Investigating the Application of Pomegranate-Loaded Chitosan Nanoparticles as Contrast Agents for Enhancing Breast Cancer Detection via Diffuse Reflectance Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticles Formations
2.3. Nanoparticle Characterization
2.3.1. Hydrodynamic Size and Stability Evaluation
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. Scanning Electron Microscopy
2.4. Cytotoxicity and Fluorescent Effect Measurements
2.5. Diffuse Reflectance Optical Setup
3. Results and Discussion
3.1. Nanoparticles Characterization Assessment
3.2. Cytotoxicity and Fluorescent Measurements Assessment
3.3. Diffuse Reflectance Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.E. Cancer-related fatigue—Mechanisms, risk factors, and treatments. Nat. Rev. Clin. Oncol. 2014, 11, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Jiang, G.; Hu, X.; Yang, D.; Tan, T.; Gao, Z.; Chen, Z.; Xiang, C.; Li, S.; Ouyang, Z.; et al. Punicalin Attenuates Breast Cancer-Associated Osteolysis by Inhibiting the NF-κB Signaling Pathway of Osteoclasts. Front. Pharmacol. 2021, 12, 789552. [Google Scholar] [CrossRef] [PubMed]
- Barba, D.; León-Sosa, A.; Lugo, P.; Suquillo, D.; Torres, F.; Surre, F.; Trojman, L.; Caicedo, A. Breast cancer, screening and diagnostic tools: All you need to know. Crit. Rev. Oncol. Hematol. 2021, 157, 103174. [Google Scholar] [CrossRef]
- Sturgeon, S.R.; Ronnenberg, A.G. Pomegranate and breast cancer: Possible mechanisms of prevention. Nutr. Rev. 2010, 68, 122–128. [Google Scholar] [CrossRef]
- Naser, Z.; Weli, S.; Ramadhan, S. In Silico Molecular Classification of Breast and Prostate Cancers using Back Propagation Neural Network. Cancer Biol. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Champeau, M.; Vignoud, S.; Mortier, L.; Mordon, S. Photodynamic therapy for skin cancer: How to enhance drug penetration? J. Photochem. Photobiol. B 2019, 197, 111544. [Google Scholar] [CrossRef]
- Shetty, M.K. Screening for Breast Cancer with Mammography: Current Status and An Overview. Indian J. Surg. Oncol. 2010, 1, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Alabd, O.L.; Alwarraky, M.S.; Taei, D.M.; Eid, B.; Gomaa, M.E. Correlation between ultrasound-guided percutaneous breast biopsy and diffusion-weighted magnetic resonance imaging of the breast for evaluation of solid breast lesions. Egypt. J. Radiol. Nucl. Med. 2020, 51, 106. [Google Scholar] [CrossRef]
- Carneiro, G.d.A.C.; Pereira, F.P.A.; Lopes, F.P.P.L.; Calas, M.J.G. Magnetic resonance imaging-guided vacuum-assisted breast biopsy: Experience and preliminary results of 205 procedures. Radiol. Bras. 2018, 51, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Bick, U.; Trimboli, R.M.; Athanasiou, A.; Balleyguier, C.; Baltzer, P.A.T.; Bernathova, M.; Borbély, K.; Brkljacic, B.; Carbonaro, L.A.; Clauser, P.; et al. Image-guided breast biopsy and localisation: Recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging 2020, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zou, L.; Geng, X.; Zheng, S. Limitations of mammography in the diagnosis of breast diseases compared with ultrasonography: A single-center retrospective analysis of 274 cases. Eur. J. Med. Res. 2015, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Oglat, A.A.; Abukhalil, T. Ultrasound Elastography: Methods, Clinical Applications, and Limitations: A Review Article. Appl. Sci. 2024, 14, 4308. [Google Scholar] [CrossRef]
- Camps-Herrero, J.; Pijnappel, R.; Balleyguier, C. MR-contrast enhanced mammography (CEM) for follow-up of breast cancer patients: A “pros and cons” debate. Eur. Radiol. 2024, 34, 6264–6270. [Google Scholar] [CrossRef] [PubMed]
- Stibbards-Lyle, M.; Malinovska, J.; Badawy, S.; Schedin, P.; Rinker, K.D. Status of breast cancer detection in young women and potential of liquid biopsy. Front. Oncol. 2024, 14, 1398196. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Mitbander, R.; Tang, Y.; Azimuddin, A.; Carns, J.; Schwarz, R.A.; Richards-Kortum, R.R. Optical imaging technologies for in vivo cancer detection in low-resource settings. Curr. Opin. Biomed. Eng. 2023, 28, 100495. [Google Scholar] [CrossRef] [PubMed]
- Ottobrini, L.; Martelli, C.; Lucignani, G. Optical Imaging Agents. In Molecular Imaging: Principles and Practice; Academic Press: Cambridge, MA, USA, 2021; pp. 603–625. [Google Scholar] [CrossRef]
- Cho, N.; Shokeen, M. Changing landscape of optical imaging in skeletal metastases. J. Bone Oncol. 2019, 17, 100249. [Google Scholar] [CrossRef]
- Cressoni, C.; Malandra, S.; Milan, E.; Boschi, F.; Nicolato, E.; Negri, A.; Veccia, A.; Bontempi, P.; Mangiameli, D.; Pietrobono, S.; et al. Injectable Thermogelling Nanostructured Ink as Simultaneous Optical and Magnetic Resonance Imaging Contrast Agent for Image-Guided Surgery. Biomacromolecules 2024, 25, 3741–3755. [Google Scholar] [CrossRef]
- Abdel Halim, A.S.; Abdel-Salam, Z.; Abdel-Harith, M.; Hamdy, O. Investigating the effect of changing the substrate material analyzed by laser-induced breakdown spectroscopy on the antenna performance. Sci. Rep. 2024, 14, 1964. [Google Scholar] [CrossRef] [PubMed]
- Szymaszek, P.; Tyszka-Czochara, M.; Ortyl, J. Application of Photoactive Compounds in Cancer Theranostics: Review on Recent Trends from Photoactive Chemistry to Artificial Intelligence. Molecules 2024, 29, 3164. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, H.; Tang, C.; Cheng, Y.; Cheng, L. Exploration of Ultrasound-Sensitive Biomaterials in Cancer Theranostics. Adv. Funct. Mater. 2024, 34, 2313454. [Google Scholar] [CrossRef]
- Semenov, K.N.; Shemchuk, O.S.; Ageev, S.V.; Andoskin, P.A.; Iurev, G.O.; Murin, I.V.; Kozhukhov, P.K.; Maystrenko, D.N.; Molchanov, O.E.; Kholmurodova, D.K.; et al. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. Biochemistry 2024, 89, 1362–1391. [Google Scholar] [CrossRef] [PubMed]
- Iyad, N.; S.Ahmad, M.; Alkhatib, S.G.; Hjouj, M. Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: Literature review. Eur. J. Radiol. Open 2023, 11, 100503. [Google Scholar] [CrossRef]
- Sun, J.-X.; Xu, J.-Z.; An, Y.; Ma, S.-Y.; Liu, C.-Q.; Zhang, S.-H.; Luan, Y.; Wang, S.-G.; Xia, Q.-D. Future in precise surgery: Fluorescence-guided surgery using EVs derived fluorescence contrast agent. J. Control. Release 2023, 353, 832–841. [Google Scholar] [CrossRef]
- Korposh, S.; Lee, S.-W. A Preliminary Study for Tunable Optical Assessment of Exhaled Breath Ammonia Based on Ultrathin Tetrakis(4-sulfophenyl)porphine Nanoassembled Films. Chemosensors 2021, 9, 269. [Google Scholar] [CrossRef]
- Faid, A.H.; Hussein, F.E.Z.; Mostafa, E.M.; Shouman, S.A.; Badr, Y.A.; Sliem, M.A. Hybrid chitosan gold nanoparticles for photothermal therapy and enhanced cytotoxic action of 6-mercaptopurine on breast cancer cell line. Beni Suef Univ. J. Basic Appl. Sci. 2023, 12, 83. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, Y.Y.; Wang, M.L. Surface-enhanced Raman spectroscopy of gastric cancer serum with gold nanoparticles/silicon nanowire arrays. Optik 2016, 127, 7902–7907. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Gao, X.; Chen, Y.; Liu, T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol. 2019, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, R.Y.; Cakir, R. In vitro anticancer efficacy of Calendula Officinalis extract-loaded chitosan nanoparticles against gastric and colon cancer cells. Drug Dev. Ind. Pharm. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Poonia, M.; Ramalingam, K.; Goyal, S.; Sidhu, S. Nanotechnology in oral cancer: A comprehensive review. J. Oral Maxillofac. Pathol. 2017, 21, 407. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors 2021, 9, 51. [Google Scholar] [CrossRef]
- Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review. Chemosensors 2021, 9, 123. [Google Scholar] [CrossRef]
- Cohen, S.; Pellach, M.; Kam, Y.; Grinberg, I.; Corem-Salkmon, E.; Rubinstein, A.; Margel, S. Synthesis and characterization of near IR fluorescent albumin nanoparticles for optical detection of colon cancer. Mater. Sci. Eng. C 2013, 33, 923–931. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Butnariu, M.; Rotariu, L.S.; Sytar, O.; Sestito, S.; Rapposelli, S.; Akram, M.; Iqbal, M.; Krishna, A.; et al. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021, 21, 318. [Google Scholar] [CrossRef] [PubMed]
- Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules 2021, 26, 272. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, F.; Qiu, H.; Liu, J.; Qin, S.; Hou, Y.; Wang, C. Preparation and Characterization of Chitosan Nanoparticles for Chemotherapy of Melanoma Through Enhancing Tumor Penetration. Front. Pharmacol. 2020, 11, 317. [Google Scholar] [CrossRef] [PubMed]
- Salem, D.S.; Sliem, M.A.; El-Sesy, M.; Shouman, S.A.; Badr, Y. Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles. J. Photochem. Photobiol. B 2018, 182, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Marpu, S.B.; Benton, E.N. Shining light on chitosan: A review on the usage of chitosan for photonics and nanomaterials research. Int. J. Mol. Sci. 2018, 19, 1795. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Fontana, F.; Tapeinos, C.; Shahbazi, M.-A.; Han, H.; Santos, H.A. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact. Mater. 2023, 23, 471–507. [Google Scholar] [CrossRef]
- Youssef, F.S.; Mohamed, G.G.; Ismail, S.H.; Elzorba, H.Y.; Galal, A.M.; Elbanna, H.A. Synthesis, characterization and in vitro antimicrobial activity of florfenicol-chitosan nanocomposite. Egypt. J. Chem. 2021, 64, 941–948. [Google Scholar] [CrossRef]
- Taherian, A.; Esfandiari, N.; Rouhani, S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnol. 2021, 12, 15. [Google Scholar] [CrossRef]
- Gao, C.; Zheng, P.; Liu, Q.; Han, S.; Li, D.; Luo, S.; Temple, H.; Xing, C.; Wang, J.; Wei, Y.; et al. Recent Advances of Upconversion Nanomaterials in the Biological Field. Nanomaterials 2021, 11, 2474. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.-K.; Park, I.-K.; Hwang, S.R. Current Limitations and Recent Progress in Nanomedicine for Clinically Available Photodynamic Therapy. Biomedicines 2021, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- El-Hadary, A.E.; Ramadan, M.F. Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. J. Food Biochem. 2019, 43, e12803. [Google Scholar] [CrossRef]
- Prakash, C.V.S.; Prakash, I. Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel—A review. Int. J. Res. Chem. Environ. 2011, 1, 1–18. [Google Scholar]
- Machado, T.D.; Leal, I.C.; Amaral, A.C.; Santos, K.; Silva, M.G.; Kuster, R.M. Antimicrobial ellagitannin of Punica granatum fruits. J. Braz. Chem. Soc. 2002, 13, 606–610. [Google Scholar] [CrossRef]
- Eroglu Ozkan, E.; Seyhan, M.F.; Kurt Sirin, O.; Yilmaz-Ozden, T.; Ersoy, E.; Hatipoglu Cakmar, S.D.; Goren, A.C.; Yilmaz Aydogan, H.; Ozturk, O. Antiproliferative effects of Turkish pomegranate (Punica granatum L.) extracts on MCF-7 human breast cancer cell lines with focus on antioxidant potential and bioactive compounds analyzed by LC-MS/MS. J. Food Biochem. 2021, 45, e13904. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef] [PubMed]
- El Newehy, N.M.; Abd-Alhaseeb, M.M.; Omran, G.A.; Harraz, F.M.; Shawky, E. Comparative metabolomics reveal intraspecies variability in bioactive compounds of different cultivars of pomegranate fruit (Punica granatum L.) and their waste by-products. J. Sci. Food Agric. 2022, 102, 5891–5902. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, H.R.; Arastoo, M.; Ostad, S.N. A comprehensive review of Punica granatum (Pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iran J. Pharm. Res. 2012, 11, 385–400. [Google Scholar] [PubMed]
- Jain, V.; Murugananthan, G.; Deepak, M.; Viswanatha, G.L.; Manohar, D. Isolation and standardization of various phytochemical constituents from methanolic extracts of fruit rinds of Punica granatum. Chin. J. Nat. Med. 2011, 9, 414–420. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Chen, J.; Zhu, Y.; Deng, J.; Xiang, Z.; Oliveira, P.; Xia, C.; Barros, A. Unlocking the therapeutic treasure of pomegranate leaf: A comprehensive review on phytochemical compounds, health benefits, and future prospects. Food Chem. X 2024, 23, 101587. [Google Scholar] [CrossRef] [PubMed]
- Monika, P.; Chandraprabha, M.N.; Hari Krishna, R.; Vittal, M.; Likhitha, C.; Pooja, N.; Chaudhary, V. Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnol. Genet. Eng. Rev. 2024, 40, 3379–3407. [Google Scholar] [CrossRef]
- Pantiora, P.D.; Balaouras, A.I.; Mina, I.K.; Freris, C.I.; Pappas, A.C.; Danezis, G.P.; Zoidis, E.; Georgiou, C.A. The Therapeutic Alliance between Pomegranate and Health Emphasizing on Anticancer Properties. Antioxidants 2023, 12, 187. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; McClees, S.; Afaq, F. Pomegranate for Prevention and Treatment of Cancer: An Update. Molecules 2017, 22, 177. [Google Scholar] [CrossRef]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021, 5102014. [Google Scholar] [CrossRef]
- Souza, T.G.F.; Ciminelli, V.S.T.; Mohallem, N.D.S. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J. Phys. Conf. Ser. 2016, 733, 012039. [Google Scholar] [CrossRef]
- Magangana, T.P.; Makunga, N.P.; Fawole, O.A.; Stander, M.A.; Opara, U.L. Antioxidant, Antimicrobial, and Metabolomic Characterization of Blanched Pomegranate Peel Extracts: Effect of Cultivar. Molecules 2022, 27, 2979. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, X.; Zhang, J.; Zhong, J.; Zhu, F.; Liu, X.; Gu, Z.; Li, Y. Natural polyphenol fluorescent polymer dots. Green Chem. 2021, 23, 1834–1839. [Google Scholar] [CrossRef]
- Cao, L.; Yu, H.; Shao, S.; Wang, S.; Guo, Y. Evaluating the antioxidant capacity of polyphenols with an off–on fluorescence probe and the mechanism study. Anal. Methods 2014, 6, 7149–7153. [Google Scholar] [CrossRef]
- Abuelmakarem, H.S.; Hamdy, O.; Sliem, M.A.; El-Azab, J.; Ahmed, W.A. Early cancer detection using the fluorescent Ashwagandha chitosan nanoparticles combined with near-infrared light diffusion characterization: In vitro study. Lasers Med. Sci. 2023, 38, 37. [Google Scholar] [CrossRef]
- Abuelmakarem, H.; Sliem, M.; El-Azab, J.; Farghaly, M.; Ahmed, W. Toward Highly Efficient Cancer Imaging and Therapy Using the Environment-Friendly Chitosan Nanoparticles and NIR Laser. Biosensors 2019, 9, 28. [Google Scholar] [CrossRef]
- Kim, H.L. Optical imaging in oncology. Urol. Oncol. Semin. Orig. Investig. 2009, 27, 298–300. [Google Scholar] [CrossRef]
- Optical Imaging—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/optical-imaging (accessed on 23 January 2025).
- Aibani, N.; Cuddihy, G.; Wasan, E.K. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021, 13, 1686. [Google Scholar] [CrossRef]
- Kashani, A.S.; Packirisamy, M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. Int. J. Mol. Sci. 2021, 22, 9587. [Google Scholar] [CrossRef]
- Abuelmakarem, H.S.; Hamdy, O.; Sliem, M.A.; El-Azab, J.; Om-Hashem, M.A.; Ahmed, W.A. Colonic Carcinoma Diagnosis using Chitosan Nanoparticles Based on the Optical Properties. J. Phys. Conf. Ser. 2020, 1472, 012001. [Google Scholar] [CrossRef]
- Das, S.; Sarmah, S.; Singha Roy, A. Monitoring fluorescence emission behaviors of dietary polyphenols in a serum albumin environment. N. J. Chem. 2020, 44, 299–302. [Google Scholar] [CrossRef]
- Rahmani, A.A.; Jia, Q.; Bahti, H.H.; Fauzia, R.P.; Wyantuti, S. Recent advances in lanthanide-based nanoparticle contrast agents for magnetic resonance imaging: Synthesis, characterization, and applications. OpenNano 2025, 21, 100226. [Google Scholar] [CrossRef]
- Hamdy, O.; Nour, M.; Kamel, S.S.; Eltayeb, E.A.; Zaky, A.A.; Faid, A.H. Enhanced laser-induced fluorescence and Raman spectroscopy with gold nanoparticles for the diagnosis of oral squamous cell carcinoma. Discov. Appl. Sci. 2024, 6, 157. [Google Scholar] [CrossRef]
- Nour, M.; Hamdy, O.; Faid, A.H.; Eltayeb, E.A.; Zaky, A.A. Utilization of gold nanoparticles for the detection of squamous cell carcinoma of the tongue based on laser-induced fluorescence and diffuse reflectance characteristics: An in vitro study. Lasers Med. Sci. 2022, 37, 3551–3560. [Google Scholar] [CrossRef] [PubMed]
- Jakic, K.; Selc, M.; Razga, F.; Nemethova, V.; Mazancova, P.; Havel, F.; Sramek, M.; Zarska, M.; Proska, J.; Masanova, V.; et al. Long-Term Accumulation, Biological Effects and Toxicity of BSA-Coated Gold Nanoparticles in the Mouse Liver, Spleen, and Kidneys. Int. J. Nanomed. 2024, 19, 4103–4120. [Google Scholar] [CrossRef]
- Sun, J.-P.; Ren, Y.-T.; Wei, K.; He, M.-J.; Gao, B.-H.; Qi, H. Photoacoustic response optimization of gold nanorods in the near-infrared region. Results Phys. 2022, 34, 105209. [Google Scholar] [CrossRef]
- Reynders, H.; Van Zundert, I.; Silva, R.; Carlier, B.; Deschaume, O.; Bartic, C.; Rocha, S.; Basov, S.; Van Bael, M.J.; Himmelreich, U.; et al. Label-Free Iron Oxide Nanoparticles as Multimodal Contrast Agents in Cells Using Multi-Photon and Magnetic Resonance Imaging. Int. J. Nanomed. 2021, 16, 8375–8389. [Google Scholar] [CrossRef] [PubMed]
Cs NPs | Pomegranate Extract | PCs NPs | Vibrational Modes |
---|---|---|---|
Wave Number (cm−1) | |||
3290 | 3291 | 3290 | N−H stretch O–H stretch |
2870 | 2931 | 2930–2850 | C–H stretch |
1720 | C=O stretch | ||
1640 | 1631 | C=O stretch acetyl GP | |
1541 | 1532 | N-H bending | |
1347 | O–H phenolic stretching vibration | ||
1375 | O–H phenolic stretching | ||
1212 | 1212 | P=O stretching | |
1072 | 1006 | 1066 | C–O–C Asymmetric stretch |
Pomegranate Extract | Cs NPs | PCs NPs 0.2 | PCs NPs 0.5 | |
---|---|---|---|---|
MCF 7 CELLS | 91.17 | 11.33 | 14.889 | 17.111 |
VERO CELLS | 99.77 | 13.67 | 18.889 | 24.667 |
Reference | Contrast Agent | Imaging Modality (IM) | Irradiation Wavelengths | NPs Stability | Application | Pros | Cons |
---|---|---|---|---|---|---|---|
Current research | Pomegranate-loaded chitosan nanoparticles | Diffuse reflectance | 670 nm, 700 nm | High | Breast cancer (in vitro) | -Low-cost IM -Non-toxic nanomaterials | Detect several centimeters inside the body |
[71] | Lanthanide-based nanoparticles | MRI | - | - | Human glioblastoma (brain tumor) cell line (in vitro) | High-resolution technique | High-cost IM |
[72] | Gold nanoparticles (AuNPs) | Laser-induced fluorescence and Raman spectroscopy | 405 nm | High | Squamous cell carcinoma of the tongue (in vitro) | -Low-cost IM | UV wavelength has low penetration depth |
[63] | Ashwagandha chitosan NPs | Diffuse optical imaging | 665 nm | High | Colonic carcinoma (in vitro) | -Low-cost IM -Non-toxic nanomaterials | - |
[73] | Gold nanoparticles (AuNPs) | Diffuse reflectance | 635 nm | High | Squamous cell carcinoma of the tongue (in vitro) | -Low-cost IM | AuNPs accumulate in organs like the liver, spleen, and kidneys [74]. |
[75] | Gold nanorods | Photoacoustic imaging | 808, 895, 1064 nm | NA | Simulation (aqueous solution) | -High-resolution technique | |
[76] | Iron oxide nanoparticles (IONPs) | MRI, Optical (Multi photons) | 600–950 nm | High | Human lung carcinoma cell line (in vitro) | -High-resolution technique | High-cost IM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuelmakarem, H.S.; Aly Saad Aly, M.; Aly, S.H.; Ayman, S.; Al Mamun, M.S.; Hamdy, O. Investigating the Application of Pomegranate-Loaded Chitosan Nanoparticles as Contrast Agents for Enhancing Breast Cancer Detection via Diffuse Reflectance Spectroscopy. Chemosensors 2025, 13, 73. https://doi.org/10.3390/chemosensors13020073
Abuelmakarem HS, Aly Saad Aly M, Aly SH, Ayman S, Al Mamun MS, Hamdy O. Investigating the Application of Pomegranate-Loaded Chitosan Nanoparticles as Contrast Agents for Enhancing Breast Cancer Detection via Diffuse Reflectance Spectroscopy. Chemosensors. 2025; 13(2):73. https://doi.org/10.3390/chemosensors13020073
Chicago/Turabian StyleAbuelmakarem, Hala S., Mohamed Aly Saad Aly, Shaza H. Aly, Sodfa Ayman, Muhammad Shamim Al Mamun, and Omnia Hamdy. 2025. "Investigating the Application of Pomegranate-Loaded Chitosan Nanoparticles as Contrast Agents for Enhancing Breast Cancer Detection via Diffuse Reflectance Spectroscopy" Chemosensors 13, no. 2: 73. https://doi.org/10.3390/chemosensors13020073
APA StyleAbuelmakarem, H. S., Aly Saad Aly, M., Aly, S. H., Ayman, S., Al Mamun, M. S., & Hamdy, O. (2025). Investigating the Application of Pomegranate-Loaded Chitosan Nanoparticles as Contrast Agents for Enhancing Breast Cancer Detection via Diffuse Reflectance Spectroscopy. Chemosensors, 13(2), 73. https://doi.org/10.3390/chemosensors13020073