Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Silver Nanoparticles (AgNPs) Preparation
2.3. Image Acquisition and Paper-Based Analytical Device (PAD) Preparation
2.4. Quantification of the Digital Image
2.5. Construction of the Smartphone Application
3. Results and Discussion
3.1. Silver Nanoparticles as a Colorimetric Agent
3.2. Improving the Sensitivity and Portability of Digital Image-Based Colorimetry
3.3. Recovery Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castilhos, Z.C.; Rodrigues-Filho, S.; Rodrigues, A.P.C.; Villas-Bôas, R.C.; Siegel, S.; Veiga, M.M.; Beinhoff, C. Mercury contamination in fish from gold mining areas in Indonesia and human health risk assessment. Sci. Total Environ. 2006, 368, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Tomiyasu, T.; Kono, Y.; Kodamatani, H.; Hidayati, N.; Rahajoe, J.S. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia. Environ. Res. 2013, 125, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Clarkson, T.W.; Magos, L.; Myers, G.J. The Toxicology of Mercury—Current Exposures and Clinical Manifestations. N. Engl. J. Med. 2003, 349, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Khaydarov, R.R.; Khaydarov, R.A.; Gapurova, O.; Garipov, I.; Firdaus, M.L. Silver Nanoparticles as a Biocide for Water Treatment Applications. In Advanced Research in Nanosciences for Water Technology; Springer: Berlin, Germany, 2019; pp. 407–419. [Google Scholar]
- El-Safty, S.A.; Shenashen, M.A.; El-Safty, S.A. Mercury-ion optical sensors. TrAC—Trends Anal. Chem. 2012, 38, 98–115. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, Y.; Lee, K. Methylmercury Exposure and Health Effects. J. Prev. Med. Public Health 2012, 45, 353–363. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Alwi, W.; Trinoveldi, F.; Rahayu, I.; Rahmidar, L.; Warsito, K. Determination of Chromium and Iron Using Digital Image-based Colorimetry. Procedia Environ. Sci. 2014, 20, 298–304. [Google Scholar] [CrossRef]
- Masawat, P.; Harfield, A.; Srihirun, N.; Namwong, A. Green Determination of Total Iron in Water by Digital Image Colorimetry. Anal. Lett. 2017, 50, 173–185. [Google Scholar] [CrossRef]
- Puchum, S.; Meelapsom, R.; Muniandy, S.S. Use of unmodified silver nanoparticles (AgNPs) as colorimetric Hg (II) sensor: A new approach to sensitive and high sample throughput determination of Hg (II) under high influence of ionic suppression. Int. J. Environ. Anal. Chem. 2019, 99, 1–18. [Google Scholar] [CrossRef]
- Salcedo, A.R.M.; Sevilla, F.B. Colorimetric determination of mercury vapor using smartphone camera-based imaging. Instrum. Sci. Technol. 2018, 46, 450–462. [Google Scholar] [CrossRef]
- Choodum, A.; Boonsamran, P.; Nicdaeid, N.; Wongniramaikul, W. On-site semi-quantitative analysis for ammonium nitrate detection using digital image colourimetry. Sci. Justice 2015, 55, 437–445. [Google Scholar] [CrossRef] [PubMed]
- David, T.; Grandivoriana, N.A.; Fidelis, N. Digital-Based Image Detection System in Simple Silver Nanoparticles-based Cyanide Assays. Res. J. Chem. Environ. 2018, 22, 10–14. [Google Scholar]
- Choodum, A.; Parabun, K.; Klawach, N.; Daeid, N.N.; Kanatharana, P.; Wongniramaikul, W. Real time quantitative colourimetric test for methamphetamine detection using digital and mobile phone technology. Forensic Sci. Int. 2014, 235, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Wongniramaikul, W.; Limsakul, W.; Choodum, A. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry. Food Chem. 2018, 249, 154–161. [Google Scholar] [CrossRef]
- Tambaru, D.; Rupilu, R.H.; Nitti, F.; Gauru, I.; Suwari. Development of Paper-Based Sensor Coupled with Smartphone Detector for Simple Creatinine Determination. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2017; p. 0200951. [Google Scholar]
- Priye, A.; Ball, C.S.; Meagher, R.J. Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Anal. Chem. 2018, 90, 12385–12389. [Google Scholar] [CrossRef]
- Fatoni, A.; Numnuam, A.; Kanatharana, P.; Limbut, W.; Thammakhet, C.; Thavarungkul, P. A highly stable oxygen-independent glucose biosensor based on a chitosan-albumin cryogel incorporated with carbon nanotubes and ferrocene. Sens. Actuators B Chem. 2013, 185, 725–734. [Google Scholar] [CrossRef]
- Shen, L.; Hagen, J.A.; Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chi 2012, 12, 4240–4243. [Google Scholar] [CrossRef]
- Priye, A.; Bird, S.W.; Light, Y.K.; Ball, C.S.; Negrete, O.A.; Meagher, R.J. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci. Rep. 2017, 7, 44778. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, M.L.; Puspita, M.; Alwi, W.; Ghufira; Nurhamidah; Elvia, R. Dyes Removal Using Activated Carbon from Palm Oil Waste with Digital Image Colorimetry Quantification. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2017; p. 0200661. [Google Scholar]
- Chansuvarn, W.; Tuntulani, T.; Imyim, A. Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. TrAC—Trends Anal. Chem. 2015, 65, 83–96. [Google Scholar] [CrossRef]
- Firdaus, M.; Andriana, S.; Alwi, W.; Swistoro, E.; Ruyani, A.; Sundaryono, A. Green synthesis of silver nanoparticles using Carica Papaya fruit extract under sunlight irradiation and their colorimetric detection of mercury ions. J. Phys. Conf. Ser. 2017, 817, 012029. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Huang, X.; Li, Y.; Zhang, H.; Zhong, X. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Analyst 2012, 137, 924–931. [Google Scholar] [CrossRef]
- Maity, D.; Kumar, A.; Gunupuru, R.; Paul, P. Colloids and Surfaces A: Physicochemical and Engineering Aspects Colorimetric detection of mercury (II) in aqueous media with high selectivity using calixarene functionalized gold nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2014, 455, 122–128. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Fitriani, I.; Wyantuti, S.; Hartati, Y.W.; Khaydarov, R.; McAlister, J.A.; Obata, H.; Gamo, T. Colorimetric Detection of Mercury (II) Ion in Aqueous Solution Using Silver Nanoparticles. Anal. Sci. 2017, 33, 831–837. [Google Scholar] [CrossRef]
- Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 172–176. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Krisnanto, N.; Alwi, W.; Muhammad, R.; Allan, M. Adsorption of Textile Dye by Activated Carbon Made from Rice Straw and Oil Palm Midrib. Aceh Int. J. Sci. Technol. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Susanti, E.; Ghufira; Alwi, W.; Swistoro, E. Isotherm, kinetics and thermodynamics of synthetic dyes adsorption onto activated charcoal made from oil palm midrib. Rasayan J. Chem. 2018, 11, 1532–1536. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Juwita, M.; Ibrahim, P.R.; Rakhmawaty, E.D.; Iman, R. Biosynthesis of Silver Nanoparticles using Jicama Extract and Its Application for Colorimetric Sensing of Mercury Ions. Res. J. Chem. Environ. 2018, 22, 1–3. [Google Scholar]
- Gray, J.E.; Theodorakos, P.M.; Fey, D.L.; Krabbenhoft, D.P. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ. Geochem. Health 2014, 37, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Jiang, L.; Shao, Q.; Liu, X.; Marks, R.S.; Ma, J.; Chen, X. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 2013, 9, 1467–1481. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Q.; Nam, C.; Hickner, M.; Mahoney, M.; Meyerhoff, M.E. Ionophore-based anion-selective optode printed on cellulose paper. Angew. Chem. Int. Ed. 2017, 56, 11826–11830. [Google Scholar] [CrossRef] [PubMed]
- Tenda, K.; van Gerven, B.; Arts, R.; Hiruta, Y.; Merkx, M.; Citterio, D. Paper-Based Antibody Detection Devices Using Bioluminescent BRET-Switching Sensor Proteins. Angew. Chem. 2018, 130, 15595–15599. [Google Scholar] [CrossRef]
Hg(II) Concentration (ppb) | Color Value | Color Intensity | ||||
---|---|---|---|---|---|---|
R | G | B | R | G | B | |
0 | 132 | 127 | 38.1 | 0 | 0 | 0 |
1 | 133 | 129 | 38.9 | 2.87 | 5.24 | 10.3 |
2 | 133 | 130 | 39.6 | 3.15 | 8.23 | 17.2 |
3 | 134 | 132 | 40.3 | 6.39 | 17.0 | 24.7 |
4 | 134 | 132 | 40.9 | 5.23 | 14.9 | 31.7 |
Added Hg(II) (ppb) | Digital Image-Based Colorimetry | ICP-OES (ppb) | |
---|---|---|---|
Found (ppb) | Recovery (%) | ||
0 | 81.7 ± 2.5 | - | 83.2 |
40 | 123 ± 3 | 101 | 126 |
80 | 160 ± 4 | 98.9 | 161 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firdaus, M.L.; Aprian, A.; Meileza, N.; Hitsmi, M.; Elvia, R.; Rahmidar, L.; Khaydarov, R. Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors 2019, 7, 25. https://doi.org/10.3390/chemosensors7020025
Firdaus ML, Aprian A, Meileza N, Hitsmi M, Elvia R, Rahmidar L, Khaydarov R. Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors. 2019; 7(2):25. https://doi.org/10.3390/chemosensors7020025
Chicago/Turabian StyleFirdaus, M. Lutfi, Angga Aprian, Nessi Meileza, Marti Hitsmi, Rina Elvia, Lena Rahmidar, and Renat Khaydarov. 2019. "Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing" Chemosensors 7, no. 2: 25. https://doi.org/10.3390/chemosensors7020025
APA StyleFirdaus, M. L., Aprian, A., Meileza, N., Hitsmi, M., Elvia, R., Rahmidar, L., & Khaydarov, R. (2019). Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors, 7(2), 25. https://doi.org/10.3390/chemosensors7020025