Portable Sensing Platform for the Visual Detection of Iodide Ions in Food and Clinical Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Software Used
2.3. Designing a Filter-Paper-Based Colorimetric Sensor
2.4. Optimization of the Experimental Conditions for Iodide Detection
2.5. Selectivity of the Iodide Assay
2.6. Application to Real Samples
3. Results
3.1. The Mechanism and Principle of the Iodide Detection Assay
3.2. Optimization of Experimental Parameters
3.2.1. Effect of Gel Stability and Time
3.2.2. Effect of TMB and H2O2 Concentration
3.2.3. Effect of pH
3.2.4. Detection of Iodide under Optimized Conditions
3.2.5. Selectivity of Iodide Assay
3.2.6. Stability Test for the Proposed Sensor
3.2.7. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, Z.; Zhao, J. Reverse flow injection spectrophotometric determination of iodate and iodide in table salt. Talanta 2004, 63, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, W.; Wang, X.; Chen, L. A highly selective and sensitive colorimetric sensor for iodide detection based on anti-aggregation of gold nanoparticles. Sens. Actuators B Chem. 2013, 182, 482–488. [Google Scholar] [CrossRef]
- World Health Organization. Progress towards the Elimination of Iodine Deficiency Disorders (IDD); World Health Organization: Geneva, Switzerland, 1999; Volume 1, p. 54. [Google Scholar]
- Zhang, Y.; Sun, Y.; He, Z.; Xu, S.; Liu, C.; Li, Y.; Shan, Z.; Teng, W. Age-specific thyrotropin references decrease over-diagnosis of hypothyroidism in elderly patients in iodine-excessive areas. Clin. Endocrinol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Okamura, K.; Sato, K.; Fujikawa, M.; Bandai, S.; Ikenoue, H.; Kitazono, T. Iodide-sensitive Graves’ hyperthyroidism and the strategy for resistant or escaped patients during potassium iodide treatment. Endocr. J. 2022, 69, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Nyström, E.; Berg, G.E.; Jansson, S.K.; Torring, O.; Valdemarsson, S.V. Thyroid Disease in Adults; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011. [Google Scholar]
- Lee, I.-L.; Sung, Y.-M.; Wu, C.-H.; Wu, S.-P. Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles. Microchim. Acta 2014, 181, 573–579. [Google Scholar] [CrossRef]
- Hu, W.; Yang, P.-J.; Hasebe, K.; Haddad, P.R.; Tanaka, K. Rapid and direct determination of iodide in seawater by electrostatic ion chromatography. J. Chromatogr. A 2002, 956, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Ichihara, T.; Zhuo, H.; Kumamoto, K.; Timerbaev, A.R.; Hirokawa, T. Determination of trace iodide in seawater by capillary electrophoresis following transient isotachophoretic preconcentration: Comparison with ion chromatography. Anal. Chim. Acta 2003, 497, 67–74. [Google Scholar] [CrossRef]
- Fujiwara, T.; Mohammadzai, I.U.; Inoue, H.; Kumamaru, T. Chemiluminescence determination of iodide and/or iodine using a luminol–hexadecyltrimethylammonium chloride reversed micelle system following on-line oxidation and extraction. Analyst 2000, 125, 759–763. [Google Scholar] [CrossRef]
- Yebra, M.; Cespon, R. Indirect automatic determination of iodide by flame atomic absorption spectrometry. Anal. Chim. Acta 2000, 405, 191–196. [Google Scholar] [CrossRef]
- Rasheed, Q.; Ajab, H.; Farooq, M.; Shahzad, S.A.; Yaqub, A. Fabrication of colorimetric sensor using Fe3O4@Musa paradisiaca L. nanoparticles for detecting hydrogen peroxide: An application in environmental and biological samples. Appl. Nanosci. 2022, 12, 2841–2855. [Google Scholar] [CrossRef]
- Yager, P.; Domingo, G.J.; Gerdes, J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 2008, 10, 107–144. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Yaqub, A.; Haq, M.Z.U.; Ajab, H.; Jafry, A.T.; Khan, M.K. Sensitive and cost-effective colorimetric sensor based on enzyme mimic MoS2@CoTiO3 nanocomposite for detection of hydrogen peroxide in milk and tap water. J. Food Compos. Anal. 2023, 124, 105689. [Google Scholar] [CrossRef]
- Zhao, T.; Liang, X.; Guo, X.; Yang, X.; Guo, J.; Zhou, X.; Huang, X.; Zhang, W.; Wang, Y.; Liu, Z.; et al. Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples. Food Chem. 2023, 404, 134768. [Google Scholar] [CrossRef] [PubMed]
- Hussain, G.; Jafry, A.T.; Malik, S.; Shah, S.F.; Nishat, S.; Awan, F.R. Multifunctional rotational active valve for flow control in paper-based microfluidic devices. Sens. Actuators B Chem. 2023, 378, 133142. [Google Scholar] [CrossRef]
- Balbach, S.; Jiang, N.; Moreddu, R.; Dong, X.; Kurz, W.; Wang, C.; Dong, J.; Yin, Y.; Butt, H.; Brischwein, M. Smartphone-based colorimetric detection system for portable health tracking. Anal. Methods 2021, 13, 4361–4369. [Google Scholar] [CrossRef]
- Hu, J.; Wang, L.; Zhang, X.; Yu, W.; Gao, H.-W.; Solin, N.; Hu, Z.; Uvdal, K. Selective colorimetric detection of copper (II) by a protein-based nanoprobe. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 252, 119462. [Google Scholar] [CrossRef] [PubMed]
- Balasurya, S.; Syed, A.; Thomas, A.M.; Marraiki, N.; Al-Rashed, S.; Elgorban, A.M.; Raju, L.L.; Das, A.; Khan, S.S. Colorimetric detection of mercury ions from environmental water sample by using 3-(Trimethoxysilyl)propyl methacrylate functionalized Ag NPs-tryptophan nanoconjugate. J. Photochem. Photobiol. B Biol. 2020, 207. [Google Scholar] [CrossRef] [PubMed]
- Rajamanikandan, R.; Ilanchelian, M. Simple smartphone merged rapid colorimetric platform for the environmental monitoring of toxic sulfide ions by cysteine functionalized silver nanoparticles. Microchem. J. 2022, 174, 107071. [Google Scholar] [CrossRef]
- Sasikumar, T.; Ilanchelian, M. Colorimetric and visual detection of cyanide ions based on the morphological transformation of gold nanobipyramids into gold nanoparticles. New J. Chem. 2020, 44, 4713–4718. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Xie, W. Rapid and sensitive colorimetric sensor for H2O2 and Hg2+ detection based on homogeneous iodide with high peroxidase-mimicking activity. Microchem. J. 2019, 147, 75–82. [Google Scholar] [CrossRef]
- Zhou, G.; Zhao, C.; Pan, C.; Li, F. Highly sensitive and selective colorimetric detection of iodide based on anti-aggregation of gold nanoparticles. Anal. Methods 2013, 5, 2188–2192. [Google Scholar] [CrossRef]
- Kalinichev, A.V.; Zieger, S.E.; Koren, K. Optical sensors (optodes) for multiparameter chemical imaging: Classification, challenges, and prospects. Analyst 2023, 149, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Maruthupandi, M.; Chandhru, M.; Rani, S.K.; Vasimalai, N. Highly selective detection of iodide in biological, food, and environmental samples using polymer-capped silver nanoparticles: Preparation of a paper-based testing kit for on-site monitoring. ACS Omega 2019, 4, 11372–11379. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, Y.; Aikawa, S. Colorimetric detection of iodide ion by a nuclear fast red-based Hg2+ complex in aqueous media. Tetrahedron Lett. 2021, 67, 152877. [Google Scholar] [CrossRef]
- Choi, J.-H.; Ahn, I.-H.; Sessler, J.L.; Cho, D.-G. Colorimetric iodide detection in water: A new photo-activated indicator system. Supramol. Chem. 2011, 23, 283–286. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, J.; Zhu, L.; Lai, C.; Wang, H.; Zou, W.; Li, H. An easy and cost-effective colorimetric assay of hydrogen peroxide based on iodide-catalyzed oxidation of 3, 3′, 5, 5′-tetramethylbenzidine. Int. J. Clin. Exp. Med. 2018, 11, 13100–13107. [Google Scholar]
- Khan, A.; Ajab, H.; Yaqub, A.; Ayub, K.; Yar, M.; Ullah, H. An experimental and theoretical aided 2D MoS2 nanoflowers strategy for rapid visual sensing of Gallic acid in food and clinical matrixes. Appl. Surf. Sci. Adv. 2024, 20, 100581. [Google Scholar] [CrossRef]
- Buzdar, M.; Yaqub, A.; Hayat, A.; Haq, M.Z.U.; Khan, A.; Ajab, H. Paper based colorimetric sensor using novel green magnetized nanocomposite of pinus for hydrogen peroxide detection in water and milk. Food Biosci. 2023, 55, 103014. [Google Scholar] [CrossRef]
- Tang, X.; Yu, H.; Bui, B.; Wang, L.; Xing, C.; Wang, S.; Chen, M.; Hu, Z.; Chen, W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact. Mater. 2021, 6, 1541–1554. [Google Scholar] [CrossRef]
- Lefevre, G.; Bessiere, J.; Walcarius, A. Cuprite-modified electrode for the detection of iodide species. Sens. Actuators B Chem. 1999, 59, 113–117. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Yang, C.; Yang, F.; Yang, X. Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@ Au nanoparticles. Anal. Chem. 2011, 83, 3911–3917. [Google Scholar] [CrossRef] [PubMed]
- Niaz, A.; Bibi, A.; Zaman, M.I.; Khan, M.; Rahim, A. Highly selective and ecofriendly colorimetric method for the detection of iodide using green tea synthesized silver nanoparticles. J. Mol. Liq. 2018, 249, 1047–1051. [Google Scholar] [CrossRef]
- Wei, S.-C.; Hsu, P.-H.; Lee, Y.-F.; Lin, Y.-W.; Huang, C.-C. Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes. ACS Appl. Mater. Interfaces 2012, 4, 2652–2658. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Zhang, Y.; Zhang, Q.; Li, L.; Yang, L. Carbon dot/gold nanocluster-based fluorescent colorimetric paper strips for quantitative detection of iodide ions in urine. ACS Appl. Nano Mater. 2021, 4, 9760–9767. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, J.; Li, Y.; Lin, T.; Zhang, J.; Huo, K.; Liu, X.; Liu, Y.; Liu, Y. Gel-sol and colorimetric dual-modal sensor for highly selective and sensitive detection of iodide ions based on gelatin fabricated AuNPs. Sens. Actuators B Chem. 2022, 364, 131913. [Google Scholar] [CrossRef]
Samples | I− Ions Spiked (μM) | I− Ions Found (μM) | Relative % Recovery |
---|---|---|---|
Blood serum | 5 | 4.94 | 98.8 ± 0.2 |
10 | 9.51 | 95.1 ± 0.3 | |
15 | 14.3 | 95.3 ± 0.4 | |
Tap water | 5 | 4.79 | 95.8 ± 0.3 |
10 | 9.52 | 95.2 ± 0.4 | |
15 | 14.44 | 96.2 ± 0.2 | |
Urine | 5 | 4.56 | 91.2 ± 0.3 |
10 | 9.32 | 93.2 ± 0.2 | |
15 | 14.09 | 93.9 ± 0.3 | |
Egg yolk | 5 | 5.09 | 100.8 ± 0.3 |
10 | 10.11 | 101.1 ± 0.4 | |
15 | 15.14 | 100.9 ± 0.3 | |
Food sample (snacks) | 5 | 4.63 | 92.6 ± 0.2 |
10 | 9.21 | 92.1 ± 0.3 | |
15 | 13.95 | 93 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Jafry, A.T.; Ajab, H.; Yaqub, A.; Jilani, S.; Hussain, D.; Abbas, N. Portable Sensing Platform for the Visual Detection of Iodide Ions in Food and Clinical Samples. Chemosensors 2024, 12, 102. https://doi.org/10.3390/chemosensors12060102
Khan A, Jafry AT, Ajab H, Yaqub A, Jilani S, Hussain D, Abbas N. Portable Sensing Platform for the Visual Detection of Iodide Ions in Food and Clinical Samples. Chemosensors. 2024; 12(6):102. https://doi.org/10.3390/chemosensors12060102
Chicago/Turabian StyleKhan, Aizaz, Ali Turab Jafry, Huma Ajab, Asim Yaqub, Shahaab Jilani, Dildar Hussain, and Naseem Abbas. 2024. "Portable Sensing Platform for the Visual Detection of Iodide Ions in Food and Clinical Samples" Chemosensors 12, no. 6: 102. https://doi.org/10.3390/chemosensors12060102
APA StyleKhan, A., Jafry, A. T., Ajab, H., Yaqub, A., Jilani, S., Hussain, D., & Abbas, N. (2024). Portable Sensing Platform for the Visual Detection of Iodide Ions in Food and Clinical Samples. Chemosensors, 12(6), 102. https://doi.org/10.3390/chemosensors12060102