Chemical Sensors and Biosensors Based on Metal–Organic Frameworks (MOFs)
1. Introduction
2. The Special Issue
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Wang, Z.; Suo, J.; Tuo, C.; Chen, F.; Chang, J.; Zheng, H.; Li, H.; Zhang, D.; Fang, Q.; et al. Morphological Tuning of Covalent Organic Framework Single Crystals. J. Am. Chem. Soc. 2024, 146, 35090–35097. [Google Scholar] [CrossRef]
- Yin, L.; Huang, J.-B.; Yue, T.-C.; Wang, L.-L.; Wang, D.-Z. Synthesis, magnetic and dye adsorption properties of three metal-organic frameworks based on purine carboxylic acid. J. Mol. Struct. 2025, 1319, 139598. [Google Scholar] [CrossRef]
- Patra, K.; Pal, H. Lanthanide-based metal–organic frameworks (Ln-MOFs): Synthesis, properties and applications. RSC Sustain. 2025, 402, 629–660. [Google Scholar] [CrossRef]
- Tian, S.-Y.; Ding, Z.; Yao, M.-L.; Liu, S.-M.; Hou, X.-Y.; Tang, L.; Yue, E.-L.; Wang, X.; Wang, J.-J. A novel highly selective Fe@UiO-67-BDA/GCE sensor for efficient detecting Hg2+. Microchem. J. 2024, 206, 111670. [Google Scholar] [CrossRef]
- Chen, W.; Wu, C. Synthesis, Functionalization, and Applications of Metal-Organic Frameworks in Biomedicine. Dalton Trans. 2018, 47, 2114–2133. [Google Scholar] [CrossRef]
- Zhong, L.; Qian, J.; Wang, N.; Komarneni, S.; Hu, W. Metal–organic frameworks on versatile substrates. J. Mater. Chem. A 2023, 11, 20423–20458. [Google Scholar] [CrossRef]
- Zou, W.; Zhang, L.; Lu, J.; Sun, D. Recent development of metal–organic frameworks in wound healing: Current status and applications. Chem. Eng. J. 2024, 480, 148220. [Google Scholar] [CrossRef]
- Cai, W.; Wang, J.; Chu, C.; Chen, W.; Wu, C.; Liu, G. Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 2019, 6, 1801526. [Google Scholar] [CrossRef]
- Li, H.; Chang, X.; Wang, J.; Zhang, X.; Zhao, W.; Meng, F. Preparation and ferroelectric properties of metal-organic frame lithium ion liquid crystal composites. Liq. Cryst. 2024, 5, 1–11. [Google Scholar] [CrossRef]
- Wu, Z.; Ye, Y.; Guo, Z.; Wu, X.; Zhang, L.; Huang, Z.; Chen, F. Stereoselective reduction of diarylmethanones via a ketoreductase@metal–organic framework. Org. Biomol. Chem. 2024, 22, 5198–5204. [Google Scholar] [CrossRef] [PubMed]
- Molavi, H. Cerium-based metal-organic frameworks: Synthesis, properties, and applications. Coord. Chem. Rev. 2025, 527, 216405. [Google Scholar] [CrossRef]
- Mendes, R.F.; Figueira, F.; Leite, J.P.; Gales, L.; Almeida Paz, F.A. Metal–organic frameworks: A future toolbox for biomedicine. Chem. Soc. Rev. 2020, 49, 9121–9153. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Kong, S.; Lu, M.; Chen, F.; Cai, W.; Du, L.; Wang, J.; Wu, C. Comparison of different zinc precursors for the construction of zeolitic imidazolate framework-8 artificial shells on living cells. Soft Matter 2020, 16, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhang, T.; Li, P.; Chen, W.; Wu, C. Zeolitic imidazolate framework-8/Bacterial Cellulose Composite for Iodine Loading and Its Antibacterial Performance. Dalton Trans. 2022, 51, 14317–14322. [Google Scholar] [CrossRef] [PubMed]
- Bigham, A.; Islami, N.; Khosravi, A.; Zarepour, A.; Iravani, S.; Zarrabi, A. MOFs and MOF-Based Composites as Next-Generation Materials for Wound Healing and Dressings. Small 2024, 20, 2133903. [Google Scholar] [CrossRef]
- Chen, W.; Chen, F.; Zhang, G.; Kong, S.; Cai, W.; Wang, J.; Du, L.; Wu, C. Fast decomposition of hydrogen peroxide by Zeolitic Imidazolate Framework-67 crystals. Mater. Lett. 2019, 239, 94–97. [Google Scholar] [CrossRef]
- Natarajan, S.; Manna, K. Bifunctional MOFs in Heterogeneous Catalysis. ACS Org. Inorg. Au 2024, 4, 59–90. [Google Scholar] [CrossRef] [PubMed]
- Vizuet, J.P.; Mortensen, M.L.; Lewis, A.L.; Wunch, M.A.; Firouzi, H.R.; McCandless, G.T.; Balkus, K.J. Fluoro-Bridged Clusters in Rare-Earth Metal–Organic Frameworks. J. Am. Chem. Soc. 2021, 143, 17995–18000. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ca, W.; Liu, H.; Fu, L.; Lu, W.; Zhang, C.; ADale, M.; Da, C.; Pan, H.; Kong, S.; et al. Facially-controllable synthesis of zeolitic imidezolate framework-8 nanocrystal and its colloidal stability in phosphate buffered saline. Mater. Chem. Phys. 2020, 245, 122576. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, P.; Chen, Y.; Liu, Y.; Du, L.; Wu, C. UiO-66 Loaded Iodine/Poly(ε-caprolactone) with Low Iodine Content as An Effective Antibacterial Material. Polymers 2022, 14, 283. [Google Scholar] [CrossRef]
- Le, V.N.; Kim, D.; Kim, J.; Othman, M.S. Freeze Granulation of Nanoporous UiO-66 Nanoparticles for Capture of Volatile Organic Compounds. ACS Appl. Nano Mater. 2021, 4, 8863–8871. [Google Scholar] [CrossRef]
- Seal, N.; Palakkal, A.S.; Singh, M.; Goswami, R.; Pillai, R.S.; Neogi, S. Chemically Robust and Bifunctional Co(II)-Framework for Trace Detection of Assorted Organo-toxins and Highly Cooperative Deacetalization–Knoevenagel Condensation with Pore-Fitting-Induced Size-Selectivity. ACS Appl. Mater. Interfaces 2021, 13, 28378–28389. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Wan, Y.; Li, Y.; Zhang, J. Highly Stable Lanthanide Metal–Organic Framework as an Internal Calibrated Luminescent Sensor for Glutamic Acid, a Neuropathy Biomarker. Inorg. Chem. 2020, 59, 8809–8817. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Astruc, D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Li, Y.-L.; Li, L.; Lü, J.; Liu, T.-F.; Cao, R. Novel Hierarchical Meso-Microporous Hydrogen-Bonded Organic Framework for Selective Separation of Acetylene and Ethylene versus Methane. ACS Appl. Mater. Interfaces 2019, 11, 17823–17827. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Geng, P.; Zhang, G.; Li, X.; Pang, H. Synthesis of Conductive MOFs and Their Electrochemical Application. Small 2024, 20, 2308264. [Google Scholar] [CrossRef]
- Shubhangi; Nandi, I.; Rai, S.K.; Chandra, P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024, 266, 125124. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhao, Y.; Dai, X.; Xu, W.; Zhan, F.; Liu, Y.; Wang, Q. Aptamer tuned nanozyme activity of nickel-metal–organic framework for sensitive electrochemical aptasensing of tetracycline residue. Food Chem. 2024, 430, 137041. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhou, S.; Ma, D.-D.; Li, Q.; Ran, M.; Li, X.; Wu, X.-T.; Zhu, Q.L. Ultrathin Conductive Bithiazole-Based Covalent Organic Framework Nanosheets for Highly Efficient Electrochemical Biosensing. Adv. Funct. Mater. 2023, 33, 2302917. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Lu, G.; Wang, G.; Zheng, J.; Huang, L.; Feng, Y.; Xu, S.; Jiang, Y.; Liu, N. Toward Selective Transport of Monovalent Metal Ions with High Permeability Based on Crown Ether-Encapsulated Metal–Organic Framework Sub-Nanochannels. ACS Appl. Mater. Interfaces 2024, 16, 26634–26642. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Liu, S.; Zhang, Y.; Zhang, J.; Dang, W.; Wu, W.; Wang, J. Laminar Composite Electrolytes with Nanoporous Sulfonated Covalent Organic Framework-Confined Crown Ether for Solid-State Lithium–Sulfur Batteries. ACS Appl. Nano Mater. 2024, 7, 3774–3781. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, J.; Wang, D.; Wang, R.; Janiak, C. Host molecules inside metal–organic frameworks: Host@MOF and guest@host@MOF (Matrjoschka) materials. Chem. Soc. Rev. 2025, 123, 601–622. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wu, X.; Zhang, M.; Yuan, H. Metal–Organic Framework Coated Devices for Gas Sensing. ACS Sens. 2023, 8, 2471–2492. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Jayakumar, K.; Wen, Y.; Hojjati-Najafabadi, A.; Duan, X.; Xu, J. Recent advances in metal-organic framework (MOF)-based agricultural sensors for metal ions: A review. Microchim. Acta 2024, 191, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhan, F.; Zhao, Y.; Dai, X.; Zeng, J.; Wang, Q. Electrochemically synthesized polyanine@Cu-BTC MOF as a bifunctional matrix for aptasensing of tetracycline in aquatic products. Microchem. J. 2024, 196, 109512. [Google Scholar] [CrossRef]
- Yang, Z.-W.; Li, J.-J.; Wang, Y.-H.; Gao, F.-H.; Su, J.-L.; Liu, Y.; Wang, H.-S.; Ding, Y. Metal/covalent-organic framework-based biosensors for nucleic acid detection. Coord. Chem. Rev. 2023, 491, 215249. [Google Scholar] [CrossRef]
- Mohan, B.; Priyanka; Singh, G.; Chauhan, A.; Pombeiro, A.J.L.; Ren, P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. J. Hazard. Mater. 2023, 453, 131324. [Google Scholar] [CrossRef] [PubMed]
- Ameen, S.M.; Bedair, A.; Hamed, M.; Mansour, F.R.; Omer, K.M. Recent Advances in Metal–Organic Frameworks as Oxidase Mimics: A Comprehensive Review on Rational Design and Modification for Enhanced Sensing Applications. ACS Appl. Mater. Interfaces 2025, 17, 110–129. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Li, H.; Shi, W.; Jing, Y.; Sun, S.; Ai, S.; Guo, Z. The coordination effect of organic ligands in Ce-MOF brings about atomically dispersed Fe in CeO2 for TAC detection in commercial samples. Talanta 2025, 285, 127405. [Google Scholar] [CrossRef] [PubMed]
- Karrat, A.; Benssbihe, J.; Ameen, S.M.; Omer, K.M.; Amine, A. Development of a Silver-Based MOF Oxidase-Like nanozyme modified with molecularly imprinted polymer for sensitive and selective colorimetric detection of quercetin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 330, 125735. [Google Scholar] [CrossRef]
- Chen, W.; Kong, S.; Wang, J.; Du, L.; Cai, W.; Wu, C. Enhanced fluorescent effect of graphitic C3N4@ZIF-8 nanocomposite contribute to its improved sensing capabilities. RSC Adv. 2019, 9, 3734–3739. [Google Scholar] [CrossRef] [PubMed]
- Ameen, S.M.; Omer, K.M. Multifunctional MOF: Cold/hot adapted sustainable oxidase-like MOF nanozyme with ratiometric and color tonality for nitrite ions detection. Food Chem. 2025, 462, 141027. [Google Scholar] [CrossRef] [PubMed]
- Bedair, A.; Hamed, M.; Ameen, S.M.; Omer, K.M.; Mansour, F.R. Polyphenolic antioxidant analysis using metal organic Frameworks: Theoretical foundations and practical applications. Microchem. J. 2024, 205, 111183. [Google Scholar] [CrossRef]
- Du, L.; Chen, W.; Tian, Y.; Zhu, P.; Chen, Y.; Wu, C. Applications of functional metal-organic frameworks in biosensors. Biotechnol. J. 2020, 16, 1900424. [Google Scholar] [CrossRef]
- Hua, Y.; Kukkar, D.; Brown, R.J.; Kim, K.H. Recent advances in the synthesis of and sensing applications for metal-organic framework-molecularly imprinted polymer (MOF-MIP) composites. Crit. Rev. Environ. Sci. Technol. 2022, 53, 258–289. [Google Scholar] [CrossRef]
- Anik, U.; Timur, S.; Dursun, Z. Metal organic frameworks in electrochemical and optical sensing platforms: A review. Microchim. Acta 2019, 186, 196. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Chen, W.; Wang, J.; Cai, W.; Kong, S.; Wu, C. Folic acid-functionalized zirconium metal-organic frameworks based electrochemical impedance biosensor for the cancer cell detection. Sens. Actuators B Chem. 2019, 301, 127073. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Chen, W.; Du, L.; Jiao, B.; Krause, S.; Wang, P.; Wei, Q.; Zhang, D.-W.; Wu, C. Modulated light-activated electrochemistry at silicon functionalized with metal-organic frameworks towards addressable DNA chips. Biosens. Bioelectron. 2019, 146, 111750. [Google Scholar] [CrossRef] [PubMed]
- Hang, T.; Zhang, C.; Pei, F.; Yang, M.; Wang, F.; Xia, M.; Hao, O.; Lei, W. Magnetism-Functionalized Lanthanide MOF-on-MOF with Plasmonic Differential Signal Amplification for Ultrasensitive Fluorescence Immunoassays. ACS Sens. 2024, 9, 6779–6788. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Y.; Zhu, P.; Du, L.; Chen, W.; Wu, C. Electrochemical activated conductive Ni-based MOFs for non-enzymatic sensors towards long-term glucose monitoring. Front. Chem. 2020, 8, 602752. [Google Scholar] [CrossRef] [PubMed]
- Ghahari, A.; Raissi, H. Enhanced Antibiotic Pollutant Capture: Coupling Carbon Nanotubes with Covalent Organic Frameworks. J. Phys. Chem. C 2024, 128, 17141–17152. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Q.; Zhu, Y.; Sun, J.; Wu, Z.; Tian, N. High-Performance Trimethylamine Sensor Based on an Imine Covalent Organic Framework. ACS Sens. 2024, 9, 3262–3271. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, M.; Hui, Y.; Tian, J.; Xu, J.; Lu, Z.; Yang, Z.; Guo, H.; Yang, W. Eu3+-Modified Covalent Organic Frameworks for the Detection of a Vinyl Chloride Monomer Exposure Biomarker. ACS Sens. 2024, 9, 315–324. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, R.; Li, X.; Dong, N.; Zhu, B.; Wang, J.; Lin, X.; Su, B. COF-Coated Microelectrode for Space-Confined Electrochemical Sensing of Dopamine in Parkinson’s Disease Model Mouse Brain. J. Am. Chem. Soc. 2023, 145, 23727–23738. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Jia, Z.; Zhou, Y.; Ding, G.; Ma, X.-Q.; Niu, W.; Han, S.-T.; Zhao, J.; Zhou, Y. Covalent Organic Frameworks for Neuromorphic Devices. J. Phys. Chem. Lett. 2023, 14, 7173–7192. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhou, Y.; Li, C.; Lv, C.; Dong, H.; Xu, M.; Zhang, J.; Yan, M. In situ formation of boronic acid-based covalent organic frameworks for specific and ultra-sensitive electrochemical assay of glycosylated amyloid-beta proteins. Talanta 2025, 285, 127435. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, L.; Bai, Y.; Feng, F. Applications of covalent organic frameworks (COFs)-based sensors for food safety: Synthetic strategies, characteristics and current state-of-art. Food Chem. 2025, 469, 142495. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, W.; Tian, Y.; Zhu, P.; Liu, S.; Du, L.; Wu, C. DNA and RhoB-functionalized metal-organic framework for the sensitive fluorescent detection of liquid alcohol. Microchem. J. 2021, 170, 106688. [Google Scholar] [CrossRef]
- Chen, W.; Tan, Y.; Zheng, H.; Wang, Z.; Qu, Z.; Wu, C. Advance in metal–organic frameworks hybrids-based biosensors. Microchem. J. 2024, 206, 111441. [Google Scholar] [CrossRef]
- Ognjanović, M.; Marković, M.; Girman, V.; Nikolić, V.; Vranješ-Đurić, S.; Stanković, D.M.; Petković, B.B. Metal–Organic Framework-Derived CeO2/Gold Nanospheres in a Highly Sensitive Electrochemical Sensor for Uric Acid Quantification in Milk. Chemosensors 2024, 12, 231. [Google Scholar] [CrossRef]
- Piguillem, S.V.; Gomez, G.E.; Tortella, G.R.; Seabra, A.B.; Regiart, M.D.; Messina, G.A.; Fernández-Baldo, M.A. Paper-Based Analytical Devices Based on Amino-MOFs (MIL-125, UiO-66, and MIL-101) as Platforms towards Fluorescence Biodetection Applications. Chemosensors 2024, 12, 208. [Google Scholar] [CrossRef]
- Li, J.; Ding, Y.; Shi, Y.; Liu, Z.; Lin, J.; Cao, R.; Wang, M.; Tan, Y.; Zong, X.; Qu, Z.; et al. A Zinc Oxide Nanorod-Based Electrochemical Aptasensor for the Detection of Tumor Markers in Saliva. Chemosensors 2024, 12, 203. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, C.; Li, G.; Cui, J.; Jiang, Y.; Li, X.; Wang, Z.; Zhou, X. The Efficient and Sensitive Detection of Serum Dopamine Based on a MOF-199/Ag@Au Composite SERS Sensing Structure. Chemosensors 2024, 12, 187. [Google Scholar] [CrossRef]
- Si, W.; Jiao, Y.; Jia, X.; Gao, M.; Zhang, Y.; Gao, Y.; Zhang, L.; Duan, C. A Host–Guest Platform for Highly Efficient, Quantitative, and Rapid Detection of Nitroreductase. Chemosensors 2024, 12, 145. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Yan, R.; Lei, C. Bipyridyl Ruthenium-Decorated Ni-MOFs on Carbon Nanotubes for Electrocatalytic Oxidation and Sensing of Glucose. Chemosensors 2024, 12, 39. [Google Scholar] [CrossRef]
- AlNeyadi, S.S.; Alhassani, M.T.; Aleissaee, A.S.; AlMujaini, I. Pyrene-Derived Covalent Organic Framework Films: Advancements in Acid Vapor Detection. Chemosensors 2024, 12, 37. [Google Scholar] [CrossRef]
- Fan, X.; Yang, S.; Huang, C.; Lu, Y.; Dai, P. Preparation and Enhanced Acetone-Sensing Properties of ZIF-8-Derived Co3O4@ZnO Microspheres. Chemosensors 2023, 11, 376. [Google Scholar] [CrossRef]
- Ma, W.; Gu, Z.; Pan, G.; Li, C.; Zhu, Y.; Liu, Z.; Liu, L.; Guo, Y.; Xu, B.; Tian, W. Dual-Response Photofunctional Covalent Organic Framework for Acid Detection in Various Solutions. Chemosensors 2023, 11, 214. [Google Scholar] [CrossRef]
- Mohd Hizam, S.M.; Mohamed Saheed, M.S. Facile Electrochemical Approach Based on Hydrogen-Bonded MOFs-Derived Tungsten Ethoxide/Polypyrrole-Reduced GO Nanocrystal for ppb Level Ammonium Ions Detection. Chemosensors 2023, 11, 201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Du, L.; Chen, W. Chemical Sensors and Biosensors Based on Metal–Organic Frameworks (MOFs). Chemosensors 2025, 13, 72. https://doi.org/10.3390/chemosensors13020072
Wu C, Du L, Chen W. Chemical Sensors and Biosensors Based on Metal–Organic Frameworks (MOFs). Chemosensors. 2025; 13(2):72. https://doi.org/10.3390/chemosensors13020072
Chicago/Turabian StyleWu, Chunsheng, Liping Du, and Wei Chen. 2025. "Chemical Sensors and Biosensors Based on Metal–Organic Frameworks (MOFs)" Chemosensors 13, no. 2: 72. https://doi.org/10.3390/chemosensors13020072
APA StyleWu, C., Du, L., & Chen, W. (2025). Chemical Sensors and Biosensors Based on Metal–Organic Frameworks (MOFs). Chemosensors, 13(2), 72. https://doi.org/10.3390/chemosensors13020072