A Rapid and Interference-Resistant Formaldehyde Detection Method Based on Surface-Enhanced Raman Spectroscopy with a Reaction-Induced Self-Amplification Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of the AgNPs
2.2. Preparation and Verification of the MBTH SERS Kit
2.3. Morphological and Spectral Characterizations
3. Results
3.1. Detection of Formaldehyde Using the MBTH SERS Kit
3.2. Optimization of the MBTH SERS Kit
3.3. Mechanism Discussion
3.4. Interference Resistance of the MBTH SERS Kit
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the Indoor Environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-S.; Chung, H.; Song, S.-H.; Kim, C.-I.; Lee, J.-G.; Kim, Y.-S. Validation and Determination of the Contents of Acetaldehyde and Formaldehyde in Foods. Toxicol. Res. 2015, 31, 273–278. [Google Scholar] [CrossRef]
- Fowler, J.F.; Skinner, S.M.; Belsito, D.V. Allergic Contact Dermatitis from Formaldehyde Resins in Permanent Press Clothing: An Underdiagnosed Cause of Generalized Dermatitis. J. Am. Acad. Dermatol. 1992, 27, 962–968. [Google Scholar] [CrossRef]
- Wang, X.; Yan, Z.; Liu, X.; Qiang, T.; Chen, L.; Guo, P.; Yue, O. An Environmental Polyurethane Retanning Agent with the Function of Reducing Free Formaldehyde in Leather. J. Clean. Prod. 2019, 207, 679–688. [Google Scholar] [CrossRef]
- Cogliano, V.J.; Grosse, Y.; Baan, R.A.; Straif, K.; Secretan, M.B.; Ghissassi, F.E.; Working Group for Volume 88. Meeting Report: Summary of IARC Monographs on Formaldehyde, 2-Butoxyethanol, and 1-Tert-Butoxy-2-Propanol. Environ. Health Perspect. 2005, 113, 1205–1208. [Google Scholar] [CrossRef]
- Reingruber, H.; Pontel, L.B. Formaldehyde Metabolism and Its Impact on Human Health. Curr. Opin. Toxicol. 2018, 9, 28–34. [Google Scholar] [CrossRef]
- Han, Z.; Qi, Y.; Yang, Z.; Han, H.; Jiang, Y.; Du, W.; Zhang, X.; Zhang, J.; Dai, Z.; Wu, L.; et al. Recent Advances and Perspectives on Constructing Metal Oxide Semiconductor Gas Sensing Materials for Efficient Formaldehyde Detection. J. Mater. Chem. C 2020, 8, 13169–13188. [Google Scholar] [CrossRef]
- Dugheri, S.; Massi, D.; Mucci, N.; Marrubini, G.; Cappelli, G.; Speltini, A.; Bonferoni, M.C.; Arcangeli, G. Exposure to Airborne Formaldehyde: Sampling and Analytical Methods—A Review. Trends Environ. Anal. Chem. 2021, 29, e00116. [Google Scholar] [CrossRef]
- Liu, X.; Li, N.; Li, M.; Chen, H.; Zhang, N.; Wang, Y.; Zheng, K. Recent Progress in Fluorescent Probes for Detection of Carbonyl Species: Formaldehyde, Carbon Monoxide and Phosgene. Coord. Chem. Rev. 2020, 404, 213109. [Google Scholar] [CrossRef]
- Li, Q.; Sritharathikhun, P.; Motomizu, S. Development of Novel Reagent for Hantzsch Reaction for the Determination of Formaldehyde by Spectrophotometry and Fluorometry. Anal. Sci. 2007, 23, 413–417. [Google Scholar] [CrossRef]
- Giesen, R.; Schripp, T.; Markewitz, D.; Meyer, B.; Schwab, H.; Uhde, E.; Salthammer, T. Comparison of Methods for the Determination of Formaldehyde in Air. Anal. Lett. 2016, 49, 1613–1621. [Google Scholar] [CrossRef]
- Sugita, T.; Ishiwata, H.; Yoshihira, K. Comparative Studies on the Determination of Formaldehyde by the Acetylacetone and 4-Amino-3-Hydrazino-5-Mercapto-1, 2, 4-Triazole Methods. Food Hyg. Saf. Sci. (Shokuhin Eiseigaku Zasshi) 1988, 29, 273–279_1. [Google Scholar] [CrossRef]
- Yamjala, K.; Nainar, M.S.; Ramisetti, N.R. Methods for the Analysis of Azo Dyes Employed in Food Industry—A Review. Food Chem. 2016, 192, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Shan, R.; Yan, L.; Yang, K.; Yu, S.; Hao, Y.; Yu, H.; Du, B. Magnetic Fe3O4/MgAl-LDH Composite for Effective Removal of Three Red Dyes from Aqueous Solution. Chem. Eng. J. 2014, 252, 38–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, S.; Zheng, J.; He, L. Surface-Enhanced Raman Spectroscopy (SERS) Combined Techniques for High-Performance Detection and Characterization. TrAC Trends Anal. Chem. 2017, 90, 1–13. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Liz-Marzán, L.M. SERS-Based Diagnosis and Biodetection. Small 2010, 6, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhou, R.; Takei, K.; Hong, M. Toward Flexible Surface-Enhanced Raman Scattering (SERS) Sensors for Point-of-Care Diagnostics. Adv. Sci. 2019, 6, 1900925. [Google Scholar] [CrossRef] [PubMed]
- Tripp, R.A.; Dluhy, R.A.; Zhao, Y. Novel Nanostructures for SERS Biosensing. Nano Today 2008, 3, 31–37. [Google Scholar] [CrossRef]
- Cao, J.; Hu, S.; Tang, W.; Wang, Y.; Yang, Y.; Wang, F.; Guo, X.; Ying, Y.; Liu, X.; Wen, Y.; et al. Reactive Hydrogel Patch for SERS Detection of Environmental Formaldehyde. ACS Sens. 2023, 8, 1929–1938. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Lin, M.-H.; Wang, C.-Y.; Chang, Y.-M.; Gwo, S. Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. J. Am. Chem. Soc. 2015, 137, 13698–13705. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Wang, Y.; Zhang, R.; Liu, J.; Wei, J.; Qian, H.; Qian, K.; Chen, R.; Liu, B. Quantitative SERS Detection of Dopamine in Cerebrospinal Fluid by Dual-Recognition-Induced Hot Spot Generation. ACS Appl. Mater. Interfaces 2018, 10, 15388–15394. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, S.L.; Frontiera, R.R.; Henry, A.I.; Dieringer, J.A.; Van Duyne, R.P. Creating, Characterizing, and Controlling Chemistry with SERS Hot Spots. Phys. Chem. Chem. Phys. 2013, 15, 21–36. [Google Scholar] [CrossRef]
- Yu, W.W.; White, I.M. Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper. Anal. Chem. 2010, 82, 9626–9630. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wan, Y.; Su, Y.; Cai, Y.; Xiong, S.; Yuan, D.; Xia, Z.; Zhu, J. An Expedient SERS Strip Tactic for Rapid On-Site Detection with Long-Time Sensitivity and Repeatability. Adv. Mater. Sci. Eng. 2021, 2021, e5560513. [Google Scholar] [CrossRef]
- Yu, D.; Yam, V.W.-W. Controlled Synthesis of Monodisperse Silver Nanocubes in Water. J. Am. Chem. Soc. 2004, 126, 13200–13201. [Google Scholar] [CrossRef] [PubMed]
- Mulvihill, M.J.; Ling, X.Y.; Henzie, J.; Yang, P. Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274. [Google Scholar] [CrossRef]
- Martínez-Castañón, G.A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J.R.; Ruiz, F. Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. J. Nanopart. Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Badawy, A.M.E.; Luxton, T.P.; Silva, R.G.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions. Environ. Sci. Technol. 2010, 44, 1260–1266. [Google Scholar] [CrossRef]
- Fernando, I.; Zhou, Y. Impact of pH on the Stability, Dissolution and Aggregation Kinetics of Silver Nanoparticles. Chemosphere 2019, 216, 297–305. [Google Scholar] [CrossRef]
- Hermosilla, E.; Seabra, A.B.; Lourenço, I.M.; Ferreira, F.F.; Tortella, G.; Rubilar, O. Highly Sensitive Oxidation of MBTH/DMAB by MnFe2O4 Nanoparticles as a Promising Method for Nanozyme-Based Sensor Development. Colloids Surf. A Physicochem. Eng. Asp. 2021, 621, 126585. [Google Scholar] [CrossRef]
- Nguyen, L.B.T.; Leong, Y.X.; Koh, C.S.L.; Leong, S.X.; Boong, S.K.; Sim, H.Y.F.; Phan-Quang, G.C.; Phang, I.Y.; Ling, X.Y. Inducing Ring Complexation for Efficient Capture and Detection of Small Gaseous Molecules Using SERS for Environmental Surveillance. Angew. Chem. Int. Ed. 2022, 61, e202207447. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.-C.; Han, X.; Lee, Y.H.; Lee, H.K.; Phan-Quang, G.C.; Lay, C.L.; Sim, H.Y.F.; Phua, V.J.X.; Ng, L.S.; Ku, C.W.; et al. Multiplex Surface-Enhanced Raman Scattering Identification and Quantification of Urine Metabolites in Patient Samples within 30 Min. ACS Nano 2020, 14, 2542–2552. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Tan, E.-Z.; Yin, P.-G.; You, T.; Wang, H.; Guo, L. Three Dimensional Design of Large-Scale TiO2 Nanorods Scaffold Decorated by Silver Nanoparticles as SERS Sensor for Ultrasensitive Malachite Green Detection. ACS Appl. Mater. Interfaces 2012, 4, 3432–3437. [Google Scholar] [CrossRef] [PubMed]
- Elswick, P.T. Evaluation of the Use of Raman Spectroscopic Techniques in Ink Analyses. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Gao, Y.; Qiu, X.; Nie, L.; Liu, Y.; Zhou, R.; Wang, H.; Xiong, S. A Rapid and Interference-Resistant Formaldehyde Detection Method Based on Surface-Enhanced Raman Spectroscopy with a Reaction-Induced Self-Amplification Strategy. Chemosensors 2024, 12, 132. https://doi.org/10.3390/chemosensors12070132
Wang C, Gao Y, Qiu X, Nie L, Liu Y, Zhou R, Wang H, Xiong S. A Rapid and Interference-Resistant Formaldehyde Detection Method Based on Surface-Enhanced Raman Spectroscopy with a Reaction-Induced Self-Amplification Strategy. Chemosensors. 2024; 12(7):132. https://doi.org/10.3390/chemosensors12070132
Chicago/Turabian StyleWang, Chen, Yanli Gao, Xinrong Qiu, Lifang Nie, Yang Liu, Rigui Zhou, Hongpeng Wang, and Shengjun Xiong. 2024. "A Rapid and Interference-Resistant Formaldehyde Detection Method Based on Surface-Enhanced Raman Spectroscopy with a Reaction-Induced Self-Amplification Strategy" Chemosensors 12, no. 7: 132. https://doi.org/10.3390/chemosensors12070132
APA StyleWang, C., Gao, Y., Qiu, X., Nie, L., Liu, Y., Zhou, R., Wang, H., & Xiong, S. (2024). A Rapid and Interference-Resistant Formaldehyde Detection Method Based on Surface-Enhanced Raman Spectroscopy with a Reaction-Induced Self-Amplification Strategy. Chemosensors, 12(7), 132. https://doi.org/10.3390/chemosensors12070132