pH Sensors, Biosensors and Systems
Acknowledgments
Conflicts of Interest
References
- Sensors and Biosensors for C-Reactive Protein, Temperature and pH, and Their Applications for Monitoring Wound Healing: A Review. Available online: https://www.mdpi.com/1424-8220/17/12/2952 (accessed on 21 February 2025).
- Salvo, P.; Calisi, N.; Melai, B.; Cortigiani, B.; Mannini, M.; Caneschi, A.; Lorenzetti, G.; Paoletti, C.; Lomonaco, T.; Paolicchi, A.; et al. Temperature and pH Sensors Based on Graphenic Materials. Biosens. Bioelectron. 2017, 91, 870–877. [Google Scholar] [CrossRef]
- Myers, R.J. One-Hundred Years of pH. J. Chem. Educ. 2010, 87, 30–32. [Google Scholar] [CrossRef]
- Salvo, P.; Melai, B.; Calisi, N.; Paoletti, C.; Bellagambi, F.; Kirchhain, A.; Trivella, M.G.; Fuoco, R.; Di Francesco, F. Graphene-Based Devices for Measuring pH. Sens. Actuators B Chem. 2018, 256, 976–991. [Google Scholar] [CrossRef]
- Vivaldi, F.; Salvo, P.; Poma, N.; Bonini, A.; Biagini, D.; Del Noce, L.; Melai, B.; Lisi, F.; Francesco, F.D. Recent Advances in Optical, Electrochemical and Field Effect pH Sensors. Chemosensors 2021, 9, 33. [Google Scholar] [CrossRef]
- Kye, H.; Jo, D.; Jeong, S.; Kim, C.; Kim, J. Photoacoustic Imaging of pH-Sensitive Optical Sensors in Biological Tissues. Chemosensors 2024, 12, 257. [Google Scholar] [CrossRef]
- Blaszczak, W.; Tan, Z.; Swietach, P. Cost-Effective Real-Time Metabolic Profiling of Cancer Cell Lines for Plate-Based Assays. Chemosensors 2021, 9, 139. [Google Scholar] [CrossRef]
- Voskoboynikova, O.; Sukhanov, A.; Duerkop, A. Optical pH Sensing in Milk: A Small Puzzle of Indicator Concentrations and the Best Detection Method. Chemosensors 2021, 9, 177. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Tian, Y. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains. Anal. Chem. 2016, 88, 2113–2118. [Google Scholar] [CrossRef]
- Manjakkal, L.; Dang, W.; Yogeswaran, N.; Dahiya, R. Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications. Biosensors 2019, 9, 14. [Google Scholar] [CrossRef]
- Manjakkal, L.; Sakthivel, B.; Gopalakrishnan, N.; Dahiya, R. Printed Flexible Electrochemical pH Sensors Based on CuO Nanorods. Sens. Actuators B Chem. 2018, 263, 50–58. [Google Scholar] [CrossRef]
- Poma, N.; Vivaldi, F.; Bonini, A.; Carbonaro, N.; Di Rienzo, F.; Melai, B.; Kirchhain, A.; Salvo, P.; Tognetti, A.; Di Francesco, F. Remote Monitoring of Seawater Temperature and pH by Low Cost Sensors. Microchem. J. 2019, 148, 248–252. [Google Scholar] [CrossRef]
- Salvo, P.; Calisi, N.; Melai, B.; Dini, V.; Paoletti, C.; Lomonaco, T.; Pucci, A.; Di Francesco, F.; Piaggesi, A.; Romanelli, M. Temperature- and pH-Sensitive Wearable Materials for Monitoring Foot Ulcers. Int. J. Nanomed. 2017, 12, 949–954. [Google Scholar] [CrossRef]
- Vivaldi, F.; Santalucia, D.; Poma, N.; Bonini, A.; Salvo, P.; Del Noce, L.; Melai, B.; Kirchhain, A.; Kolivoška, V.; Sokolová, R.; et al. A Voltammetric pH Sensor for Food and Biological Matrices. Sens. Actuators B Chem. 2020, 322, 128650. [Google Scholar] [CrossRef]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal Oxides Based Electrochemical pH Sensors: Current Progress and Future Perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
- Ghoneim, M.T.; Nguyen, A.; Dereje, N.; Huang, J.; Moore, G.C.; Murzynowski, P.J.; Dagdeviren, C. Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications. Chem. Rev. 2019, 119, 5248–5297. [Google Scholar] [CrossRef]
- Chawang, K.; Bing, S.; Kwon, K.Y.; Chiao, J.-C. Miniaturized Iridium Oxide Microwire pH Sensor for Biofluid Sensing. Chemosensors 2024, 12, 168. [Google Scholar] [CrossRef]
- Jírů, J.; Hybášek, V.; Michalcová, A.; Korbelová, K.; Koláčný, L.; Fojt, J. Preparation, Characterization and Electrochemical Response of Nanostructured TiAlV with Potentiostatically Deposited IrOx as a pH Sensor for Rapid Detection of Inflammation. Chemosensors 2024, 12, 109. [Google Scholar] [CrossRef]
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive Polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Nambiar, S.; Yeow, J.T.W.; Howlader, M.M.R.; Hu, N.-X.; Deen, M.J. Polymers and Organic Materials-Based pH Sensors for Healthcare Applications. Prog. Mater. Sci. 2018, 96, 174–216. [Google Scholar] [CrossRef]
- Korostynska, O.; Arshak, K.; Gill, E.; Arshak, A. Review on State-of-the-Art in Polymer Based pH Sensors. Sensors 2007, 7, 3027–3042. [Google Scholar] [CrossRef]
- Ren, H.; Liang, K.; Li, D.; Chen, Y.; Tang, Y.; Wang, Y.; Li, F.; Liu, G.; Zhu, B. Field-Effect Transistor-Based Biosensor for pH Sensing and Mapping. Adv. Sens. Res. 2023, 2, 2200098. [Google Scholar] [CrossRef]
- Lee, C.-S.; Kim, S.K.; Kim, M. Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors 2009, 9, 7111–7131. [Google Scholar] [CrossRef]
- Hyun, T.-H.; Cho, W.-J. Fully Transparent and Highly Sensitive pH Sensor Based on an A-IGZO Thin-Film Transistor with Coplanar Dual-Gate on Flexible Polyimide Substrates. Chemosensors 2023, 11, 46. [Google Scholar] [CrossRef]
- Cho, S.-K.; Cho, W.-J. High-Sensitivity pH Sensor Based on Coplanar Gate AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor. Chemosensors 2021, 9, 42. [Google Scholar] [CrossRef]
- Kim, Y.-U.; Cho, W.-J. High-Performance Bidirectional Chemical Sensor Platform Using Double-Gate Ion-Sensitive Field-Effect Transistor with Microwave-Assisted Ni-Silicide Schottky-Barrier Source/Drain. Chemosensors 2022, 10, 122. [Google Scholar] [CrossRef]
- Amaral, D.S.d.; Tholozan, L.V.; Bonemann, D.H.; Jansen-Alves, C.; Boschetti, W.; Novo, D.L.R.; Carreno, N.L.V.; Pereira, C.M.P. de Algal Biosensors for Detection of Potentially Toxic Pollutants and Validation by Advanced Methods: A Brief Review. Chemosensors 2024, 12, 235. [Google Scholar] [CrossRef]
- Hashtroudi, H.; Yu, A.; Juodkazis, S.; Shafiei, M. Two-Dimensional Dy2O3-Pd-PDA/rGO Heterojunction Nanocomposite: Synergistic Effects of Hybridisation, UV Illumination and Relative Humidity on Hydrogen Gas Sensing. Chemosensors 2022, 10, 78. [Google Scholar] [CrossRef]
- Kuswandi, B.; Asih, N.P.N.; Pratoko, D.K.; Kristiningrum, N.; Moradi, M. Edible pH Sensor Based on Immobilized Red Cabbage Anthocyanins into Bacterial Cellulose Membrane for Intelligent Food Packaging. Packag. Technol. Sci. 2020, 33, 321–332. [Google Scholar] [CrossRef]
- Damaghi, M.; Wojtkowiak, J.W.; Gillies, R.J. pH Sensing and Regulation in Cancer. Front. Physiol. 2013, 4, 370. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvo, P.; Tedeschi, L. pH Sensors, Biosensors and Systems. Chemosensors 2025, 13, 90. https://doi.org/10.3390/chemosensors13030090
Salvo P, Tedeschi L. pH Sensors, Biosensors and Systems. Chemosensors. 2025; 13(3):90. https://doi.org/10.3390/chemosensors13030090
Chicago/Turabian StyleSalvo, Pietro, and Lorena Tedeschi. 2025. "pH Sensors, Biosensors and Systems" Chemosensors 13, no. 3: 90. https://doi.org/10.3390/chemosensors13030090
APA StyleSalvo, P., & Tedeschi, L. (2025). pH Sensors, Biosensors and Systems. Chemosensors, 13(3), 90. https://doi.org/10.3390/chemosensors13030090