Air-Assisted Liquid–Liquid Microextraction (AALLME) as an Alternative Sample Pre-Treatment for Isolating Tetrahydrocannabinol (THC) from Hair
Abstract
1. Introduction
2. Material and Methods
2.1. Chemical Reagents and Standards
2.2. Instrumentation
2.3. Hair Samples Collection
2.4. Sample Preparation Procedure (AALLME)
2.5. Sample Preparation Procedure (DLLME)
2.6. Validation Parameters Studied
3. Results and Discussion
3.1. Preliminary Study
3.1.1. Standard Hydrolysis Procedure
3.1.2. Comparison Between DLLME and AALLME
3.2. AALLME Optimization
3.2.1. Selection of the Extraction Solvent
3.2.2. Multivariate Optimization of Experimental Factors Affecting AALLME Procedure
3.3. Method Validation
3.4. Application to Forensic Cases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cannabis. Organización Mundial de la Salud. Available online: https://www.who.int/teams/mental-health-and-substance-use/alcohol-drugs-and-addictive-behaviours/drugs-psychoactive/cannabis (accessed on 3 March 2025).
- Observatorio Español de las Drogas y las Adicciones. Informe 2024: Alcohol, Tabaco y Drogas Ilegales en España; Ministerio de Sanidad, Delegación del Gobierno para el Plan Nacional sobre Drogas: Madrid, Spain, 2024; Available online: https://pnsd.sanidad.gob.es/ (accessed on 15 January 2025).
- Kale, R.; Chaturvedi, D.; Dandekar, P.; Jain, R. Analytical techniques for screening of cannabis and derivatives from human hair specimens. Anal. Methods 2024, 16, 1133–1149. [Google Scholar] [CrossRef] [PubMed]
- Nestoros, J.N.; Vakonaki, E.; Tzatzarakis, M.N.; Alegakis, A.; Skondras, M.D.; Tsatsakis, A.M. Long lasting effects of chronic heavy cannabis abuse. Am. J. Addict. 2017, 26, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.; Weizman, A.; Weinstein, A. Positive and negative effects of cannabis and cannabinoids on health. Clin. Pharmacol. Ther. 2019, 105, 1139–1147. [Google Scholar] [CrossRef]
- Ferreira, C.; Paulino, C.; Quintas, A. Extraction procedures for hair forensic toxicological analysis: A mini-review. Chem. Res. Toxicol. 2019, 32, 2367–2381. [Google Scholar] [CrossRef]
- Baciu, T.; Borrull, F.; Aguilar, C.; Calull, M. Recent trends in analytical methods and separation techniques for drugs of abuse in hair. Anal. Chim. Acta 2015, 856, 1–26. [Google Scholar] [CrossRef]
- Kintz, P. Hair analysis in forensic toxicology. Wiley Interdiscip. Rev. Forensic Sci. 2019, 1, e1196. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Luan, T.; Jiang, R.; Ouyang, G. Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review. J. Chromatogr. A 2021, 1640, 461961. [Google Scholar] [CrossRef]
- Khajuria, H.; Nayak, B.P.; Badiye, A. Toxicological hair analysis: Pre-analytical, analytical and interpretive aspects. Med. Sci. Law 2018, 58, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Garrigues, S.; de la Guardia, M. (Eds.) Challenges in Green Analytical Chemistry, 2nd ed.; Royal Society of Chemistry: Tokyo, Japan, 2020. [Google Scholar] [CrossRef]
- Rosado, T.; Barroso, M.; Vieira, D.N.; Gallardo, E. Trends in microextraction approaches for handling human hair extracts—A review. Anal. Chim. Acta 2021, 1185, 338792. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zhang, Y.; Bian, Y.; Liu, Y.J.; Ren, A.; Zhou, Y.; Shi, D.; Feng, X.S. Benzodiazepines in complex biological matrices: Recent updates on pretreatment and detection methods. J. Pharm. Anal. 2023, 13, 442–462. [Google Scholar] [CrossRef]
- Jain, R.; Singh, R. Applications of dispersive liquid–liquid micro-extraction in forensic toxicology. TrAC Trends Anal. Chem. 2016, 75, 227–237. [Google Scholar] [CrossRef]
- Manousi, N.; Samanidou, V. Green sample preparation of alternative biosamples in forensic toxicology. Sustain. Chem. Pharm. 2021, 20, 100388. [Google Scholar] [CrossRef]
- Oliveira, J.R.I.L.; Rodrigues, L.C.; Kahl, J.M.M.; Berlinck, D.Z.; Costa, J.L. Green Analytical Toxicology procedure for determination of ketamine, its metabolites and analogues in oral fluid samples using dispersive liquid–liquid microextraction (DLLME). J. Anal. Toxicol. 2024, 48, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Zuloaga, O.; Olivares, M.; Navarro, P.; Vallejo, A.; Prieto, A. Dispersive liquid–liquid microextraction: Trends in the analysis of biological samples. Bioanalysis 2015, 7, 2211–2225. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Ouyang, G. Fast analytical techniques based on microextraction. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; Volume 67, pp. 85–134. [Google Scholar] [CrossRef]
- Azooz, E.A.; Al-Wani, H.S.A.; Gburi, M.S.; Al-Muhanna, E.H.B. Recent modified air-assisted liquid–liquid microextraction applications for medicines and organic compounds in various samples: A review. Open Chem. 2022, 20, 525–540. [Google Scholar] [CrossRef]
- Lamei, N.; Ezoddin, M.; Abdi, K. Air assisted emulsification liquid-liquid microextraction based on deep eutectic solvent for preconcentration of methadone in water and biological samples. Talanta 2017, 165, 176–181. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Reza, M.; Mogaddam, A.; Bamorowat, M. Determination of unconjugated non-steroidal anti-inflammatory drugs in biological fluids using air-assisted liquid–liquid microextraction combined with back extraction followed by high performance liquid chromatography. Anal. Methods 2015, 7, 1372–1379. [Google Scholar] [CrossRef]
- Ghadi, M.; Hadjmohammadi, M.R. Extraction and determination of three benzodiazepines in aqueous and biological samples by air-assisted liquid–liquid microextraction and high-performance liquid chromatography. J. Iran. Chem. Soc. 2019, 16, 1147–1155. [Google Scholar] [CrossRef]
- Barfi, B.; Asghari, A.; Rajabi, M.; Moghadam, A.G.; Mirkhani, N.; Ahmadi, F. Comparison of ultrasound-enhanced air-assisted liquid–liquid microextraction and low-density solvent-based dispersive liquid–liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples. J. Pharm. Biomed. Anal. 2015, 111, 297–305. [Google Scholar] [CrossRef]
- Majidi, S.M.; Hadjmohammadi, M.R. Air-assisted surfactant-enhanced emulsification liquid–liquid microextraction based on the solidification of floating organic droplets followed by high-performance liquid chromatography with ultraviolet detection for the determination of clozapine in biological samples. J. Iran. Chem. Soc. 2019, 16, 2307–2314. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Mohebbi, A.; Pazhohan, A.; Nemati, M.; Mogaddam, M.R.A. Air–assisted liquid–liquid microextraction; principles and applications with analytical instruments. TrAC Trends Anal. Chem. 2020, 122, 115734. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, Food and Drug Administration. Bioanalytical Method Validation: Guidance for Industry; U.S. Department of Health and Human Services, Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 10 January 2025).
- Villamor, J.L.; Bermejo, A.M.; Tabernero, M.J.; Fernandez, P. Determination of cannabinoids in human hair by GC/MS. Anal. Lett. 2004, 37, 517–528. [Google Scholar] [CrossRef]
- Ferrone, V.; Cotellese, R.; Carlucci, M.; Di Marco, L.; Carlucci, G. Air assisted dispersive liquid-liquid microextraction with solidification of the floating organic droplets (AA-DLLME-SFO) and UHPLC-PDA method: Application to antibiotics analysis in human plasma of hospital acquired pneumonia patients. J. Pharm. Biomed. Anal. 2018, 151, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Bazregar, M.; Rajabi, M.; Yamini, Y.; Asghari, A.; Hemmati, M. Tandem air-agitated liquid–liquid microextraction as an efficient method for determination of acidic drugs in complicated matrices. Anal. Chim. Acta 2016, 917, 44–52. [Google Scholar] [CrossRef]
- Joshi, D.R.; Adhikari, N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Cravotto, C.; Fabiano-Tixier, A.S.; Claux, O.; Abert-Vian, M.; Tabasso, S.; Cravotto, G.; Chemat, F. Towards substitution of hexane as extraction solvent of food products and ingredients with no regrets. Foods 2022, 11, 3412. [Google Scholar] [CrossRef] [PubMed]
- Kreckmann, K.H.; Baldwin, J.K.; Roberts, L.G.; Staab, R.J.; Kelly, D.P.; Saik, J.E. Inhalation developmental toxicity and reproduction studies with cyclohexane. Drug Chem. Toxicol. 2000, 23, 555–573. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific. Safety Data Sheet: Hexane (Revision Number 12). 2023. Available online: https://origin-beta.fishersci.it/chemicalProductData_uk/wercs?itemCode=12347083&lang=EN (accessed on 29 November 2024).
- Thermo Fisher Scientific. Safety Data Sheet: Cyclohexane (Revision Number 12). 2023. Available online: https://www.thermofishersci.in/msds/cyclohexane.pdf (accessed on 29 November 2024).
- Farajzadeh, M.A.; Sattari Dabbagh, M.; Yadegari, A.; Alizadeh Nabil, A.A. Air-assisted liquid-liquid microextraction vs. dispersive liquid-liquid microextraction; a comparative study for the analysis of multiclass pesticides. Anal. Bioanal. Chem. Res. 2019, 6, 29–46. [Google Scholar] [CrossRef]
- Wang, L.; Huang, T.; Cao, H.X.; Yuan, Q.X.; Liang, Z.P.; Liang, G.X. Application of air-assisted liquid-liquid microextraction for determination of some fluoroquinolones in milk powder and egg samples: Comparison with conventional dispersive liquid-liquid microextraction. Food Anal. Methods 2016, 9, 2223–2230. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Mogaddam, M.R.A.; Aghdam, A.A. Comparison of air-agitated liquid–liquid microextraction technique and conventional dispersive liquid–liquid micro-extraction for determination of triazole pesticides in aqueous samples by gas chromatography with flame ionization detection. J. Chromatogr. A 2013, 1300, 70–78. [Google Scholar] [CrossRef]
- Zhou, Q.; Jin, Z.; Li, J.; Wang, B.; Wei, X.; Chen, J. A novel air-assisted liquid-liquid microextraction based on in-situ phase separation for the HPLC determination of bisphenols migration from disposable lunch boxes to contacting water. Talanta 2018, 189, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Tassoni, G.; Cippitelli, M.; Ottaviani, G.; Froldi, R.; Cingolani, M. Detection of cannabinoids by ELISA and GC–MS methods in a hair sample previously used to detect other drugs of abuse. J. Anal. Toxicol. 2016, 40, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Angeli, I.; Casati, S.; Ravelli, A.; Minoli, M.; Orioli, M. A novel single-step GC–MS/MS method for cannabinoids and 11-OH-THC metabolite analysis in hair. J. Pharm. Biomed. Anal. 2018, 155, 1–6. [Google Scholar] [CrossRef]
- Míguez-Framil, M.; Cocho, J.Á.; Tabernero, M.J.; Bermejo, A.M.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. An improved method for the determination of∆ 9-tetrahydrocannabinol, cannabinol and cannabidiol in hair by liquid chromatography–tandem mass spectrometry. Microchem. J. 2014, 117, 7–17. [Google Scholar] [CrossRef]
- Kim, J.Y.; Suh, S.; In, M.K.; Paeng, K.J.; Chung, B.C. Simultaneous determination of cannabidiol, cannabinol, and gD9 9-tetrahydrocannabinol in human hair by gas chromatography-mass spectrometryin human hair by gas chromatography-mass spectrometry. Arch. Pharmacal Res. 2005, 28, 1086–1091. [Google Scholar] [CrossRef]
- Heinl, S.; Lerch, O.; Erdmann, F. Automated GC–MS Determination of Δ9-Tetrahydrocannabinol, Cannabinol and Cannabidiol in Hair. J. Anal. Toxicol. 2016, 40, 498–503. [Google Scholar] [CrossRef]
- Han, E.; Park, Y.; Kim, E.; In, S.; Yang, W.; Lee, S.; Choi, H.; Lee, S.; Chung, H.; myong Song, J. Simultaneous analysis of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-tetrahydrocannabinol in hair without different sample preparation and derivatization by gas chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2011, 55, 1096–1103. [Google Scholar] [CrossRef]
- Paul, R.; Williams, R.; Hodson, V.; Peake, C. Detection of cannabinoids in hair after cosmetic application of hemp oil. Sci. Rep. 2019, 9, 2582. [Google Scholar] [CrossRef]
- Mercolini, L.; Mandrioli, R.; Protti, M.; Conti, M.; Serpelloni, G.; Raggi, M.A. Monitoring of chronic Cannabis abuse: An LC–MS/MS method for hair analysis. J. Pharm. Biomed. Anal. 2013, 76, 119–125. [Google Scholar] [CrossRef]
- Breidi, S.E.; Barker, J.; Petroczi, A.; Naughton, D.P. Enzymatic digestion and selective quantification of underivatised delta-9-tetrahydrocannabinol and cocaine in human hair using gas chromatography-mass spectrometry. J. Anal. Methods Chem. 2012, 2012, 907893. [Google Scholar] [CrossRef]
- Kronstrand, R.; Nyström, I.; Forsman, M.; Käll, K. Hair analysis for drugs in driver’s license regranting. A Swedish pilot study. Forensic Sci. Int. 2010, 196, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Auwärter, V.; Wohlfarth, A.; Traber, J.; Thieme, D.; Weinmann, W. Hair analysis for Δ9-tetrahydrocannabinolic acid A—New insights into the mechanism of drug incorporation of cannabinoids into hair. Forensic Sci. Int. 2010, 196, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Golpe, M.; de-Castro-Ríos, A.; Cruz, A.; López-Rivadulla, M.; Lendoiro, E. Determination and distribution of cannabinoids in nail and hair samples. J. Anal. Toxicol. 2021, 45, 969–975. [Google Scholar] [CrossRef]
- Kieliba, T.; Lerch, O.; Andresen-Streichert, H.; Rothschild, M.A.; Beike, J. Simultaneous quantification of THC-COOH, OH-THC, and further cannabinoids in human hair by gas chromatography–tandem mass spectrometry with electron ionization applying automated sample preparation. Drug Test. Anal. 2019, 11, 267–278. [Google Scholar] [CrossRef]
- Hill, V.A.; Schaffer, M.I.; Paulsen, R.B.; Stowe, G.N. Cannabinoids Tetrahydrocannabinol, Cannabinol, Cannabidiol, Tetrahydrocannabivarin and 11-nor-9-carboxy-∆ 9-THC in Hair. J. Anal. Toxicol. 2022, 46, 487–493. [Google Scholar] [CrossRef]
- Rodrigues, A.; Yegles, M.; Van Elsué, N.; Schneider, S. Determination of cannabinoids in hair of CBD rich extracts consumers using gas chromatography with tandem mass spectrometry (GC/MS–MS). Forensic Sci. Int. 2018, 292, 163–166. [Google Scholar] [CrossRef]
- Montesano, C.; Simeoni, M.C.; Vannutelli, G.; Gregori, A.; Ripani, L.; Sergi, M.; Compagnone, D.; Curini, R. Pressurized liquid extraction for the determination of cannabinoids and metabolites in hair: Detection of cut-off values by high performance liquid chromatography–high resolution tandem mass spectrometry. J. Chromatogr. A 2015, 1406, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Lendoiro, E.; Quintela, O.; de Castro, A.; Cruz, A.; Lopez-Rivadulla, M.; Concheiro, M. Target screening and confirmation of 35 licit and illicit drugs and metabolites in hair by LC–MSMS. Forensic Sci. Int. 2012, 217, 207–215. [Google Scholar] [CrossRef]
- Emídio, E.S.; de Menezes Prata, V.; Dórea, H.S. Validation of an analytical method for analysis of cannabinoids in hair by headspace solid-phase microextraction and gas chromatography–ion trap tandem mass spectrometry. Anal. Chim. Acta 2010, 670, 63–71. [Google Scholar] [CrossRef]
- Emídio, E.S.; de Menezes Prata, V.; De Santana, F.J.M.; Dórea, H.S. Hollow fiber-based liquid phase microextraction with factorial design optimization and gas chromatography–tandem mass spectrometry for determination of cannabinoids in human hair. J. Chromatogr. B 2010, 878, 2175–2183. [Google Scholar] [CrossRef]
- Merola, G.; Gentili, S.; Tagliaro, F.; Macchia, T. Determination of different recreational drugs in hair by HS-SPME and GC/MS. Anal. Bioanal. Chem. 2010, 397, 2987–2995. [Google Scholar] [CrossRef] [PubMed]
- Musshoff, F.; Junker, H.P.; Lachenmeier, D.W.; Kroener, L.; Madea, B. Fully automated determination of cannabinoids in hair samples using headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Anal. Toxicol. 2002, 26, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Nadulski, T.; Pragst, F. Simple and sensitive determination of Δ9-tetrahydrocannabinol, cannabidiol and cannabinol in hair by combined silylation, headspace solid phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr. B 2007, 846, 78–85. [Google Scholar] [CrossRef]
- Dizioli Rodrigues de Oliveira, C.; Yonamine, M.; de Moraes Moreau, R.L. Headspace solid-phase microextraction of cannabinoids in human head hair samples. J. Sep. Sci. 2007, 30, 128–134. [Google Scholar] [CrossRef]
- Odoardi, S.; Valentini, V.; De Giovanni, N.; Pascali, V.L.; Strano-Rossi, S. High-throughput screening for drugs of abuse and pharmaceutical drugs in hair by liquid-chromatography-high resolution mass spectrometry (LC-HRMS). Microchem. J. 2017, 133, 302–310. [Google Scholar] [CrossRef]
- Di Corcia, D.; D’urso, F.; Gerace, E.; Salomone, A.; Vincenti, M. Simultaneous determination in hair of multiclass drugs of abuse (including THC) by ultra-high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2012, 899, 154–159. [Google Scholar] [CrossRef]
- Roth, N.; Moosmann, B.; Auwärter, V. Development and validation of an LC-MS/MS method for quantification of Δ9-tetrahydrocannabinolic acid A (THCA-A), THC, CBN and CBD in hair. J. Mass Spectrom. 2013, 48, 227–233. [Google Scholar] [CrossRef]
- Domínguez-Romero, J.C.; García-Reyes, J.F.; Molina-Díaz, A. Screening and quantitation of multiclass drugs of abuse and pharmaceuticals in hair by fast liquid chromatography electrospray time-of-flight mass spectrometry. J. Chromatogr. B 2011, 879, 2034–2042. [Google Scholar] [CrossRef]
- SoHT. SoHT Consensus on Drugs of Abuse (DoA) Testing in Hair. Sociedad de Toxicología del Cabello (SoHT). 2021. Available online: https://www.soht.org/consensus (accessed on 20 January 2025).
Retention Time/min | Quantifier Ion m/z | Qualifier Ions m/z | |
---|---|---|---|
THC | 18.99 | 299 | 271, 314 |
THC 13C-D3 | 18.92 | 302 | 274, 317 |
Experimental Factors | Low Level | High Level | Centre Points Value |
---|---|---|---|
Cyclohexane: ethyl acetate (9:1) volume/µL | 100 | 500 | 300 |
Sonication time/min | 0 | 20 | 10 |
Air-assisted extraction cycles | 0 | 10 | 5 |
Sodium chloride addition/mg | 0 | 20 | 10 |
Factor | Fractional Factorial Screening Design | Surface Response Design | ||||
---|---|---|---|---|---|---|
With Salt Addition | Without Salt Addition | Without Salt Addition | ||||
F Value | p Value | F Value | p Value | F Value | p Value | |
A: Solvent volume (μL) | 6.45 | 0.1263 | 20.78 | 0.0026 | 15.79 | 0.0018 |
B: Sonication time (min) | 0.03 | 0.8728 | 0.11 | 0.7544 | 0 | 0.9525 |
C: Extraction cycles | 6.18 | 0.1309 | 19.88 | 0.0029 | 20.22 | 0.0007 |
D: Salt addition (mg) | 0.02 | 0.9108 | - | - | - | - |
AB | 0.04 | 0.8688 | 0.11 | 0.7469 | 0.03 | 0.8618 |
AC | 2.45 | 0.258 | 7.89 | 0.0262 | 6.91 | 0.022 |
AD | 0.01 | 0.9152 | - | - | - | - |
BC | 0.31 | 0.6356 | 0.99 | 0.3539 | 1.32 | 0.2732 |
BD | 0.1 | 0.7776 | - | - | - | - |
CD | 0 | 0.9854 | - | - | - | - |
AA | - | - | - | - | 16.44 | 0.0016 |
BB | - | - | - | - | 17.01 | 0.0014 |
CC | - | - | - | - | 14.15 | 0.0027 |
Concentration (ng/mg) | 0.01 | 1.0 | 4.0 | |||
---|---|---|---|---|---|---|
Intra-Day | Inter-Day | Intra-Day | Inter-Day | Intra-Day | Inter-Day | |
ME (%) | 0.9 | 17 | 8 | 12 | 3 | 2 |
RSD (%) | 12 | 19 | 4 | 10 | 11 | 2 |
Recovery(%) | 99 | 83 | 108 | 112 | 97 | 102 |
Analytes | Sample | Hydrolysis | Extraction | LOD ng/mg | LOQ ng/mg | Reference |
---|---|---|---|---|---|---|
THC, CBD, CBN | 50 | 0.5 mL NaOH 2 M (10 min; 100 °C) | LLE hexane: ethyl acetate | 0.25 | 0.85 | [41] |
THC, CBD, CBN | 50 | NaOH 1 M (10 min; 95 °C) | LLE hexane: ethyl acetate | 0.006 | 0.05 | [42] |
THC, CBD, CBN | 10 | 1 mL NaOH 1 M (5 min; 90 °C) | HS-SPME | 0.05 | 0.27 | [59] |
THC, CBD, CBN | 15–30 | 0.5 mL NaOH 1 M (20 min; 80 °C) | HS-SPME | 0.012 | 0.037 | [60] |
THC, CBD, CBN | 10 | 1 mL NaOH 1 M (20 min; 90 °C) | HS-SPME | 0.07 | 0.12 | [61] |
THC | 50 | 0.5 mL NaOH 1 M (10 min; 100 °C) | AALLME | 0.008 | 0.01 | Proposed method |
Nº | Gender | Age | Other Positive Drugs | THC Concentration (μg/mg) | Known Date of Last Consumption |
---|---|---|---|---|---|
1 | M | 48 | - | Negative | - |
2 | M | 30 | Cocaine (traces) | Negative | - |
3 | M | 20 | Cocaine | 183.7 | - |
4 | F | 29 | - | <LLOQ | - |
5 | M | 29 | Cocaine | 629.4 | - |
6 | M | 27 | - | >ULOQ | 8 months |
7 | F | - | Cocaine | 309.7 | 48 h |
8 | M | 38 | - | 41.06 | - |
9 | M | 27 | Cocaine, amphetamines | 1135.7 | 4 h |
10 | M | 42 | Cocaine, opiates, methadone | 16.02 | - |
11 | M | 33 | - | 1179.23 | Same day of sampling |
12 | M | 38 | Cocaine (traces) | 422.7 | - |
13 | M | 53 | Cocaine (traces) | 1764.6 | Same day of sampling |
14 | F | 34 | - | 2081.3 | - |
15 | F | M | Cocaine | 244.3 | - |
16 | M | 38 | - | Negative | - |
17 | M | 24 | Cocaine | 284.1 | - |
18 | M | 20 | - | 503.2 | 48 Hours |
19 | M | 34 | Cocaine, opiates | 37.8 | 3–4 weeks |
20 | M | 30 | Cocaine | 83.8 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco-García, L.; Cabarcos-Fernández, P.; Álvarez-Freire, I.; Tabernero-Duque, M.J.; Moreda-Piñeiro, A.; Bermejo-Barrera, A.M. Air-Assisted Liquid–Liquid Microextraction (AALLME) as an Alternative Sample Pre-Treatment for Isolating Tetrahydrocannabinol (THC) from Hair. Chemosensors 2025, 13, 207. https://doi.org/10.3390/chemosensors13060207
Blanco-García L, Cabarcos-Fernández P, Álvarez-Freire I, Tabernero-Duque MJ, Moreda-Piñeiro A, Bermejo-Barrera AM. Air-Assisted Liquid–Liquid Microextraction (AALLME) as an Alternative Sample Pre-Treatment for Isolating Tetrahydrocannabinol (THC) from Hair. Chemosensors. 2025; 13(6):207. https://doi.org/10.3390/chemosensors13060207
Chicago/Turabian StyleBlanco-García, Laura, Pamela Cabarcos-Fernández, Iván Álvarez-Freire, María Jesús Tabernero-Duque, Antonio Moreda-Piñeiro, and Ana María Bermejo-Barrera. 2025. "Air-Assisted Liquid–Liquid Microextraction (AALLME) as an Alternative Sample Pre-Treatment for Isolating Tetrahydrocannabinol (THC) from Hair" Chemosensors 13, no. 6: 207. https://doi.org/10.3390/chemosensors13060207
APA StyleBlanco-García, L., Cabarcos-Fernández, P., Álvarez-Freire, I., Tabernero-Duque, M. J., Moreda-Piñeiro, A., & Bermejo-Barrera, A. M. (2025). Air-Assisted Liquid–Liquid Microextraction (AALLME) as an Alternative Sample Pre-Treatment for Isolating Tetrahydrocannabinol (THC) from Hair. Chemosensors, 13(6), 207. https://doi.org/10.3390/chemosensors13060207