The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS): Integration of Low-Cost Sensors and Reference Grade Monitoring in a Complex Metropolitan Area. Part 1: Overview of the Project
Abstract
:1. Introduction
1.1. Environmental and Health Impacts from Transportation Sources
1.2. Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS)
- What is the spatial and temporal variability of air pollution in the Argentine, Turner, and Armourdale neighborhoods and the broader southeast Kansas City, Kansas (KS) area?
- Can the impact of local air pollution sources on the Argentine, Turner, and Armourdale neighborhoods and Kansas City area be identified and quantified?
- What is the air pollution impact from trucking fleets and truck traffic, railyards, and passing railroad traffic under different meteorological conditions and source activities?
- Can different monitoring technologies and techniques help enhance future transportation air quality research?
2. Study Design
2.1. Site Location, Topography, and Characteristics
- Kansas City Downtown Airport, located in the river valley roughly 5 km northeast of Armourdale. The valley extends to the southwest of the airport. North and east of the airport, the valley splits and opens up, extending in a wide arc.
- Kansas City International Airport, located 25 km north of Argentine. The site is sufficiently far from the river valley to assume there is no influence on the meteorology.
- JFK National Core (NCore) ambient monitoring supersite, located just west of the downtown airport, outside of the river valley. The valley wraps around this location and is present to the south, east, and north.
2.2. Meteorological Conditions at Site Locations
2.3. Nearby Sources of Air Pollution
3. Methods and Materials
3.1. Stationary Sites
3.1.1. Federal Reference Method/Federal Equivalent Method (FRM/FEM) Instrumentation and Laboratory Analysis
3.1.2. E-BAM
3.1.3. Particle Pod (P-POD)
3.2. Citizen Science
AirMappers
3.3. Mobile Monitoring
4. Results and Discussion
4.1. BGI PQ200 and P-POD Measurements
4.2. Variability of the P-POD PM2.5 Measurements
4.3. Variability of the P-POD BC Measurements
4.4. Spatial Distribution of the P-POD PM2.5 Measurements
4.5. Spatial Distribution of the P-POD BC Measurements
4.6. Diurnal Trends for the P-POD PM2.5 and BC Measurements
4.7. Lessons Learned
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Breysse, P.N.; Delfino, R.J.; Dominici, F.; Elder, A.C.P.; Frampton, M.W.; Froines, J.R.; Geyh, A.S.; Godleski, J.J.; Gold, D.R.; Hopke, P.K.; et al. US EPA particulate matter research centers: Summary of research results for 2005–2011. Air Q. Atmos. Health 2013, 6, 333–355. [Google Scholar] [CrossRef]
- Grahame, T.J.; Schlesinger, R.B. Cardiovascular health and particulate vehicular emissions: A critical evaluation of the evidence. Air Q. Atmos. Health 2010, 3, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Franklin, M.; Koutrakis, P.; Schwartz, P. The role of particle composition on the association between PM2.5 and mortality. Epidemiology 2008, 19, 680–689. [Google Scholar] [CrossRef]
- HEI. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; Health Effects Institute: Boston, MA, USA, 2010. [Google Scholar]
- U.S. EPA. Report to Congress on Black Carbon EPA-450/R-12-001. 2012. Available online: https://www3.epa.gov/airquality/blackcarbon/2012report/fullreport.pdf (accessed on 17 November 2015).
- U.S. EPA. Integrated Science Assessment (ISA) for Particulate Matte; Final Report; U.S. Environmental Protection Agency: Washington, DC, USA, December 2009.
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Baldauf, R.; Thoma, E.; Hays, M.; Shores, R.; Kinsey, J.; Gullett, B.; Kimbrough, S.; Isakov, V.; Long, T.; Snow, R.; et al. Traffic and meteorological impacts on near-road air quality: Summary of methods and trends from the Raleigh near-road study. J. Air Waste Manag. Assoc. 2008, 58, 865–878. [Google Scholar] [CrossRef]
- Baldauf, R.W.; Heist, D.; Isakov, V.; Perry, S.; Hagler, G.S.W.; Kimbrough, S.; Shores, R.; Black, K.; Brixey, L. Air quality variability near a highway in a complex urban environment. Atmos. Environ. 2013, 64, 169–178. [Google Scholar] [CrossRef]
- Gilbert, N.L.; Goldberg, M.S.; Brook, J.R.; Jerrett, M. The influence of highway traffic on ambient nitrogen dioxide concentrations beyond the immediate vicinity of highways. Atmos. Environ. 2007, 41, 2670–2673. [Google Scholar] [CrossRef]
- Gilbert, N.L.; Woodhouse, S.; Stieb, D.M.; Brook, J.R. Ambient nitrogen dioxide and distance from a major highway. Sci. Total Environ. 2003, 312, 43–46. [Google Scholar] [CrossRef]
- Hu, S.; Fruin, S.; Kozawa, K.; Mara, S.; Paulson, S.E.; Winer, A.M. A wide area of air pollutant impact downwind of a freeway during pre-sunrise hours. Atmos. Environ. 2009, 43, 2541–2549. [Google Scholar] [CrossRef] [Green Version]
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-roadway air quality: Synthesizing the findings from real-world data. Environ. Sci. Technol 2010, 44, 5334–5344. [Google Scholar] [CrossRef]
- Kimbrough, E.S.; Baldauf, R.W.; Watkins, N. Seasonal and diurnal analysis of NO2 concentrations from a long-duration study conducted in Las Vegas, Nevada. J. Air Waste Manag. Assoc. 2013, 63, 934–942. [Google Scholar] [CrossRef]
- Kimbrough, S.; Baldauf, R.; Hagler, G.; Shores, R.C.; Mitchell, W.; Whitaker, D.A.; Croghan, C.W.; Vallero, D.A. Long-term continuous measurement of near-road air pollution in Las Vegas: Seasonal variability in traffic emissions impact on local air quality. Air Q. Atmos. Health 2013, 6, 295–305. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.; Shen, S.; Sioutas, C. Seasonal trends of concentration and size distribution of ultrafine particles near major highways in Los Angeles. Aerosol Sci. Technol. 2004, 38, 5–13. [Google Scholar] [CrossRef]
- Zhu, Y.; Kuhn, T.; Mayo, P.; Hinds, W.C. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. Environ. Sci. Technol. 2006, 40, 2531–2536. [Google Scholar] [CrossRef]
- U.S. Census Bureau. American Housing Survey for the United States. 2007. Available online: http://www.census.gov/prod/2008pubs/h150-07.pdf (accessed on 15 October 2018.).
- U.S. EPA. Primary National Ambient Air Quality Standards for Nitrogen Dioxide, Codified in 40 CFR Parts 50 and 58. Fed. Regist. 2010, 75, 6474. Available online: https://www3.epa.gov/ttn/naaqs/standards/nox/fr/20100209.pdf (accessed on 8 April 2017).
- Rowangould, G.M. A census of the US near-roadway population: Public health and environmental justice considerations. Transp. Res. Part D Trans. Environ. 2013, 25, 59–67. [Google Scholar] [CrossRef]
- Hagler, G.S.W.; Tang, W. Simulation of rail yard emissions transport to the near-source environment. Atmos. Pollut. Res. 2016, 7, 469–476. [Google Scholar] [CrossRef]
- U.S. DOT. DOT Releases 30-Year Freight Projections. Bureau of Transportation Statistics. 2017. Available online: https://www.bts.gov/newsroom/dot-releases-30-year-freight-projections (accessed on 23 November 2018).
- Rizzo, M.; McGrath, J.; McEvoy, C.; Fuoco, M.; Hagler, G.; Thoma, E. Cicero Rail Yard Study (CIRYS) Final Report; EPA /600/R/12/621; 2014. Available online: http://nepis.epa.gov/Adobe/PDF/P100IVT3.pdf (accessed on 20 July 2018).
- Galvis, B.; Bergin, M.; Boylan, J.; Huang, Y.; Bergin, M.; Russell, A.G. Air quality impacts and health-benefit valuation of a low-emission technology for rail yard locomotives in Atlanta Georgia. Sci. Total Environ. 2015, 533, 156–164. [Google Scholar] [CrossRef]
- Galvis, B.; Bergin, M.; Russell, A. Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta. J. Air Waste Manag. Assoc. 2013, 63, 648–658. [Google Scholar] [CrossRef]
- Cahill, T.M.; Barnes, D.E.; Spada, N.J.; Miller, R. Inorganic and Organic Aerosols Downwind of California’s Roseville Railyard AU—Cahill, Thomas A. Aerosol Sci. Technol. 2011, 45, 1049–1059. [Google Scholar] [CrossRef]
- Steffens, J.; Kimbrough, S.; Baldauf, R.; Isakov, V.; Brown, R.; Powell, A.; Deshmukh, P. Near-port air quality assessment utilizing a mobile measurement approach. Atmos. Pollut. Res. 2017. [Google Scholar] [CrossRef]
- Isakov, V.; Barzyk, T.M.; Smith, E.R.; Arunachalam, S.; Naess, B.; Venkatram, A. A web-based screening tool for near-port air quality assessments. Environ. Model. Softw. 2017, 98, 21–34. [Google Scholar] [CrossRef]
- Cambridge Systematics, I. Kansas Statewide Freight Study (Final Report). 2009. Available online: https://www.ksdot.org/bureaus/burRail/rail/statewideFreightStudy.asp (accessed on 23 November 2018).
- Lindhjem, C.E.; Sturtz, T. Development of Emission Estimates for Locomotive in the Kansas City Metropolitan Statistical Area; EVNIRON: Novato, CA, USA, 13 May 2010. [Google Scholar]
- Noble, C.A.; Vanderpool, R.W.; Peters, T.M.; McElroy, F.F.; Gemmill, D.B.; Wiener, R.W. Federal reference and equivalent methods for measuring fine particulate matter. Aerosol Sci. Techno. 2001, 34, 457–464. [Google Scholar] [CrossRef]
- U.S. EPA. Reference and Equivalent Method Applications: Guidelines for Applicants 2011. Available online: https://www.epa.gov/sites/production/files/2017-02/documents/frmfemguidelines.pdf (accessed on 19 September 2018).
- Birch, M.E.; Cary, R.A. Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Liang, M.S.; Keener, T.C.; Birch, M.E.; Baldauf, R.; Neal, J.; Yang, Y.J. Low-wind and other microclimatic factors in near-road black carbon variability: A case study and assessment implications. Atmos. Environ. 2013, 80, 204–215. [Google Scholar] [CrossRef] [Green Version]
- McAdam, K.; Steer, P.; Perrotta, K. Using continuous sampling to examine the distribution of traffic related air pollution in proximity to a major road. Atmos. Environ. 2011, 45, 2080–2086. [Google Scholar] [CrossRef]
- Hagler, G.S.W.; Lin, M.-Y.; Khlystov, A.; Baldauf, R.W.; Isakov, V.; Faircloth, J.; Jackson, L.E. Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Sci. Total Environ. 2012, 419, 7–15. [Google Scholar] [CrossRef]
- Hagler, G.S.W.; Thoma, E.D.; Baldauf, R.W. High-resolution mobile monitoring of carbon monoxide and ultrafine particle concentrations in a near-road environment. J. Air Waste Manag. Assoc. 2010, 60, 328–336. [Google Scholar] [CrossRef]
- Feinberg, S.; Williams, R.; Hagler, G.S.W.; Rickard, J.; Brown, R.; Garver, D.; Harshfield, G.; Stauffer, P.; Mattson, E.; Judge, R.; et al. Long-term evaluation of air sensor technology under ambient conditions in Denver, Colorado. Atmos. Meas. Tech. 2018, 11, 4605–4615. [Google Scholar] [CrossRef] [Green Version]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of the Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol spectrometer (PAS-1.108). Aerosol Sci. Technol. 2016, 50, 1352–1365. [Google Scholar] [CrossRef]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef]
- Mukherjee, A.; Stanton, L.G.; Graham, A.R.; Roberts, P.T. Assessing the Utility of Low-Cost Particulate Matter Sensors over a 12-Week Period in the Cuyama Valley of California. Sensors 2017, 17, 1805. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.-Y.; Leung, K.-S.; Leung, Y. A Modular Plug-And-Play Sensor System for Urban Air Pollution Monitoring: Design, Implementation and Evaluation. Sensors 2018, 18, 1805. [Google Scholar] [CrossRef] [PubMed]
- Maag, B.; Zhou, Z.; Thiele, L. A Survey on Sensor Calibration in Air Pollution Monitoring Deployments. IEEE Int. Things J. 2018, 5, 4857–4870. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Borrego, C.; Ginja, J.; Coutinho, M.; Ribeiro, C.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; Esposito, E.; et al. Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise—Part II. Atmos. Environ. 2018, 193, 127–142. [Google Scholar] [CrossRef]
- Zheng, T.; Bergin, M.H.; Johnson, K.K.; Tripathi, S.N.; Shirodkar, S.; Landis, M.S.; Sutaria, R.; Carlson, D.E. Field evaluation of low-cost particulate matter sensors in high-and low-concentration environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef]
- Williams, R.; Duvall, R.; Kilaru, V.; Hagler, G.; Hassinger, L.; Benedict, K.; Rice, J.; Kaufman, A.; Judge, R.; Pierce, G.; et al. Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress. Atmos. Environ. X 2019, 2, 100031. [Google Scholar] [CrossRef]
Site Name | Community | Latitude/Longitude | Relative Position and Distance to BNSF Railyard Fence Line (m) | Elevation (m) | Location Characteristics | |
---|---|---|---|---|---|---|
Fixed Measurement Sites | ||||||
American Legion | Argentine | 39.078822/−94.659591 | North | ~20 | 230 | Community ball field, Light industrial, adjacent to railyard |
Clopper Field | 39.077416/−94.665833 | South | ~45 | 229 | Soccer field, residential, adjacent to railyard | |
Fire Station | 39.074817/−94.661067 | South | ~210 | 230 | Residential, Fire Station Roof | |
Police Station | 39.074133/−94.653333 | South | ~50 | 233 | Residential, adjacent to railyard | |
Bill Clem | Armourdale | 39.086683/−94.636466 | East | ~1720 | 230 | Community park, residential, light industrial, adjacent to 4-lane arterial highway |
Leo Alvey | Turner | 39.075050/−94.689966 | West | ~760 | 260 | Community park, residential |
Locations Providing Meteorological Data | ||||||
Kansas City Downtown Airport | - | 39.117/94.600 | East | ~6200 | 226 | Airport |
Kansas City International Airport | - | 39.317/94.717 | North | ~24,000 | 300 | Airport |
JFK NCore | - | 39.117219/−94.635605 | North | ~4700 | 263 | Light commercial, residential |
Measurement Platform | Instrument | Parameter Measured | Sample Rate | Instrument Type (Manufacturer) |
---|---|---|---|---|
Stationary Site | FRM/FEM § | PM2.5 | 24-h | BGI PQ200 (Mesa Labs) |
10-min ‡ | † E-BAM (MetOne Instruments) | |||
P-POD §§ | PM2.5 | 1-min | OPC-N2# Sensor (Alphasense) | |
BC | Five-wavelength Aethalometer MA 350 (AethLabs) | |||
Wind Speed | 2-D Ultrasonic Anemometer, Model 86000 (RM Young) | |||
Wind Direction | ||||
Relative Humidity | BME280 Humidity and Pressure Sensor (Bosch Sensortech GmbH) | |||
Temperature | ||||
Barometric Pressure | ||||
Citizen Science | AirMapper | PM2.5, PM10, PM1 * | 10-s or faster | OPC-N2 Sensor (Alphasense) |
CO2 | COZIR CO2 Sensor (CO2Meter.com) | |||
Longitude and Latitude | GPS Module (Adafruit) | |||
Date and Time | Arduino Microprocessor (Adafruit) | |||
Noise | Electret Microphone Amplifier (Adafruit) | |||
Temperature | DHT22 Temperature/humidity Sensor (Adafruit) | |||
Humidity | ||||
MobileMonitoring | GMAP ** | NO2 | 1-s | CAPS *** NO2 Monitor (Aerodyne Research) |
Particle Number concentration (size range 5.6–560 nm) | Engine Exhaust Particle Sizer (TSI, Inc.) | |||
Longitude and Latitude | GPS Crescent R100 (Hemisphere GNSS) | |||
BC (black carbon) | 1–5-s | Single-channel Aethalometer, AE-42 (Magee Scientific) | ||
Video of Route | <1-s | Webcam | ||
SUV | NO2 | 1-s | CAPS NO2 Monitor (Aerodyne Research) | |
Particle Number concentration (size range 5.6–560 nm) | Engine Exhaust Particle Sizer (TSI, Inc.) | |||
BC | 1–5-s | Single-channel Aethalometer, AE-51 (Magee Scientific) | ||
Area Video | <1-s | Webcam |
Parameter | Filter Type | Instrument (Manufacturer) |
---|---|---|
PM2.5 | Teflon | Gravimetric analysis AE50 Analytical Balance (Mettler-Toledo) |
Metals | X-ray fluorescence (XRF)—PANalytical Epsilon 5 (Almelo) | |
EC/OC | Quartz | Thermal-optical Carbon Analyzer (Sunset Laboratory) |
Filter Type | Sample Interval | Pollutant | # of Sample Days | # of Samplers | # of Filters | # of Valid Samples | Completeness (%) | # of Blanks |
---|---|---|---|---|---|---|---|---|
Teflon | 24-h every three days | PM2.5 | 94 | 6 | 750 | 630 | 84% | 42 |
Quartz | EC, OC, TC † | 5 | 625 | 531 | 85% | 42 |
Site Name | Total # of Filters | # of Valid Filters | Mean (µg/m3) | Median (µg/m3) | Interquartile Range (µg/m3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Teflon | Quartz | Teflon | Quartz | PM2.5 | EC | OC | TC * | PM2.5 | EC | OC | TC * | PM2.5 | EC | OC | TC * | |
American Legion | 125 | 125 | 111 | 107 | 9.34 | 0.49 | 3.70 | 4.19 | 8.40 | 0.40 | 3.38 | 3.82 | 5.91 | 0.37 | 1.93 | 2.14 |
Bill Clem | 125 | 125 | 102 | 107 | 8.54 | 0.38 | 3.31 | 3.69 | 7.06 | 0.28 | 3.05 | 3.40 | 6.78 | 0.23 | 1.62 | 1.75 |
Clopper Field | 125 | 125 | 97 | 102 | 7.92 | 0.35 | 3.32 | 3.67 | 7.15 | 0.33 | 3.09 | 3.36 | 5.55 | 0.28 | 1.68 | 1.85 |
Fire Station | 125 | 125 | 117 | 110 | 8.38 | 0.35 | 3.29 | 3.64 | 7.73 | 0.28 | 3.05 | 3.34 | 5.76 | 0.30 | 1.59 | 1.86 |
Police Station | 125 | 125 | 106 | 105 | 9.34 | 0.45 | 3.47 | 3.92 | 8.52 | 0.43 | 3.26 | 3.67 | 5.79 | 0.39 | 1.63 | 1.87 |
Police Station Co-location | 125 | 96 | 9.26 | 7.94 | 6.36 |
Site Name | Data Transmitted (%) a | Total # of Obs. | # of Valid Obs. | Mean (µg/m3) | Median (µg/m3) | Interquartile Range (µg/m3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | BCIR b | BCUV c | PM2.5 | BCIR | BCUV | PM2.5 | BCIR | BCUV | ||||
American Legion | 96.9 | 514,408 | 391,030 | 5.94 | 0.76 | 0.58 | 3.62 | 0.49 | 0.37 | 4.62 | 0.75 | 0.58 |
Bill Clem | 95.9 | 494,035 | 288,435 | 4.23 | 0.52 | 0.43 | 2.69 | 0.35 | 0.28 | 3.08 | 0.40 | 0.34 |
Clopper Field | 96.4 | 500,496 | 240,185 | 3.30 | 0.51 | 0.41 | 1.74 | 0.37 | 0.29 | 2.33 | 0.46 | 0.37 |
d Fire Station | 93.7 | 463,419 | 125,673 | 5.78 | 0.64 | 1.16 | 4.94 | 0.47 | 0.90 | 3.17 | 0.53 | 1.17 |
Leo Alvey | 96.4 | 499,598 | 239,511 | 3.32 | 0.37 | 0.32 | 1.88 | 0.28 | 0.22 | 2.46 | 0.31 | 0.29 |
Police Station | 96.3 | 447,350 | 249,932 | 4.09 | 0.61 | 0.62 | 2.49 | 0.40 | 0.48 | 3.15 | 0.54 | 0.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimbrough, S.; Krabbe, S.; Baldauf, R.; Barzyk, T.; Brown, M.; Brown, S.; Croghan, C.; Davis, M.; Deshmukh, P.; Duvall, R.; et al. The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS): Integration of Low-Cost Sensors and Reference Grade Monitoring in a Complex Metropolitan Area. Part 1: Overview of the Project. Chemosensors 2019, 7, 26. https://doi.org/10.3390/chemosensors7020026
Kimbrough S, Krabbe S, Baldauf R, Barzyk T, Brown M, Brown S, Croghan C, Davis M, Deshmukh P, Duvall R, et al. The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS): Integration of Low-Cost Sensors and Reference Grade Monitoring in a Complex Metropolitan Area. Part 1: Overview of the Project. Chemosensors. 2019; 7(2):26. https://doi.org/10.3390/chemosensors7020026
Chicago/Turabian StyleKimbrough, Sue, Stephen Krabbe, Richard Baldauf, Timothy Barzyk, Matthew Brown, Steven Brown, Carry Croghan, Michael Davis, Parikshit Deshmukh, Rachelle Duvall, and et al. 2019. "The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS): Integration of Low-Cost Sensors and Reference Grade Monitoring in a Complex Metropolitan Area. Part 1: Overview of the Project" Chemosensors 7, no. 2: 26. https://doi.org/10.3390/chemosensors7020026
APA StyleKimbrough, S., Krabbe, S., Baldauf, R., Barzyk, T., Brown, M., Brown, S., Croghan, C., Davis, M., Deshmukh, P., Duvall, R., Feinberg, S., Isakov, V., Logan, R., McArthur, T., & Shields, A. (2019). The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS): Integration of Low-Cost Sensors and Reference Grade Monitoring in a Complex Metropolitan Area. Part 1: Overview of the Project. Chemosensors, 7(2), 26. https://doi.org/10.3390/chemosensors7020026