Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. SEM Characterisation
3.2. Raman and Photoluminescence PL Characterization
3.3. Functional Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liao, L.; Lin, Y.C.; Bao, M.Q.; Cheng, R.; Bai, J.W.; Liu, Y.A.; Qu, Y.Q.; Wang, K.L.; Huang, Y.; Duan, X.F. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Yang, S.M.; Jing, W.X.; Jiang, K.; Jiang, Z.D.; Liu, H.; Li, L. Surface plasmon enhanced photoluminescence of ZnO nanorods by capping reduced graphene oxide sheets. Opt. Express 2014, 22, 11436–11445. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Fu, X.W.; Meng, J.; Bie, Y.Q.; Yu, D.P.; Liao, Z.M. Graphene plasmon enhanced photoluminescence in ZnO microwires. Nanoscale 2013, 5, 5294–5298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.G.; Wen, L.; Li, J.L.; Gao, F.L.; Zhang, X.W.; Li, L.H.; Li, G.Q. Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres. J. Phys. D Appl. Phys. 2014, 47. [Google Scholar] [CrossRef]
- Hwang, S.W.; Shin, D.H.; Kim, C.O.; Hong, S.H.; Kim, M.C.; Kim, J.; Lim, K.Y.; Kim, S.; Choi, S.H.; Ahn, K.J.; et al. Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films. Phys. Rev. Lett. 2010, 105. [Google Scholar] [CrossRef]
- Ahn, K.J.; Hwang, S.W.; Shin, D.H.; Kim, C.O.; Hong, S.H.; Kim, M.C.; Kim, J.; Lim, K.Y.; Kim, S.; Choi, S.H.; et al. Comment on “Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films” Reply. Phys. Rev. Lett. 2011, 107. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z.G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Ottaviano, L.; Palleschi, S.; Perrozzi, F.; D’Olimpio, G.; Priante, F.; Donarelli, M.; Benassi, P.; Nardone, M.; Gonchigsuren, M.; Gombosuren, M.; et al. Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Mater. 2017, 4. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Donarelli, M.; Prezioso, S.; Perrozzi, F.; Bisti, F.; Nardone, M.; Giancaterini, L.; Cantalini, C.; Ottaviano, L. Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuat B Chem. 2015, 207, 602–613. [Google Scholar] [CrossRef]
- Perkins, F.K.; Friedman, A.L.; Cobas, E.; Campbell, P.M.; Jernigan, G.G.; Jonker, B.T. Chemical Vapor Sensing with Mono layer MoS2. Nano Lett. 2013, 13, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.; Hahm, M.G.; Choi, M.; Yoon, J.; Kim, A.R.; Lee, Y.J.; Park, S.G.; Kwon, J.D.; Kim, C.S.; Song, M.; et al. Charge-transfer-based Gas Sensing Using Atomic-layer MoS2. Sci. Rep. UK 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yin, Z.Y.; He, Q.Y.; Li, H.; Huang, X.; Lu, G.; Fam, D.W.H.; Tok, A.I.Y.; Zhang, Q.; Zhang, H. Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature. Small 2012, 8, 63–67. [Google Scholar] [CrossRef]
- Samnakay, R.; Jiang, C.; Rumyantsev, S.L.; Shur, M.S.; Balandin, A.A. Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices. Appl. Phys. Lett. 2015, 106. [Google Scholar] [CrossRef] [Green Version]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Djurisic, A.B.; Leung, Y.H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef]
- Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983–7990. [Google Scholar] [CrossRef]
- Hu, J.Q.; Bando, Y. Growth and optical properties of single-crystal tubular ZnO whiskers. Appl. Phys. Lett. 2003, 82, 1401–1403. [Google Scholar] [CrossRef]
- Lin, B.X.; Fu, Z.X.; Jia, Y.B. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79, 943–945. [Google Scholar] [CrossRef]
- Studenikin, S.A.; Cocivera, M. Time-resolved luminescence and photoconductivity of polycrystalline ZnO films. J. Appl. Phys. 2002, 91, 5060–5065. [Google Scholar] [CrossRef]
- Yao, B.D.; Chan, Y.F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759. [Google Scholar] [CrossRef]
- Roy, V.A.L.; Djurisic, A.B.; Chan, W.K.; Gao, J.; Lui, H.F.; Surya, C. Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl. Phys. Lett. 2003, 83, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Faglia, G.; Baratto, C.; Sberveglieri, G.; Zha, M.; Zappettini, A. Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Appl. Phys. Lett. 2005, 86. [Google Scholar] [CrossRef]
- Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Sberveglieri, G. Single crystal ZnO nanowires as optical and conductometric chemical sensor. J. Phys. D Appl. Phys. 2007, 40, 7255–7259. [Google Scholar] [CrossRef]
- Baratto, C.; Todros, S.; Faglia, G.; Comini, E.; Sberveglieri, G.; Lettieri, S.; Santamaria, L.; Maddalena, P. Luminescence response of ZnO nanowires to gas adsorption. Sens. Actuat B Chem. 2009, 140, 461–466. [Google Scholar] [CrossRef]
- Chen, L.B.; Xue, F.; Li, X.H.; Huang, X.; Wang, L.F.; Kou, J.Z.; Wang, Z.L. Strain-Gated Field Effect Transistor of a MoS2 ZnO 2D-1D Hybrid Structure. ACS Nano 2016, 10, 1546–1551. [Google Scholar] [CrossRef]
- Li, H.X.; Dong, W.; Zhang, J.; Xi, J.H.; Du, G.; Ji, Z.G. MoS2 nanosheet/ZnO nanowire hybrid nanostructures for photoelectrochemical water splitting. J. Am. Ceram. Soc. 2018, 101, 3989–3996. [Google Scholar] [CrossRef]
- Zhang, K.N.; Zhang, Y.; Zhang, T.N.; Dong, W.J.; Wei, T.X.; Sun, Y.; Chen, X.; Shen, G.Z.; Dai, N. Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission. Nano Res. 2015, 8, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.F.; Wang, G.J.; Liao, J.C.; Lv, S.S.; Zhu, Z.N.; Li, Z.C. Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities. Appl. Surf. Sci. 2018, 456, 808–816. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, C.; Guo, Y.C. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet-ZnO nanowire heterojunctions at room temperature. J. Mater. Chem. A 2018, 6, 10286–10296. [Google Scholar] [CrossRef]
- Yang, T.; Chen, M.J.; Kong, Q.Q.; Luo, X.L.; Jiao, K. Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosens. Bioelectron. 2017, 89, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Chacko, L.; Poyyakkara, A.; Kumar, V.B.S.; Aneesh, P.M. MoS2-ZnO nanocomposites as highly functional agents for anti-angiogenic and anti-cancer theranostics. J. Mater. Chem. B 2018, 6, 3048–3057. [Google Scholar] [CrossRef]
- Baratto, C. Growth and properties of ZnO nanorods by RF-sputtering for detection of toxic gases. RSC Adv. 2018, 8, 32038–32043. [Google Scholar] [CrossRef] [Green Version]
- Benameur, M.M.; Radisavljevic, B.; Heron, J.S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology 2011, 22. [Google Scholar] [CrossRef]
- Donarelli, M.; Bisti, F.; Perrozzi, F.; Ottaviano, L. Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum. Chem. Phys. Lett. 2013, 588, 198–202. [Google Scholar] [CrossRef]
- Syari’ati, A.; Kumar, S.; Zahid, A.; El Yumin, A.A.; Ye, J.T.; Rudolf, P. Photoemission spectroscopy study of structural defects in molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD). Chem. Commun. 2019, 55, 10384–10387. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.T.; Ting, J.M. Sputter deposition of ZnO nanorods/thin-film structures on Si. Thin Solid Films 2006, 494, 250–254. [Google Scholar] [CrossRef]
- Baratto, C.; Ferroni, M.; Comini, E.; Faglia, G.; Kaciulis, S.; Balijepalli, S.K.; Sberveglieri, G. Vapour phase nucleation of ZnO nanowires on GaN: Growth habit, interface study and optical properties. RSC Adv. 2016, 6, 15087–15093. [Google Scholar] [CrossRef]
- Bertrand, P.A. SURFACE-PHONON DISPERSION OF MOS2. Phys. Rev. B 1991, 44, 5745–5749. [Google Scholar] [CrossRef]
- Valerius, P.; Kretschmer, S.; Senkovskiy, B.V.; Wu, S.L.; Hall, J.; Herman, A.; Ehlen, N.; Ghorbani-Asl, M.; Gruneis, A.; Krasheninnikov, A.V.; et al. Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation. 2D Mater. 2020, 7. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Wang, Z.C.; Yu, H.; Li, N.; Zhang, J.; Meng, J.L.; Liao, M.Z.; Zhao, J.; Lu, X.B.; Du, L.J.; et al. Argon Plasma Induced Phase Transition in Monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216–10219. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Ghidelli, M.; Gondoni, P.; Casari, C.S.; Bassi, A.L. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J. Appl. Phys. 2014, 115. [Google Scholar] [CrossRef] [Green Version]
- Barsan, N.; Weimar, U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Mat. 2003, 15, R813–R839. [Google Scholar] [CrossRef]
Sample Name | Substrate Temperature (°C) | Deposition Time (minutes) | Power (W) | Sn Catalyzer |
---|---|---|---|---|
B | 200 | 5 | 200 | No |
C | 200 | 5 | 200 | Yes |
D | 250 | 5 | 200 | Yes |
E | 250 | 5 | 150 | Yes |
F | 250 | 5 | 100 | Yes |
G | 250 | 10 | 100 | Yes |
H | 250 | 15 | 100 | Yes |
MoS2 Sheet+ ZnO NWs | ZnO NWs | |
---|---|---|
Air | 12,300 | 12,100 |
10ppm of NO2 | 11,260 | 9700 |
Response | 9% | 25% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faglia, G.; Ferroni, M.; Dang, T.T.L.; Donarelli, M.; Rigoni, F.; Baratto, C. Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing. Chemosensors 2020, 8, 19. https://doi.org/10.3390/chemosensors8010019
Faglia G, Ferroni M, Dang TTL, Donarelli M, Rigoni F, Baratto C. Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing. Chemosensors. 2020; 8(1):19. https://doi.org/10.3390/chemosensors8010019
Chicago/Turabian StyleFaglia, Guido, Matteo Ferroni, Thi Thanh Le Dang, Maurizio Donarelli, Federica Rigoni, and Camilla Baratto. 2020. "Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing" Chemosensors 8, no. 1: 19. https://doi.org/10.3390/chemosensors8010019
APA StyleFaglia, G., Ferroni, M., Dang, T. T. L., Donarelli, M., Rigoni, F., & Baratto, C. (2020). Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing. Chemosensors, 8(1), 19. https://doi.org/10.3390/chemosensors8010019