Chemo-Electrical Signal Transduction by Using Stimuli-Responsive Polymer Gate-Modified Field Effect Transistor
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Gold Extended Gate Electrode for FET and the Surface Modification
2.3. Synthesis of Poly(NIPAAm-Co-AECPBA)
Abbreviation | NIPAAm [wt%] 1 | AECFPBA [wt%] 2 | Mn | Mw/Mn | Yield [wt%] |
---|---|---|---|---|---|
PNIP-B-10 | 90 | 10 | 1.3 × 103 | 1.3 | 30.0 |
PNIP-B-20 | 80 | 20 | 1.2 × 103 | 1.4 | 30.0 |
PNIP-B-30 | 70 | 30 | 1.2 × 103 | 1.3 | 17.9 |
2.4. Transmittance Measurement for Determination of Lower Critical Solution Temperature
2.5. Measurement of Surface Potential
3. Results and Discussion
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71. [Google Scholar] [CrossRef]
- Schoning, M.J.; Poghossian, A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 2002, 127, 1137–1151, References are therein. [Google Scholar] [CrossRef]
- Matsumoto, A.; Miyahara, Y. Current and emerging challenges in field effect transistor based bio-sensing. Nanoscale 2013, 5, 10702–10718, References are therein. [Google Scholar] [CrossRef]
- Janata, J.; Moss, S.D. Chemically sensitive field-effect transistors. Biomed. Eng. 1976, 11, 241–245. [Google Scholar]
- Caras, S.; Janata, J. Field-Effect transistor sensitive to penicillin. Anal. Chem. 1980, 52, 1935–1937. [Google Scholar] [CrossRef]
- Schasfoort, R.B.M.; Kooyman, R.P.H.; Bergveld, P.; Greve, J. A New Approach to Immunofet Operation. Biosens. Bioelectron. 1990, 5, 103–124. [Google Scholar]
- Feng, C.L.; Xu, Y.H.; Song, L.M. Study on highly sensitive potentiometric IgG immunosensor. Sens. Actuators B Chem. 2000, 66, 190–192. [Google Scholar] [CrossRef]
- Miyahara, Y.; Sakata, T.; Matsumoto, A. Microbial genetic analysis based on field effect transistors. In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Zourob, M., Elwary, S., Turner, A.P.F., Eds.; © Springer Science + Business Media, LLC: Philadelphia, PA, USA, 2008; Volume 14, pp. 311–337, References are therein. [Google Scholar]
- Sakata, T.; Miyahara, Y. Potentiometric detection of single nucleotide polymorphism by using a genetic field-effect transistor. Chembiochem 2005, 6, 703–710. [Google Scholar] [CrossRef]
- Sakata, T.; Miyahara, Y. DNA sequencing based on intrinsic molecular charges. Angew. Chem. Int. Ed. 2006, 45, 2225–2228. [Google Scholar] [CrossRef]
- Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef]
- Matsumoto, A.; Sato, N.; Kataoka, K.; Miyahara, Y. Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode. J. Am. Chem. Soc. 2009, 131, 12022–12023. [Google Scholar] [CrossRef]
- Matsumoto, A.; Cabral, H.; Sato, N.; Kataoka, K.; Miyahara, Y. Assessment of tumor metastasis via direct determination of cell membrane sialic acid expression. Angew. Chem. Int. Ed. 2010, 49, 5494–5497. [Google Scholar] [CrossRef]
- Wolf, B.; Brischwein, M.; Baumann, W.; Ehret, R.; Kraus, M. Monitoring of cellular signalling and metabolism with modular sensor-technique: The PhysioControl-Microsystem (PCM (R)). Biosens. Bioelectron. 1998, 13, 501–509. [Google Scholar] [CrossRef]
- Fromherz, P.; Offenhausser, A.; Vetter, T.; Weis, J. A neuron-silicon junction—A retzius cell of the leech on an insulated-gate field-effect transistor. Science 1991, 252, 1290–1293. [Google Scholar]
- Baumann, W.H.; Lehmann, M.; Schwinde, A.; Ehret, R.; Brischwein, M.; Wolf, B. Microelectronic sensor system for microphysiological application on living cells. Sens. Actuators B Chem. 1999, 55, 77–89. [Google Scholar] [CrossRef]
- Offenhausser, A.; Knoll, W. Cell-transistor hybrid systems and their potential applications. Trends Biotechnol. 2001, 19, 62–66. [Google Scholar] [CrossRef]
- Ingebrandt, S.; Yeung, C.K.; Krause, M.; Offenhausser, A. Cardiomyocyte-transistor-hybrids for sensor application. Biosens. Bioelectron. 2001, 16, 565–570. [Google Scholar]
- Yeung, C.K.; Ingebrandt, S.; Krause, M.; Offenhausser, A.; Knoll, W. Validation of the use of field effect transistors for extracellular signal recording in pharmacological bioassays. J. Pharmacol. Toxicol. Methods 2001, 45, 207–214. [Google Scholar] [CrossRef]
- Sakata, T.; Miyahara, Y. Noninvasive monitoring of transporter-substrate interaction at cell membrane. Anal. Chem. 2008, 80, 1493–1496. [Google Scholar] [CrossRef]
- Schaffhauser, D.F.; Patti, M.; Goda, T.; Miyahara, Y.; Forste, R.I.C.; Dittrich, P.S. An integrated field-effect microdevice for monitoring membrane transport in xenopus laevis oocytes via lateral proton diffusion. PLoS One 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Schafoort, R.B.M.; Bergveld, P.; Kooyman, R.P.H.; Greve, J. Possibilities and limitations of direct detection of protein charges by means of an immunological fielf-effect transistor. Anal. Chem. Acta 1990, 238, 323–329. [Google Scholar] [CrossRef]
- Stern, E.; Wagner, R.; Sigworth, F.J.; Breaker, R.; Fahmy, T.M.; Reed, M.A. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007, 11, 3405–3409. [Google Scholar]
- Matsumoto, A.; Sato, N.; Sakata, T.; Yoshida, R.; Kataoka, K.; Miyahara, Y. Chemical-to-electrical-signal transduction synchronized with smart gel volume phase transition. Adv. Mater. 2009, 21, 4372–4378. [Google Scholar] [CrossRef]
- Matsumoto, A.; Endo, T.; Yoshida, R.; Miyahara, Y. Electrically visualized chemo-mechanical signal transduction by using a smart gel gate-modified field effect transistor. Chem. Commun. 2009, 37, 5609–5611. [Google Scholar]
- Maeda, Y.; Matsumoto, A.; Miura, Y.; Miyahara, Y. Preparation of alpha-mannoside hydrogel and electrical detection of saccharide-protein interactions using the smart gel-modified gate field effect transistor. Nano. Res. Lett. 2012, 7, 108. [Google Scholar] [CrossRef]
- Matsumoto, A.; Ishii, T.; Nishida, J.; Matsumoto, H.; Kataoka, K.; Miyahara, Y. A synthetic approach toward self-regulated insulin delivery system. Angew. Chem. 2012, 51, 2124–2128. [Google Scholar] [CrossRef]
- Ozoemena, K.I.; Nyokong, T.; Nkos, I.D.; Chambrier, I.; Cook, M.J. Insights into the surface and redox properties od single carbon nanotube-cobalt(II) tetra-aminophthalocyanine self-assembled on gold electrode. Electrochim. Acta 2007, 52, 4132–4143. [Google Scholar] [CrossRef]
- Matsumoto, A.; Ikeda, S.; Harada, A.; Kataoka, K. Glucose-Responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 2003, 4, 1410–1416. [Google Scholar] [CrossRef]
- Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 2003, 125, 3493–3502. [Google Scholar] [CrossRef]
- Matsumoto, A.; Matsumoto, H.; Maeda, Y.; Miyahara, Y. Simple and robust strategy for potentiometric detection of glucose using fluorinated phenylboronic acid self-assembled monolayer. BBA Gen. Subj. 2013, 1830, 4359–4364. [Google Scholar]
- Miyata, T.; Uragami, T.; Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug. Deliv. Rev. 2002, 54, 79–98. [Google Scholar] [CrossRef]
- Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 2001, 53, 321–339. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Matsumoto, A.; Tsurui, Y.; Matsumoto, H.; Maeda, Y.; Hoshi, T.; Sawaguchi, T.; Miyahara, Y. Chemo-Electrical Signal Transduction by Using Stimuli-Responsive Polymer Gate-Modified Field Effect Transistor. Chemosensors 2014, 2, 97-107. https://doi.org/10.3390/chemosensors2020097
Matsumoto A, Tsurui Y, Matsumoto H, Maeda Y, Hoshi T, Sawaguchi T, Miyahara Y. Chemo-Electrical Signal Transduction by Using Stimuli-Responsive Polymer Gate-Modified Field Effect Transistor. Chemosensors. 2014; 2(2):97-107. https://doi.org/10.3390/chemosensors2020097
Chicago/Turabian StyleMatsumoto, Akira, Yusuke Tsurui, Hiroko Matsumoto, Yasuhiro Maeda, Toru Hoshi, Takashi Sawaguchi, and Yuji Miyahara. 2014. "Chemo-Electrical Signal Transduction by Using Stimuli-Responsive Polymer Gate-Modified Field Effect Transistor" Chemosensors 2, no. 2: 97-107. https://doi.org/10.3390/chemosensors2020097
APA StyleMatsumoto, A., Tsurui, Y., Matsumoto, H., Maeda, Y., Hoshi, T., Sawaguchi, T., & Miyahara, Y. (2014). Chemo-Electrical Signal Transduction by Using Stimuli-Responsive Polymer Gate-Modified Field Effect Transistor. Chemosensors, 2(2), 97-107. https://doi.org/10.3390/chemosensors2020097