An Enzyme Immunoassay Developed for the Determination of Methylene Blue in Aquatic Products Based on a Novel Hapten
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Physical Measurements
2.2. Synthesis of Artificial Antigen
2.2.1. The Synthesis of S-(2-amino-5-(dimethylamino)phenyl) O-Hydrogen Sulfurothioate (Intermediate I)
2.2.2. The Synthesis of 5-(Methyl(phenyl)amino)pentanoic Acid (Intermediate II)
2.2.3. The Synthesis of the Novel Hapten (TM)
2.2.4. Preparation of TM-BSA and TM-OVA
2.3. Preparation of Polyclonal Antibody
2.4. Development of icELISA
2.5. Theoretical Calculation
2.6. Sample Preparation
2.7. Assay Validation
3. Results and Discussion
3.1. Synthesis of TM-BSA and TM-OVA
3.2. Theoretical Calculation
3.3. Antiserum Characterization and Optimization of icELISA
3.4. Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethical Statements
References
- En-Naji, S.; Ghazi, S.; Mabroum, H.; Mabroum, S.; Khatib, K.; Taha, Y.; Taha, T.; Lodeiro, I.G.; Hakkou, R. Design of Acid-Geopolymers Based on Clays by-Products for Methylene Blue Removal from Wastewater. Appl. Clay Sci. 2023, 245, 107126. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Atamna, H.; Krugliak, M.; Shalmiev, G.; Deharo, E.; Pescarmona, G.; Ginsburg, H. Mode of Antimalarial Effect of Methylene Blue some of its Analogues on Plasmodium falciparum in Culture their Inhibition of, P. vinckei petteri and P. yoelii nigeriensis in Vivo. Biochem. Pharmacol. 1996, 51, 693–700. [Google Scholar] [CrossRef] [PubMed]
- van Bebber, F.; Paquet, D.; Hruscha, A.; Schmid, B.; Haass, C. Methylene Blue Fails to Inhibit Tau and Polyglutamine Protein Dependent Toxicity in Zebrafish. Neurobiol. Dis. 2010, 39, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Oz, M.; Lorke, D.E.; Petroianu, G.A. Methylene Blue and Alzheimer’s Disease. Biochem. Pharmacol. 2009, 78, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Oz, M.; Lorke, D.E.; Hasan, M.; Petroianu, G.A. Cellular and Molecular Actions of Methyleneblue in the Nervous System. Med. Res. Rev. 2010, 1, 93–117. [Google Scholar]
- Wang, Y.; Huang, X.; Lv, X.; Sun, J.; Zheng, R.; Hu, K. The Metabolism of Methylene Blue and its Derivatives in Japanese Eel (Anguilla japonica). J. Ocean Univ. China 2020, 19, 653–658. [Google Scholar] [CrossRef]
- Sharma, P.; Olufemi, A.F.; Qanungo, K. Development of Green Geo-Adsorbent Pellets from Low Fire Clay for Possible Use in Methylene Blue Removal in Aquaculture. Mater. Today Proc. 2022, 49, 1556–1565. [Google Scholar] [CrossRef]
- Lv, X.M.; Yang, X.L.; Xie, X.Y.; Yang, Z.Y.; Hu, K.; Wu, Y.J.; Jiang, Y.Y.; Liu, T.F.; Fang, W.H.; Huang, X.Y. Comparative Transcriptome Analysis of Anguilla japonica Livers Following Exposure to Methylene Blue. Aquacluture Res. 2018, 49, 1232–1241. [Google Scholar] [CrossRef]
- Mitrowska, K.; Kijewska, L.; Giannetti, L.; Neri, B. A Simple and Sensitive Method for the Determination of Methylene Blue and its Analogues in Fish Muscle Using Uplc-Ms/Ms. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2023, 40, 641–654. [Google Scholar] [CrossRef]
- Cheng, J.; Zhan, C.; Wu, J.; Cui, Z.; Si, J.; Wang, Q.; Peng, X.; Turng, L.S. Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine. ACS Omega 2020, 5, 5389–5400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hui, Y.; Fang, C.; Wang, Y.; Han, F.; Lou, X.; Fodjo, E.K.; Cai, Y.; Kong, C. Determination of Methylene Blue and its Metabolite Residues in Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2021, 26, 4975. [Google Scholar] [CrossRef] [PubMed]
- Akazawa, M.; Wu, Y.; Liu, W. Allergy-Like Reactions to Methylene Blue Following Laparoscopic Chromopertubation: A Systematic Review of the Literature. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 238, 58–62. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Drug Safety Communication: Serious CNS Reactions Possible When Methylene Blue is Given to Patients Taking Certain Psychiatric Medications. [1/22]. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-serious-cns-reactions-possible-when-methylene-blue-given-patients (accessed on 14 December 2017).
- National Toxicology Program. Toxicology and Carcinogenesis Studies of Methylene Blue Trihydrate (Cas No. 7220-79-3) in F344/N Rats and B6C3F1 Mice (Gavage Studies). Natl. Toxicol. Program Tech. Rep. Ser. 2008, 540, 1–224. [Google Scholar]
- Xu, J.; Dai, L.; Wu, B.; Ding, T.; Zhu, J.J.; Lin, H.; Chen, H.L.; Shen, C.Y.; Jiang, Y. Determination of Methylene Blue Residues in Aquatic Products by Liquid Chromatography-Tandem Mass Spectrometry. J. Sep. Sci. 2009, 32, 4193–4199. [Google Scholar] [CrossRef] [PubMed]
- Razmara, R.S.; Daneshfar, A.; Sahrai, R. Determination of Methylene Blue and Sunset Yellow in Wastewater and Food Samples Using Salting-Out Assisted Liquid–Liquid Extraction. J. Ind. Eng. Chem. 2011, 17, 533–536. [Google Scholar] [CrossRef]
- Ahmadi, R.; Kazemi, G.; Ramezani, A.M.; Safavi, A. Shaker-Assisted Liquid-Liquid Microextraction of Methylene Blue Using Deep Eutectic Solvent Followed by Back-Extraction and Spectrophotometric Determination. Microchem. J. 2019, 145, 501–507. [Google Scholar] [CrossRef]
- Kasuga, Y.; Hishida, M.; Tanahashi, N. Simultaneous Determination of Malachite Green and Methylene Blue in Cultured Fishes by High Performance Liquid Chromatography. Food Hyg. Saf. Sci. (Shokuhin Eiseigaku Zasshi) 1991, 32, 137–141. [Google Scholar] [CrossRef]
- Kim, S.; Ha, D.; Koo, T. Simultaneous Quantification of Methylene Blue and its Major Metabolite, Azure B, in Plasma by LC-MS/MS and its Application for a Pharmacokinetic Study. Biomed. Chromatogr. 2014, 28, 518–524. [Google Scholar] [CrossRef]
- Khan, M.R.; Khan, M.A.; Alothman, Z.A.; Alsohaimi, I.H.; Naushada, M.; Al-Shaalanb, N.H. Quantitative Determination of Methylene Blue in Environmental Samples by Solid-Phase Extraction and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry: A Green Approach. RSC Adv. 2014, 4, 34037–34044. [Google Scholar] [CrossRef]
- Amelin, V.G.; Korotkov, A.I.; Andoralov, A.M. Simultaneous Determination of Dyes of Different Classes in Aquaculture Products and Spices Using HPLC–High-Resolution Quadrupole Time-of-Flight Mass Spectrometry. J. Anal. Chem. 2017, 72, 183–190. [Google Scholar] [CrossRef]
- Xu, T.; Wang, X.; Huang, Y.; Lai, K.; Fan, Y. Rapid Detection of Trace Methylene Blue and Malachite Green in Four Fish Tissues by Ultra-Sensitive Surface-Enhanced Raman Spectroscopy Coated with Gold Nanorods. Food Control 2019, 106, 106720. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, J.; Gu, L.; Tang, Y.; Zhang, X.; Huang, X.; Shen, X.; Zhai, W.; Fodjo, E.K.; Kong, C. Ratiometric Fluorescence Immunoassay Based on Carbon Quantum Dots for Sensitive Detection of Malachite Green in Fish. Biosensors 2023, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, G.; Xu, X.; Zhu, L.; Huang, R.; Chen, X. Application of Nano-Elisa in Food Analysis: Recent Advances and Challenges. Trac Trends Anal. Chem. 2019, 113, 140–156. [Google Scholar] [CrossRef]
- Jin, Y.; Jin, Z.; Sun, D.; Peng, Y.; Zhao, Q.; He, Y.; Li, J.; Zhang, Y.; Cui, Y. Preparation of Spirodiclofen Monoclonal Antibody and Establishment of Indirect Competitive Enzyme-Linked Immunosorbent Assay. Food Chem. 2023, 417, 135936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lang, Y.; Guo, B.; Cao, Z.; Cheng, J.; Cai, D.; Shentu, X.; Yu, X. Indirect Competitive Enzyme-Linked Immunosorbent Assay Based on Broad-Spectrum Antibody for Simultaneous Determination of Thirteen Fluoroquinolone Antibiotics in Rana catesbeianus. Foods 2023, 12, 2530. [Google Scholar] [CrossRef] [PubMed]
- Parra, J.; Esteve-Turrillas, F.A.; Abad-Somovilla, A.; Agulló, C.; Mercader, J.V.; Abad-Fuentes, A. Exploring Alternative Hapten Tethering Sites for High-Affinity Anti-Picoxystrobin Antibody Generation. Anal. Biochem. 2011, 416, 82–91. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, R.; Dou, L.; Wu, W.; Yu, W.; Wen, K.; Yu, X.; Shen, J.; Wang, Z. The Influence of Hapten Spacer Arm Length On Antibody Response and Immunoassay Development. Anal. Chim. Acta 2023, 1239, 340699. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, Y.; Tang, Q.; Liu, M.; Nan, L.; Wen, K.; Yu, X.; Yu, W.; Shen, J.; Wang, Z. Development of Epitopephore-Based Rational Hapten Design Strategy: A Combination of Theoretical Evidence and Experimental Validation. J. Hazard. Mater. 2023, 445, 130615. [Google Scholar] [CrossRef]
- Yang, G.; Zhuang, H.; Chen, H.; Ping, X. An Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Determination of 3,4-Dichlorobiphenyl in Sediment Using a Specific Polyclonal Antibody. Anal. Methods 2014, 6, 893–899. [Google Scholar] [CrossRef]
- Li, H.; Ma, S.; Zhang, X.; Li, C.; Dong, B.; Mujtaba, M.G.; Wei, Y.; Liang, X.; Yu, X.; Wen, K.; et al. Generic Hapten Synthesis, Broad-Specificity Monoclonal Antibodies Preparation, and Ultrasensitive Elisa for Five Antibacterial Synergists in Chicken and Milk. J. Agric. Food Chem. 2018, 66, 11170–11179. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Wei, W.; Pan, Y.; Wang, Y.; Chen, D.; Liu, Z.; Wang, X.; Dai, M.; Yuan, Z. Preparation of a Monoclonal Antibody Against Amantadine and Rimantadine and Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detecting the Same in Chicken Muscle and Liver. J. Pharm. Biomed. Anal. 2017, 133, 56–63. [Google Scholar] [CrossRef] [PubMed]
Compound | Structure | IC50 (μg L−1) | Cross Reaction (%) |
---|---|---|---|
Methylene Blue | 41.5 | - | |
Azure A | 53.1 | 78.2 | |
Azure B | 49.7 | 83.5 | |
Azure C | 46.7 | 88.9 | |
Malachite Green | >1000 | <0.3 | |
Leuco Malachite Green | >1000 | <0.3 | |
Bright green | >1000 | <0.3 | |
Leuco Bright Green | >1000 | <0.3 | |
Crystal Violet | >1000 | <0.3 | |
Leuco Crystal violet | >1000 | <0.3 |
Spiked Concentration (μg/kg) | Average Recovery (%) | Intra-RSD (%) | Inter-RSD (%) |
---|---|---|---|
10 | 82.3 | 5.5 | 2.3 |
20 | 84.3 | 4.2 | 5.6 |
30 | 83.7 | 6.0 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Yang, G.; Tang, Y.; Wang, L. An Enzyme Immunoassay Developed for the Determination of Methylene Blue in Aquatic Products Based on a Novel Hapten. Chemosensors 2024, 12, 52. https://doi.org/10.3390/chemosensors12040052
Huang X, Yang G, Tang Y, Wang L. An Enzyme Immunoassay Developed for the Determination of Methylene Blue in Aquatic Products Based on a Novel Hapten. Chemosensors. 2024; 12(4):52. https://doi.org/10.3390/chemosensors12040052
Chicago/Turabian StyleHuang, Xuanyun, Guangxin Yang, Yunyu Tang, and Liqing Wang. 2024. "An Enzyme Immunoassay Developed for the Determination of Methylene Blue in Aquatic Products Based on a Novel Hapten" Chemosensors 12, no. 4: 52. https://doi.org/10.3390/chemosensors12040052
APA StyleHuang, X., Yang, G., Tang, Y., & Wang, L. (2024). An Enzyme Immunoassay Developed for the Determination of Methylene Blue in Aquatic Products Based on a Novel Hapten. Chemosensors, 12(4), 52. https://doi.org/10.3390/chemosensors12040052