Electrochemical Sensing of Caffeic Acid Using Gold Nanoparticles Embedded in Poly(3,4-ethylenedioxythiophene) Layer by Sinusoidal Voltage Procedure
Abstract
:1. Introduction
2. Materials and Methods
- drop-casting: an aliquot of 10 µL of AuNPs solution, prepared previously via chemical method [29], were dropped onto GC/PEDOT electrode surface. The modified electrode, GC/PEDOT-AuNPs-dc, was kept overnight in the laboratory to dry and used the next day.
- sinusoidal voltage deposition of AuNPs onto the GC/PEDOT electrode surface from a solution containing 5 mM NaAuCl4 (Alfa Aesar 99.99%) and 0.5 M H2SO4 (Merck), using the following parameters: Edc = +0.7 V; Esin = 0.20 V, f = 50 mHz; tdep = 100 s. The optimization of the electrochemical parameters was carried out using these values: Edc values of 0.6; 0.7; 0.8 V; Esin of 0.20 and 0.35 V; frequency of 50 and 500 mHz; tdep of 45, 100, and 300 s. The obtained modified electrode is referred to as GC/PEDOT-AuNPs-SV.
3. Results and Discussion
3.1. Electrochemical Preparation and Characterization of PEDOT-AuNPs Based Sensors
3.2. Electrochemical Behavior of Caffeic Acid at the GC/PEDOT-AuNPs-SV Sensor
Influence of pH on Caffeic Acid Determination
3.3. Analytical Applications of GC/PEDOT-AuNPs-SV Sensor
3.3.1. Analytical Performances of GC/PEDOT-AuNPs-SV Sensor
3.3.2. Real Samples Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Escarpa, A.; Gonzalez, M.C. An overview of analytical chemistry of phenolic compounds in foods. Crit. Rev. Anal. Chem. 2001, 31, 57–139. [Google Scholar] [CrossRef]
- Kilmartin, P.A. Electrochemistry applied to the analysis of wine: A mini-review. Electrochem. Commun. 2016, 67, 39–42. [Google Scholar] [CrossRef]
- Arribas, A.S.; Martinez-Fernandez, M.; Chicharro, M. The role of electroanalytical techniques in analysis of polyphenols in wine. Trends Anal. Chem. 2012, 34, 78–96. [Google Scholar] [CrossRef]
- Makhotkina, O.; Kilmartin, P.A. The use of cyclic voltammetry for wine analysis: Determination of polyphenols and free sulfur dioxide. Anal. Chim. Acta 2010, 668, 155–165. [Google Scholar] [CrossRef]
- Janeiro, P.; Oliveira Brett, A.M. Redox behavior of anthocyanins present in Vitis vinifera L. Electroanalysis 2007, 19, 1779–1786. [Google Scholar] [CrossRef] [Green Version]
- Ziyatdinova, G.; Kozlova, E.; Budnikov, H. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay. Food Chem. 2016, 196, 405–410. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Sarkar, P.; Chudhury, U.R. Estimation of tea polyphenols by differential pulse voltammetry with electrodes modified by tyrosinase extracted from crude sources. J. Electrochem. Soc. 2015, 162, B101–B108. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Zou, H. The effect of electrode material on themeasured redox potential of red and white wines. Electroanalysis 2001, 13, 1347–1350. [Google Scholar] [CrossRef]
- Dhroso, A.; Laschi, S.; Marrazza, G.; Mascini, M. A fast electrochemical technique for characterization of phenolic content in wine. Anal. Lett. 2010, 43, 1190–1198. [Google Scholar] [CrossRef]
- Šeruga, M.; Novak, I.; Jakobek, L. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem. 2011, 124, 1208–1216. [Google Scholar] [CrossRef]
- Photinon, K.; Chalermchart, Y.; Khanongnuch, C.; Wang, S.-H.; Liu, C.-C. A thick-film sensor as a novel device for determination of polyphenols and their antioxidant capacity in white wine. Sensors 2010, 10, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.P.; Calegari, F.; Francyelle, A.J.G.; Marcolino, L.H.; Bergamini, M.F. Determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. J. Agric. Food Chem. 2011, 59, 7620–7625. [Google Scholar] [CrossRef] [PubMed]
- Pigani, L.; Foca, G.; Ionescu, K.; Martina, V.; Ulrici, A.; Terzi, F.; Vignali, M.; Zanardi, C.; Seeber, R. Amperometric sensors based on poly(3,4-ethylenedioxythiophene)-modified electrodes: Discrimination of white wines. Anal. Chim. Acta 2008, 614, 213–222. [Google Scholar] [CrossRef]
- Türke, A.; Fischer, W.-J.; Beaumont, N.; Kilmartin, P.A. Electrochemistry of sulfur dioxide, polyphenols and ascorbic acid at poly(3,4-ethylenedioxythiophene) modified electrodes. Electrochim. Acta 2012, 60, 184–192. [Google Scholar] [CrossRef]
- Bianchini, C.; Curulli, A.; Pasquali, M.; Zane, D. Determination of caffeic acid in wine using PEDOT film modified electrode. Food Chem. 2014, 156, 81–86. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Raja, N.; Chen, S.-M.; Liao, W.-C. Nanomolar electrochemical detection of caffeic acid in fortified wine samples based on gold/palladium nanoparticles decorated graphene flakes. J. Colloid Interface Sci. 2017, 501, 77–85. [Google Scholar] [CrossRef]
- Sakthivel, M.; Ramaraj, S.; Chen, S.-M.; Dinesh, B.; Ramasamy, H.V.; Lee, Y.S. Entrapment of bimetallic CoFeSe2 nanosphere on functionalized carbon nanofiber for selective and sensitive electrochemical detection of caffeic acid in wine samples. Anal. Chim. Acta 2018, 1006, 22–32. [Google Scholar] [CrossRef]
- Lupu, S.; Lakard, B.; Hihn, J.Y.; Dejeu, J. Novel in situ electrochemical deposition of platinum nanoparticles by sinusoidal voltages on conducting polymer films. Synth. Met. 2012, 162, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Lupu, S.; del Campo, F.J.; Muñoz, F.X. Sinusoidal voltage electrodeposition and characterization of conducting polymers on gold microelectrode arrays. J. Electroanal. Chem. 2012, 687, 71–78. [Google Scholar] [CrossRef]
- Lupu, S.; Lete, C.; Balaure, P.C.; Caval, D.I.; Mihailciuc, C.; Lakard, B.; Hihn, J.-Y.; del Campo, F.J. Development of amperometric biosensors based on nanostructured tyrosinase-conducting polymer composite electrodes. Sensors 2013, 13, 6759–6774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupu, S.; Lete, C.; Balaure, P.C.; del Campo, F.J.; Muñoz, X.F.; Lakard, B.; Hihn, J.-Y. In situ electrodeposition of biocomposite materials by sinusoidal voltages on microelectrodes array for tyrosinase based amperometric biosensor development. Sens. Actuators B Chem. 2013, 181, 136–143. [Google Scholar] [CrossRef]
- Lete, C.; Lupu, S.; Lakard, B.; Hihn, J.-Y.; del Campo, F.J. Multi-analyte determination of dopamine and catechol at single-walled carbon nanotubes—Conducting polymer—Tyrosinase based electrochemical biosensors. J. Electroanal. Chem. 2015, 744, 53–61. [Google Scholar] [CrossRef]
- Lupu, S.; Lete, C.; del Campo, F.J. Dopamine electroanalysis using electrochemical biosensors prepared by a sinusoidal voltages method. Electroanalysis 2015, 27, 1649–1659. [Google Scholar] [CrossRef]
- Lete, C.; Lakard, B.; Hihn, J.-Y.; del Campo, F.J.; Lupu, S. Use of sinusoidal voltages with fixed frequency in the preparation of tyrosinase based electrochemical biosensors for dopamine electroanalysis. Sens. Actuators B Chem. 2017, 240, 801–809. [Google Scholar] [CrossRef]
- Lete, C.; Marin, M.; Anghel, E.M.; Preda, L.; Matei, C.; Lupu, S. Sinusoidal voltage electrodeposition of PEDOT-Prussian blue nanoparticles composite and its application to amperometric sensing of H2O2 in human blood. Mater. Sci. Eng. C 2019, 102, 661–669. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Inzelt, G. Electrochemical quartz crystal nanobalance. In Electroanalytical Methods, 2nd ed.; Scholz, F., Ed.; Springer: Berlin, Germany, 2010; Volume 10, pp. 257–270. [Google Scholar]
- Terzi, F.; Zanfrognini, B.; Zanardi, C.; Pigani, L.; Seeber, R. Poly(3,4-ethylenedioxythiophene)/Au-nanoparticles composite as electrode coating suitable for electrocatalytic oxidation. Electrochim. Acta 2011, 56, 3575–3579. [Google Scholar] [CrossRef]
- Giacomelli, C.; Ckless, K.; Galato, D.; Miranda, F.S.; Spinelli, A. Electrochemistry of caffeic acid aqueous solutions with pH 2.0 to 8.5. J. Braz. Chem. Soc. 2002, 13, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.G.; Rodríguez-Méndez, M.L.; de Saja, J.A. Films of lutetium bisphthalocyanine nanowires as electrochemical sensors. Langmuir 2010, 26, 19217–19224. [Google Scholar] [CrossRef] [PubMed]
- Tyszczuk, K.; Skalska-Kamińska, A.; Woźniak, A. Voltammetric method using a lead film electrode for the determination of caffeic acid in a plant material. Food Chem. 2011, 125, 1498–1503. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Yue, R.; Yang, T.; Gao, L. Facile one-pot synthesis of Au-PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochim. Acta 2016, 196, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; He, J.; Pang, P.; Gao, Y.; Hu, Q. Electrochemical behavior of caffeic acid assayed with gold nanoparticles/graphene nanosheets modified glassy carbon electrode. Electroanalysis 2013, 25, 1230–1236. [Google Scholar] [CrossRef]
- Kahle, K.; Kraus, M.; Richling, E. Polyphenol profiles of apple juices. Mol. Nutr. Food Res. 2005, 49, 797–806. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of polyphenols in different apple varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef]
- Hyson, D. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef]
Electrode | Linear Response Range (M) | LOD (M) | Ref. |
---|---|---|---|
Lutetium bisphthalocyanine nanowires | 6 × 10−5 to 5 × 10−4 | 3.12 × 10−5 | [33] |
Lead film electrode | 1 × 10−8 to 5 × 10−7 | 4 × 10−9 | [34] |
Gold-poly(3,4-ethylenedioxythiophene/ reduced graphene oxide (Au–PEDOT/rGO) | 1 × 10−8 – 4.6 × 10−7 | 4 × 10−9 | [35] |
glassy carbon electrode modified with gold nanoparticles and graphene nanosheet (GCE/AuNP-GN) | 5 × 10−7 to 5 × 10−5 | 5 × 10−8 | [36] |
glassy carbon electrode/poly(3,4-ethylenedioxythiophene)-gold nanoparticles-sinusoidal voltage (GC/PEDOT-AuNPs-SV) | 1 × 10−5 to 1 × 10−3 | 4.24× 10−6 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottari, D.; Pigani, L.; Zanardi, C.; Terzi, F.; Paţurcă, S.V.; Grigorescu, S.D.; Matei, C.; Lete, C.; Lupu, S. Electrochemical Sensing of Caffeic Acid Using Gold Nanoparticles Embedded in Poly(3,4-ethylenedioxythiophene) Layer by Sinusoidal Voltage Procedure. Chemosensors 2019, 7, 65. https://doi.org/10.3390/chemosensors7040065
Bottari D, Pigani L, Zanardi C, Terzi F, Paţurcă SV, Grigorescu SD, Matei C, Lete C, Lupu S. Electrochemical Sensing of Caffeic Acid Using Gold Nanoparticles Embedded in Poly(3,4-ethylenedioxythiophene) Layer by Sinusoidal Voltage Procedure. Chemosensors. 2019; 7(4):65. https://doi.org/10.3390/chemosensors7040065
Chicago/Turabian StyleBottari, Davide, Laura Pigani, Chiara Zanardi, Fabio Terzi, Sanda Victorinne Paţurcă, Sorin Dan Grigorescu, Cristian Matei, Cecilia Lete, and Stelian Lupu. 2019. "Electrochemical Sensing of Caffeic Acid Using Gold Nanoparticles Embedded in Poly(3,4-ethylenedioxythiophene) Layer by Sinusoidal Voltage Procedure" Chemosensors 7, no. 4: 65. https://doi.org/10.3390/chemosensors7040065
APA StyleBottari, D., Pigani, L., Zanardi, C., Terzi, F., Paţurcă, S. V., Grigorescu, S. D., Matei, C., Lete, C., & Lupu, S. (2019). Electrochemical Sensing of Caffeic Acid Using Gold Nanoparticles Embedded in Poly(3,4-ethylenedioxythiophene) Layer by Sinusoidal Voltage Procedure. Chemosensors, 7(4), 65. https://doi.org/10.3390/chemosensors7040065