Macrocycle-Functionalized RGO for Gas Sensors for BTX Detection Using a Double Transduction Mode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Solvents
2.2. RGO Preparation
2.3. RGO/Pch2tbu Preparation
2.4. Characterization Methods
2.5. Sensor Devices and Sensor Preparation and Test Bench
3. Results
3.1. Preparation of the RGO/PcH2tBu: Utility of the Hydro-Alcoholic Dispersion
3.2. Characterization of the RGO/PcH2tBu
3.2.1. UV–Vis Characterization
3.2.2. Infrared Characterization
3.2.3. SEM and TEM Characterization
3.2.4. Electrical Characterization
3.3. Sensor Responses to BTX Exposure
3.3.1. QCM Sensor Response
3.3.2. Resistive Sensors Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Sahu, D.; Sutar, H.; Senapati, P.; Murmu, R.; Roy, D. Graphene, graphene-Derivatives and composites: Fundamentals, synth_sis approaches to applications. J. Compos. Sci. 2021, 5, 181. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Huang, D.; Yang, Z.; Xu, S.; He, G.; Li, X.; Hu, N.; Yin, G.; He, D.; Zhang, L. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano. Micro. Lett. 2016, 8, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Liu, X.; Liu, W.; Li, Q.; Li, X.; Wang, X. Chemical environment dominated fermi level pinning of a graphene gas sensor. Carbon 2017, 124, 57–63. [Google Scholar] [CrossRef]
- Phan, D.-T.; Chung, G.-S. P–N junction characteristics of graphene oxide and reduced graphene oxide on n-Type si (111). J. Phys. Chem. Solids 2013, 74, 1509–1514. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Xu, Y.; Sheng, K.; Li, C.; Shi, G. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 2011, 21, 7376–7380. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H.; Xing, C.; Guo, M.; Xu, F.; Wang, X.; Gruber, H.J.; Zhang, B.; Tang, J. Sodium citrate: A universal reducing agent for reduction/decoration of graphene oxide with au nanoparticles. Nano Res. 2011, 4, 599–611. [Google Scholar] [CrossRef]
- Aunkor, M.T.H.; Mahbubul, I.M.; Saidur, R.; Metselaar, H.S.C. The green reduction of graphene oxide. RSC Adv. 2016, 6, 27807–27828. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, X.; Huang, Y.; Guo, Y.; Gao, C.; Xie, G.; Jiang, Y. Impact of further thermal reduction on few-Layer reduced graphene oxide film and its n-P transition for gas sensing. Sens. Actuators B Chem. 2016, 235, 241–250. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Chen, C.-M.; Huang, J.-Q.; Zhang, Q.; Gong, W.-Z.; Yang, Q.-H.; Wang, M.-Z.; Yang, Y.-G. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 2012, 50, 659–667. [Google Scholar] [CrossRef]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced graphene oxide today. J. Mater. Chem. C 2020, 8, 1198–1224. [Google Scholar] [CrossRef]
- Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y.J.; Chhowalla, M.; Shenoy, V.B. Structural evolution during the reduction of chemi_cally derived graphene oxide. Nat. Chem. 2010, 2, 581–587. [Google Scholar] [CrossRef]
- Casanova-Cháfer, J.; García-Aboal, R.; Atienzar, P.; Llobet, E. Gas sensing properties of perovskite decorated graphene at room temperature. Sensors 2019, 19, 4563. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Wang, X.; Wang, J.; Hu, H.; Wan, L. Synthesis and photoelectrical properties of β-cyclodextrin functionalized graphene materials with high bio-recognition capability. Chem. Phys. Lett. 2010, 498, 162–167. [Google Scholar] [CrossRef]
- Lu, J.; Do, I.; Drzal, L.T.; Worden, R.M.; Lee, I. Nanometal-Decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2008, 2, 1825–1832. [Google Scholar] [CrossRef]
- Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B Chem. 2012, 173, 1–21. [Google Scholar] [CrossRef]
- Tian, W.; Liu, X.; Yu, W. Research progress of gas sensor based on graphene and its derivatives: A review. Appl. Sci. 2018, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- de Lima, B.S.; Komorizono, A.A.; Silva, W.A.S.; Ndiaye, A.L.; Brunet, J.; Bernardi, M.I.B.; Mastelaro, V.R. Ozone detection in the ppt-level with rgo-Zno based sensor. Sens. Actuators B Chem. 2021, 338, 129779. [Google Scholar] [CrossRef]
- Song, Z.; Wei, Z.; Wang, B.; Luo, Z.; Xu, S.; Zhang, W.; Yu, H.; Li, M.; Huang, Z.; Zang, J.; et al. Sensitive room-Temperature h2s gas sensors employing sno2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 2016, 28, 1205–1212. [Google Scholar] [CrossRef]
- Geng, J.; Jung, H.-T. Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C 2010, 114, 8227–8234. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Fan, X.; Zhang, F.; Zhang, G. B-Cyclodextrin functionalized graphene oxide: An efficient and recyclable ad_sorbent for the removal of dye pollutants. Front. Chem. Sci. Eng. 2015, 9, 77–83. [Google Scholar] [CrossRef]
- Mishra, R.K.; Murali, G.; Kim, T.-H.; Kim, J.H.; Lim, Y.J.; Kim, B.-S.; Sahay, P.P.; Lee, S.H. Nanocube in2o3@rgo heterostructure based gas sensor for acetone and formaldehyde detection. RSC Adv. 2017, 7, 38714–38724. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Hu, N.; Gao, R.; Yu, Y.; Wang, Y.; Yang, Z.; Siu-Wai Kong, E.; Wei, H.; Zhang, Y. Reduced graphene ox_ide–Polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 2012, 22, 22488–22495. [Google Scholar] [CrossRef]
- Al-Mashat, L.; Shin, K.; Kalantar-Zadeh, K.; Plessis, J.D.; Han, S.H.; Kojima, R.W.; Kaner, R.B.; Li, D.; Gou, X.; Ippolito, S.J.; et al. Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 2010, 114, 16168–16173. [Google Scholar] [CrossRef]
- Ndiaye, A.L.; Brunet, J.; Varenne, C.; Pauly, A. Functionalized cnts-Based gas sensors for btx-Type gases: How functional peripheral groups can affect the time response through surface reactivity. J. Phys. Chem. C 2018, 122, 21632–21643. [Google Scholar] [CrossRef]
- Pauly, A.; Brunet, J.; Varenne, C.; Ndiaye, A.L. Insight in the interaction mechanisms between functionalized cnts and btx vapors in gas sensors: Are the functional peripheral groups the key for selectivity? Sens. Actuators B Chem. 2019, 298, 126768. [Google Scholar] [CrossRef]
- Dezest, M.; Le Bechec, M.; Chavatte, L.; Desauziers, V.; Chaput, B.; Grolleau, J.-L.; Descargues, P.; Nizard, C.; Schnebert, S.; Lacombe, S.; et al. Oxidative damage and impairment of protein quality control systems in keratinocytes exposed to a volatile organic compounds cocktail. Sci. Rep. 2017, 7, 10707. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Wang, Y.-B. Noncovalent π⋅π interaction between graphene and aromatic molecule: Structure, energy, and nature. J. Chem. Phys. 2014, 140, 094302. [Google Scholar] [CrossRef]
- Bearzotti, A.; Macagnano, A.; Papa, P.; Venditti, I.; Zampetti, E. A study of a qcm sensor based on pentacene for the detection of btx vapors in air. Sens. Actuators B Chem. 2017, 240, 1160–1164. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, N.; Sharma, A.K.; Mahajan, A.; Bedi, R.K. Improved cl2 sensing characteristics of reduced graphene oxide when decorated with copper phthalocyanine nanoflowers. RSC Adv. 2017, 7, 25229–25236. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Sharma, A.K.; Sohal, M.K.; Sharma, D.P.; Debnath, A.K.; Aswal, D.K.; Mahajan, A. Room temperature highly sensi_tive chlorine sensor based on reduced graphene oxide anchored with substituted copper phthalocyanine. Sens. Actuators B Chem. 2021, 327, 128925. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Fan, Y.-J.; Cheng, L.; Fan, L.-L.; Wang, Z.-Y.; Zhong, J.-P.; Wu, L.-N.; Shen, X.-C.; Shi, Z.-J. A novel glucose biosensor based on the immobilization of glucose oxidase on layer-By-Layer assembly film of copper phthalocyanine functionalized graphene. Electrochim. Acta 2013, 104, 178–184. [Google Scholar] [CrossRef]
- Zhu, P.; Li, S.; Zhao, C.; Zhang, Y.; Yu, J. 3d synergistical rgo/eu(tpyp)(pc) hybrid aerogel for high-Performance no2 gas sensor with enhanced immunity to humidity. J. Hazard. Mater. 2020, 384, 121426. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, B.; Wang, X.; Zhou, X.; Chen, Z.; He, C.; Yu, Z.; Wu, Y. Enhanced nh3-Sensitivity of reduced graphene oxide modified by tetra-α-Iso-Pentyloxymetallophthalocyanine derivatives. Nanoscale Res. Lett. 2015, 10, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Feng, Y.; Tang, S.; Feng, W. Preparation of a graphene oxide-Phthalocyanine hybrid through strong π-π interactions. Carbon 2010, 48, 211–216. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, D.; Feng, X.; Müllen, K. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 2009, 21, 1679–1683. [Google Scholar] [CrossRef]
- Naficy, S.; Jalili, R.; Aboutalebi, S.H.; Gorkin Iii, R.A.; Konstantinov, K.; Innis, P.C.; Spinks, G.M.; Poulin, P.; Wallace, G.G. Graphene oxide dispersions: Tuning rheology to enable fabrication. Mater. Horiz. 2014, 1, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Vallés, C.; Young, R.J.; Lomax, D.J.; Kinloch, I.A. The rheological behaviour of concentrated dispersions of graphene oxide. J. Mater. Sci. 2014, 49, 6311–6320. [Google Scholar] [CrossRef] [Green Version]
- Jo, K.; Lee, T.; Choi, H.J.; Park, J.H.; Lee, D.J.; Lee, D.W.; Kim, B.-S. Stable aqueous dispersion of reduced graphene nanosheets via non-Covalent functionalization with conducting polymers and application in transparent electrodes. Langmuir 2011, 27, 2014–2018. [Google Scholar] [CrossRef] [PubMed]
- Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 2014, 430, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Gudarzi, M.M.; Moghadam, M.H.M.; Sharif, F. Spontaneous exfoliation of graphite oxide in polar aprotic solvents as the route to produce graphene oxide-Organic solvents liquid crystals. Carbon 2013, 64, 403–415. [Google Scholar] [CrossRef]
- Shahriary, L.; Nair, R.; Sabharwal, S.; Athawale, A.A. One-Step synthesis of ag-Reduced graphene oxide-Multiwalled carbon nanotubes for enhanced antibacterial activities. New J. Chem. 2015, 39, 4583–4590. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, H.; Kukkar, D. Synthesis and characterization of graphene oxide using modified hummer’s method. AIP Conf. Proc. 2018, 1953, 030180. [Google Scholar]
- Wazir, A.H.; Kundi, I.W. Synthesis of graphene nano sheets by the rapid reduction of electrochemically exfoliated graphene oxide induced by microwaves. J. Chem. Soc. Pak. 2016, 38, 11–16. [Google Scholar]
- Saxena, S.; Tyson, T.A.; Shukla, S.; Negusse, E.; Chen, H.; Bai, J. Investigation of structural and electronic properties of graphene oxide. Appl. Phys. Lett. 2011, 99, 013104. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef]
- Chen, I.W.P.; Huang, C.-Y.; Jhou, S.-H.S.; Zhang, Y.-W. Exfoliation and performance properties of non-Oxidized graphene in water. Sci. Rep. 2014, 4, 3928. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Wang, C.; Sun, Z.; Zhou, Y.; Jin, K.; Redfern, S.A.T.; Yang, G. Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction. Opt. Express 2014, 22, 19375–19385. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N.; Nakajima, S.-i.; Ogata, H.; Fukuda, T. Synthesis, spectroscopy, and electrochemistry of tetra-Tert-Butylated tetraazaporphyrins, phthalocyanines, naphthalocyanines, and anthracocyanines, together with molecular orbital calculations. Chem. A Eur. J. 2004, 10, 6294–6312. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Guo, H.; Shi, J.; Shi, C.; Jia, Y.; Wang, H.; Chen, D.; Yang, Y.; Lu, H.; Xu, H.; et al. Facile one-Pot preparation of silver/reduced graphene oxide nanocomposite for cancer photodynamic and phototheral therapy. J. Nanosci. Nanotechnol. 2016, 16, 7049–7054. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y.; Li, S.; Jiang, S.P. Self-Assembled platinum nanoparticles on sulfonic acid-Grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Sci. Rep. 2016, 6, 21530. [Google Scholar] [CrossRef]
- Rochman, R.A.; Wahyuningsih, S.; Ramelan, A.H.; Hanif, Q.A. Preparation of nitrogen and sulphur co-Doped reduced graphene oxide (rgo-ns) using n and s heteroatom of thiourea. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012119. [Google Scholar] [CrossRef]
- Le, V.H.; Nguyen, T.H.; Nguyen, H.H.; Huynh, L.T.N.; Vo, A.L.; Nguyen, T.K.T.; Nguyen, D.T.; Lam, V.Q. Fabrication and electrochemical behavior investigation of a pt-Loaded reduced graphene oxide composite (pt@rgo) as a high-performance cathode for dye-Sensitized solar cells. Int. J. Photoenergy 2020, 2020, 8927124. [Google Scholar] [CrossRef] [Green Version]
- Harbeck, S.; Göçmen, S.; Emirik, Ö.F.; Öztürk, Z.Z.; Ahsen, V.; Gürek, A.G. Synthesis of branched alkoxy side chains con_tain_ing phthalocyanine derivates and their application in mass sensitive qcm sensors. Sens. Actuators B Chem. 2016, 233, 55–62. [Google Scholar] [CrossRef]
- Denekamp, I.M.; Veenstra, F.L.P.; Jungbacker, P.; Rothenberg, G. A simple synthesis of symmetric phthalocyanines and their respective perfluoro and transition-Metal complexes. Appl. Organomet. Chem. 2019, 33, e4872. [Google Scholar] [CrossRef] [Green Version]
- Cox, B.J.; Baowan, D.; Bacsa, W.; Hill, J.M. Relating elasticity and graphene folding conformation. RSC Adv. 2015, 5, 57515–57520. [Google Scholar] [CrossRef] [Green Version]
- Cranford, S.; Sen, D.; Buehler, M.J. Meso-Origami: Folding multilayer graphene sheets. Appl. Phys. Lett. 2009, 95, 123121. [Google Scholar] [CrossRef]
- Kim, K.; Lee, Z.; Malone, B.D.; Chan, K.T.; Alemán, B.; Regan, W.; Gannett, W.; Crommie, M.F.; Cohen, M.L.; Zettl, A. Multiply folded graphene. Phys. Rev. B 2011, 83, 245433. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Gao, Y.; Xu, B. Liquid evaporation-Driven folding of graphene sheets. Appl. Phys. Lett. 2016, 108, 141906. [Google Scholar] [CrossRef]
- Kumar, A.; Brunet, J.; Varenne, C.; Ndiaye, A.; Pauly, A. Room temperature measurements of aromatic hydrocarbons by qcm-Based gas sensors: Intercomparison between phthalocyanines and phthalocyanine/cnts hybrid material. Procedia Eng. 2015, 120, 594–597. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.C.; Kim, D.; Jurečka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K.S. Understanding of assembly phenomena by aro_matic−aromatic interactions: Benzene dimer and the substituted systems. J. Phys. Chem. A 2007, 111, 3446–3457. [Google Scholar] [CrossRef]
- Rianjanu, A.; Hasanah, S.A.; Nugroho, D.B.; Kusumaatmaja, A.; Roto, R.; Triyana, K. Polyvinyl acetate film-Based quartz crystal microbalance for the detection of benzene, toluene, and xylene vapors in air. Chemosensors 2019, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zuo, X.; Wu, Y.Q.; Chen, Z.M. Preparation, characterization and gas sensing properties of lead tet_ra-(tert-Butyl)-5,10,15,20-Tetraazaporphyrin spin-Coating films. Sens. Actuators B Chem. 2007, 125, 268–273. [Google Scholar] [CrossRef]
- Chikkadi, K.; Muoth, M.; Roman, C.; Haluska, M.; Hierold, C. Advances in no2 sensing with individual single-Walled carbon nanotube transistors. Beilstein J. Nanotechnol. 2014, 5, 2179–2191. [Google Scholar] [CrossRef] [Green Version]
- Schober, S.A.; Carbonelli, C.; Roth, A.; Zoepfl, A.; Wille, R. Towards drift modeling of graphene-Based gas sensors using sto_chastic simulation techniques. 2020 IEEE Sens. 2020, 1–4. [Google Scholar] [CrossRef]
- Ragoussi, M.-E.; Malig, J.; Katsukis, G.; Butz, B.; Spiecker, E.; de la Torre, G.; Torres, T.; Guldi, D.M. Linking photo-And redoxactive phthalocyanines covalently to graphene. Angew. Chem. Int. Ed. 2012, 51, 6421–6425. [Google Scholar] [CrossRef] [PubMed]
QCM Mass Responses | |||
---|---|---|---|
Benzene | Toluene | Xylenes | |
Response time (τresp.; in min.) | 2.5 | 4.5 | 6 |
Recovery time (τrec.; in min.) | 6 | 13 | 17 |
LOD (ppm) | 78 | 30 | 7 |
Concentration range (ppm) | 550–1500 | 260–1400 | 125–700 |
Sensitivity (µHz/ng/ppm) | 2.03 | 3.41 | 4.09 |
R2 | 0.997 | 0.935 | 0.988 |
Resistives Responses | |||
---|---|---|---|
Benzene | Toluene | Xylenes | |
Response time (τresp.; in min.) | 4 | 5 | 7 |
Recovery time (τrec.; in min.) | 9 | 15.5 | 17 |
LOD (ppm) | NA | 14 | 4 |
Concentration range (ppm) | 550–1500 | 260–1400 | 125–700 |
Sensitivity (%/ppm) | 0.00018 | 0.00068 | 0.00184 |
R2 | 0.806 | 0.999 | 0.977 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, E.; Gueye, T.; Masson, C.; Varenne, C.; Pauly, A.; Brunet, J.; Ndiaye, A.L. Macrocycle-Functionalized RGO for Gas Sensors for BTX Detection Using a Double Transduction Mode. Chemosensors 2021, 9, 346. https://doi.org/10.3390/chemosensors9120346
Ruiz E, Gueye T, Masson C, Varenne C, Pauly A, Brunet J, Ndiaye AL. Macrocycle-Functionalized RGO for Gas Sensors for BTX Detection Using a Double Transduction Mode. Chemosensors. 2021; 9(12):346. https://doi.org/10.3390/chemosensors9120346
Chicago/Turabian StyleRuiz, Elisa, Thiaka Gueye, Claire Masson, Christelle Varenne, Alain Pauly, Jérôme Brunet, and Amadou L. Ndiaye. 2021. "Macrocycle-Functionalized RGO for Gas Sensors for BTX Detection Using a Double Transduction Mode" Chemosensors 9, no. 12: 346. https://doi.org/10.3390/chemosensors9120346
APA StyleRuiz, E., Gueye, T., Masson, C., Varenne, C., Pauly, A., Brunet, J., & Ndiaye, A. L. (2021). Macrocycle-Functionalized RGO for Gas Sensors for BTX Detection Using a Double Transduction Mode. Chemosensors, 9(12), 346. https://doi.org/10.3390/chemosensors9120346