. Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses. Chemosensors 2017, 5, 7. [Google Scholar] [CrossRef]
- Alenus, J.; Ethirajan, A.; Horemans, F.; Weustenraed, A.; Csipai, P.; Gruber, J.; Peeters, M.; Cleij, T.J.; Wagner, P. Molecularly imprinted polymers as synthetic receptors for the QCM-D-based detection of L-nicotine in diluted saliva and urine samples. Anal. Bioanal. Chem. 2013, 405, 6479–6487. [Google Scholar] [CrossRef] [PubMed]
- Sroysee, W.; Chunta, S.; Amatatongchai, M.; Lieberzeit, P.A. Molecularly imprinted polymers to detect profenofos and carbofuran selectively with QCM sensors. Phys. Med. 2019, 7, 100016. [Google Scholar] [CrossRef]
- Arshad, U.; Mujahid, A.; Lieberzeit, P.; Afzal, A.; Bajwa, S.Z.; Iqbal, N.; Roshan, S. Molecularly imprinted polymeric coatings for sensitive and selective gravimetric detection of artemether. RSC Adv. 2020, 10, 34355–34363. [Google Scholar] [CrossRef]
- Subrahmanyam, S.; Guerreiro, A.; Poma, A.; Moczko, E.; Piletska, E.; Piletsky, S. Optimisation of experimental conditions for synthesis of high affinity MIP nanoparticles. Eur. Polym. J. 2013, 49, 100–105. [Google Scholar] [CrossRef]
- PubChem. Penicillin V Potassium. 2004. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Penicillin-V-potassium (accessed on 10 September 2021).
- PubChem. Penicillin G Potassium. 2004. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Penicillin-G-potassium (accessed on 10 September 2021).
- PubChem. Amoxicillin Sodium. 2004. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Amoxicillin-sodium (accessed on 10 September 2021).
- Cho, N.-J.; Kanazawa, K.K.; Glenn, J.S.; Frank, C.W. Employing Two Different Quartz Crystal Microbalance Models To Study Changes in Viscoelastic Behavior upon Transformation of Lipid Vesicles to a Bilayer on a Gold Surface. Anal. Chem. 2007, 79, 7027–7035. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Dong, J.; Liu, M.; Ning, B.; Cheng, C.; Guo, C.; Zhou, C.; Peng, Y.; Bai, J.; Gao, Z. Development of molecularly imprinted polymer films used for detection of profenofos based on a quartz crystal microbalance sensor. Analyst 2012, 137, 1252–1258. [Google Scholar] [CrossRef]
- Tanese, M.C.; Farinola, G.M.; Pignataro, B.; Valli, L.; Giotta, L.; Conoci, S.; Lang, P.; Colangiuli, D.; Babudri, F.; Naso, F.; et al. Poly(alkoxyphenylene−thienylene) Langmuir−Schäfer Thin Films for Advanced Performance Transistors. Chem. Mater. 2006, 18, 778–784. [Google Scholar] [CrossRef]
- Chunta, S.; Suedee, R.; Lieberzeit, P.A. High-density lipoprotein sensor based on molecularly imprinted polymer. Anal. Bioanal. Chem. 2018, 410, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Plausinaitis, D.; Sinkevicius, L.; Samukaite-Bubniene, U.; Ratautaite, V.; Ramanavicius, A. Evaluation of electrochemical quartz crystal microbalance based sensor modified by uric acid-imprinted polypyrrole. Talanta 2020, 220, 121414. [Google Scholar] [CrossRef]
- Pan, M.; Gu, Y.; Zhang, M.; Wang, J.; Yun, Y.; Wang, S. Reproducible Molecularly Imprinted QCM Sensor for Accurate, Stable, and Sensitive Detection of Enrofloxacin Residue in Animal-Derived Foods. Food Anal. Methods 2018, 11, 495–503. [Google Scholar] [CrossRef]
- Ratautaite, V.; Plausinaitis, D.; Baleviciute, I.; Mikoliunaite, L.; Ramanaviciene, A.; Ramanavicius, A. Characterization of caffeine-imprinted polypyrrole by a quartz crystal microbalance and electrochemical impedance spectroscopy. Sens. Actuators B Chem. 2015, 212, 63–71. [Google Scholar] [CrossRef]
- Weber, P.; Riegger, B.R.; Niedergall, K.; Tovar, G.E.M.; Bach, M.; Gauglitz, G. Nano-MIP based sensor for penicillin G: Sensitive layer and analytical validation. Sens. Actuators B Chem. 2018, 267, 26–33. [Google Scholar] [CrossRef]
- Safran, V.; Göktürk, I.; Bakhshpour, M.; Yılmaz, F.; Denizli, A. Development of Molecularly Imprinted Polymer-Based Optical Sensor for the Sensitive Penicillin G Detection in Milk. ChemistrySelect 2021, 6, 11865–11875. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Boroznjak, R.; Öpik, A.; Syritski, V. Molecularly imprinted poly(meta-phenylenediamine) based QCM sensor for detecting Amoxicillin. Sens. Actuators B Chem. 2018, 258, 766–774. [Google Scholar] [CrossRef]
- Jamieson, O.; Soares, T.C.C.; de Faria, B.A.; Hudson, A.; Mecozzi, F.; Rowley-Neale, S.J.; Banks, C.E.; Gruber, J.; Novakovic, K.; Peeters, M.; et al. Screen Printed Electrode Based Detection Systems for the Antibiotic Amoxicillin in Aqueous Samples Utilising Molecularly Imprinted Polymers as Synthetic Receptors. Chemosensors 2020, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Lowdon, J.W.; Diliën, H.; van Grinsven, B.; Eersels, K.; Cleij, T.J. Colorimetric Sensing of Amoxicillin Facilitated by Molecularly Imprinted Polymers. Polymers 2021, 13, 2221. [Google Scholar] [CrossRef] [PubMed]
- López, R.; Khan, S.; Wong, A.; Sotomayor, M.d.P.T.; Picasso, G. Development of a New Electrochemical Sensor Based on Mag-MIP Selective Toward Amoxicillin in Different Samples. Front. Chem. 2021, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, E.; Turco, A.; Chianella, I.; Guerreiro, A.; Piletsky, S.A.; Malitesta, C. Solid-phase synthesis of electroactive nanoparticles of molecularly imprinted polymers. A novel platform for indirect electrochemical sensing applications. Sens. Actuators B Chem. 2016, 229, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Munawar, A.; Tahir, M.A.; Shaheen, A.; Lieberzeit, P.A.; Khan, W.S.; Bajwa, S.Z. Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J. Hazard. Mater. 2018, 342, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Gürler, B.; Özkorucuklu, S.P.; Kır, E. Voltammetric behavior and determination of doxycycline in pharmaceuticals at molecularly imprinted and non-imprinted overoxidized polypyrrole electrodes. J. Pharm. Biomed. Anal. 2013, 84, 263–268. [Google Scholar] [CrossRef] [PubMed]
Polymer | MAA (µL—mmol) | EDGMA (µL—mmol) | Template: Monomer: Crosslinker Molar Ratio | Cross-Linking Degree CL% (mol/mol) | Total Monomer Concentration T% (w/v) |
---|---|---|---|---|---|
1 | 10—0.12 | 10—0.05 | 1:4.28:1.78 | 30 | 2.6 |
2 | 10—0.12 | 15—0.08 | 1:4.28:2.85 | 40 | 3.2 |
3 | 15—0.18 | 30—0.16 | 1:6.40:5.71 | 47 | 5.8 |
4 | 15—0.18 | 40—0.21 | 1:6.40:7.50 | 54 | 7.1 |
5 | 15—0.18 | 45—0.23 | 1:6.40:8.21 | 56 | 7.8 |
6 | 15—0.18 | 50—0.26 | 1:6.40:9.28 | 60 | 8.5 |
Analyte Concentration (mM) | Sensor Response (Hz) | Coefficient of Variation (%) | ||
---|---|---|---|---|
MIP | NIP | MIP | NIP | |
2.50 | 270 | 91 | 4 | 9 |
2.00 | 207 | 63 | 5 | 11 |
1.25 | 136 | 41 | 7 | 14 |
0.60 | 77 | 18 | 16 | 17 |
0.50 | 62 | 14 | 10 | 37 |
0.30 | 38 | 8 | 19 | 49 |
Type of Sensor | R2 - | |||
---|---|---|---|---|
PenV-K MIP | 749.2 | 0.976 | 256.41 | –13.70 |
PenG-K MIP | 697.8 | 0.981 | 212.76 | –13.23 |
Amo-Na MIP | 724.4 | 0.973 | 238.10 | –13.51 |
Sensor | Analyte | Transducer | Medium | LOD | Ref. |
---|---|---|---|---|---|
Acrylic-based Nano-MIP | Penicillin G | RIfS (Optical) | PBS buffer | 4.32 mM | [43] |
MIP-AuNPs | Penicillin G | SPR (Optical) | Acetate buffer | 0.0017 ppb | [44] |
m-PDMIP-thin film | Amoxicillin | QCM (Mass-sensitive) | PBS buffer | 0.2 nM | [45] |
Acrylic-basedMIP-thin film | Amoxicillin | HTM (Thermal) | PBS buffer | 1.89 nM | [46] |
Acrylic-basedMIP-thin film | Amoxicillin | UV-spectra (Colorimetric) | DI water | 1 µM | [47] |
Mag-MIP/CPE | Amoxicillin | SWV (Voltammetric) | PBS buffer | 0.75 µM | [48] |
Acrylic-based Nano-MIP | Vancomycin | CV (Voltammetric) | PBS buffer | 0.083 mM | [49] |
Acrylic-based3D CNTs@Cu NPs@MIP | Chloramphenicol | CV (Voltammetric) | PBS buffer | 0.01 mM | [50] |
PolypyrroleMIP-thin film | Doxycycline | CV (Voltammetric) | BR buffer | 0.043 mM | [51] |
This work | PenV-K, PenG-K, Amo-Na | QCM | 50 mM KCl | 0.25–0.30 mM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghdoust, S.; Arshad, U.; Mujahid, A.; Schranzhofer, L.; Lieberzeit, P.A. Development of a MIP-Based QCM Sensor for Selective Detection of Penicillins in Aqueous Media. Chemosensors 2021, 9, 362. https://doi.org/10.3390/chemosensors9120362
Haghdoust S, Arshad U, Mujahid A, Schranzhofer L, Lieberzeit PA. Development of a MIP-Based QCM Sensor for Selective Detection of Penicillins in Aqueous Media. Chemosensors. 2021; 9(12):362. https://doi.org/10.3390/chemosensors9120362
Chicago/Turabian StyleHaghdoust, Shahin, Usman Arshad, Adnan Mujahid, Leo Schranzhofer, and Peter Alexander Lieberzeit. 2021. "Development of a MIP-Based QCM Sensor for Selective Detection of Penicillins in Aqueous Media" Chemosensors 9, no. 12: 362. https://doi.org/10.3390/chemosensors9120362
APA StyleHaghdoust, S., Arshad, U., Mujahid, A., Schranzhofer, L., & Lieberzeit, P. A. (2021). Development of a MIP-Based QCM Sensor for Selective Detection of Penicillins in Aqueous Media. Chemosensors, 9(12), 362. https://doi.org/10.3390/chemosensors9120362