Pd-Decorated ZnO Hexagonal Microdiscs for NH3 Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterizations of ZnO and Pd-ZnO Hexagonal Microdiscs
2.2. Fabrication and Gas-Sensing Performances Testing of Sensors
3. Results and Discussion
3.1. Characterization
3.2. Gas-Sensing Performances
3.3. Gas-Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, V.; Mirzaei, A.; Bonyani, M.; Kim, K.H.; Kim, H.W.; Kim, S.S. Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia. TrAC Trends Anal. Chem. 2020, 129, 115938. [Google Scholar] [CrossRef]
- Bannov, A.G.; Popov, M.V.; Brester, A.E.; Kurmashov, P.B. Recent advances in ammonia gas sensors based on carbon nanomaterials. Micromachines 2021, 12, 186. [Google Scholar] [CrossRef]
- Tang, X.; Debliquy, M.; Lahem, D.; Yan, Y.; Raskin, J.P. A review on functionalized graphene sensors for detection of ammonia. Sensors 2021, 21, 1443. [Google Scholar] [CrossRef]
- Shetty, S.S.; Jayarama, A.; Bhat, S.; Satyanarayan; Karunasagar, I.; Pinto, R. A review on metal-oxide based trace ammonia sensor for detection of renal disease by exhaled breath analysis. Mater. Today Proc. 2022, 55, 113–117. [Google Scholar] [CrossRef]
- Li, H.Y.; Lee, C.S.; Kim, D.H.; Lee, J.H. Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 2018, 10, 27858–27867. [Google Scholar] [CrossRef]
- Guntner, A.T.; Wied, M.; Pineau, N.J.; Pratsinis, S.E. Rapid and selective NH3 sensing by porous CuBr. Adv. Sci. 2020, 7, 1903390. [Google Scholar] [CrossRef]
- Li, J.; Dong, S.; Duan, Y.; Fu, X.; Li, G.; Huang, Y. Polyaniline composited with rGO wrapped-SiO2 microsphere ammonia sensor with fast response/recovery and high sensitivity for pig healthy breeding. Sens. Actuators B Chem. 2024, 398, 134784. [Google Scholar] [CrossRef]
- Hadano, F.S.; Gavim, A.E.X.; Stefanelo, J.C.; Gusso, S.L.; Macedo, A.G.; Rodrigues, P.C.; Mohd Yusoff, A.R.B.; Schneider, F.K.; Deus, J.F.; Jose da Silva, W. NH3 sensor based on rGO-PANI composite with improved sensitivity. Sensors 2021, 21, 4947. [Google Scholar] [CrossRef]
- Tanguy, N.R.; Thompson, M.; Yan, N. A review on advances in application of polyaniline for ammonia detection. Sens. Actuators B Chem. 2018, 257, 1044–1064. [Google Scholar] [CrossRef]
- Al-darwesh, M.Y.; Ibrahim, S.S.; Faiad Naief, M.; Mishaal Mohammed, A.; Chebbi, H. Synthesis and characterizations of zinc oxide nanoparticles and its ability to detect O2 and NH3 gases. Results Chem. 2023, 6, 101064. [Google Scholar] [CrossRef]
- Waikar, M.R.; Raste, P.M.; Sonker, R.K.; Gupta, V.; Tomar, M.; Shirsat, M.D.; Sonkawade, R.G. Enhancement in NH3 sensing performance of ZnO thin-film via gamma-irradiation. J. Alloys Compd. 2020, 830, 154641. [Google Scholar] [CrossRef]
- Kanaparthi, S.; Govind Singh, S. Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2D ZnO nanoflakes. Mater. Sci. Energy Technol. 2020, 3, 91–96. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhan, G.; Peng, W.; Huang, C.; Chen, H.; Lin, S. Trace ppb-level NH3 sensor based on single petal-like Ce-doped SnO2. Mater. Sci. Semicond. Process. 2023, 157, 107335. [Google Scholar] [CrossRef]
- Jiang, X.; Zhen, Y.; Feng, Y.; Yang, Z.; Qin, Z. Synthesis of SnS2/SnO2 nano-heterojunctions with increased reactive sites and charge transfer for ultrasensitive NH3 detection. J. Alloys Compd. 2023, 938, 168520. [Google Scholar] [CrossRef]
- Wu, K.; Debliquy, M.; Zhang, C. Room temperature gas sensors based on Ce doped TiO2 nanocrystals for highly sensitive NH3 detection. Chem. Eng. J. 2022, 444, 136449. [Google Scholar] [CrossRef]
- Fernández-Ramos, M.D.; Capitán-Vallvey, L.F.; Pastrana-Martínez, L.M.; Morales-Torres, S.; Maldonado-Hódar, F.J. Chemoresistive NH3 gas sensor at room temperature based on the carbon gel-TiO2 nanocomposites. Sens. Actuators B Chem. 2022, 368, 132103. [Google Scholar] [CrossRef]
- Han, K.X.; Wu, C.C.; Hsu, W.F.; Chien, W.; Yang, C.F. Preparation of ultrafast ammonia sensor based on cross-linked ZnO nanorods coated with poly(3-hexylthiophene). Synth. Met. 2023, 299, 117449. [Google Scholar] [CrossRef]
- Brahma, S.; Huang, P.C.; Mwakikunga, B.W.; Saasa, V.; Akande, A.A.; Huang, J.L.; Liu, C.P. Cd doped ZnO nanorods for efficient room temperature NH3 sensing. Mater. Chem. Phys. 2023, 294, 127053. [Google Scholar] [CrossRef]
- Raza, A.; Abid, R.; Murtaza, I.; Fan, T. Room temperature NH3 gas sensor based on PMMA/RGO/ZnO nanocomposite films fabricated by in-situ solution polymerization. Ceram. Int. 2023, 49, 27050–27059. [Google Scholar] [CrossRef]
- Espid, E.; Lo, A.Y.; Taghipour, F. High performance UV-LED activated gas sensors based on ordered carbon mesoporous materials loaded with ZnO nanoparticles. Mater. Sci. Eng. B 2023, 288, 116203. [Google Scholar] [CrossRef]
- Gao, R.; Ma, X.; Liu, L.; Gao, S.; Zhang, X.; Xu, Y.; Cheng, X.; Zhao, H.; Huo, L. In-situ deposition of POMA/ZnO nanorods array film by vapor phase polymerization for detection of trace ammonia in human exhaled breath at room temperature. Anal. Chim. Acta 2022, 1199, 339563. [Google Scholar] [CrossRef]
- Nakarungsee, P.; Srirattanapibul, S.; Issro, C.; Tang, I.M.; Thongmee, S. High performance Cr doped ZnO by UV for NH3 gas sensor. Sens. Actuators A Phys. 2020, 314, 112230. [Google Scholar] [CrossRef]
- Gupta, S.; Ravikant, C.; Kaur, A. One-pot wet chemical synthesis of reduced graphene oxide-zinc oxide nanocomposites for fast and selective ammonia sensing at room temperature. Sens. Actuators A Phys. 2021, 331, 112965. [Google Scholar] [CrossRef]
- Alagarasan, D.; Hegde, S.S.; Naik, R.; Murahari, P.; Shetty, H.D.; Prasad Hb, S.; Maiz, F.; Shkir, M. Fabrication of high-performance RT-NH3 gas sensor based on Cu and La co-doped ZnO films through a facile drop-casting method. Opt. Mater. 2024, 147, 114705. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, C.; Zhang, H.; Zhang, Y. Preparation and study of ammonia gas sensor based on ZnO/CuO heterojunction with high performance at room temperature. Mater. Sci. Semicond. Process. 2022, 146, 106700. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, D.; Zhou, J.; Ye, J.; Sun, Y.; Li, X.; Geng, Y.; Wang, J.; Du, Y.; Qian, Z. Visible light-activated room temperature NH3 sensor base on CuPc-loaded ZnO nanorods. Sens. Actuators B Chem. 2021, 327, 128911. [Google Scholar] [CrossRef]
- Fan, S.X.; Tang, W. Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sens. Actuators B Chem. 2022, 362, 131789. [Google Scholar] [CrossRef]
- Yogi, S.; Kumar, A.; Kumar, P.; Kumar, V.; Zulfequar, M.; Jain, V.K. Trace level sensitivity and selectivity of room temperature NH3 gas sensors based on RGO/ZnO@SiNWs heterostructure. Phys. E 2024, 157, 115864. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Chen, C.; Hu, Z.; Wang, J. Preparation and mechanism of high-performance ammonia sensor based on tungsten oxide and zinc oxide composite at room temperature. Curr. Appl. Phys. 2023, 45, 30–36. [Google Scholar] [CrossRef]
- Ramesh, A.; Gavaskar, D.S.; Nagaraju, P.; Duvvuri, S.; Vanjari, S.R.K.; Subrahmanyam, C. Mn-doped ZnO microspheres prepared by solution combustion synthesis for room temperature NH3 sensing. Appl. Surf. Sci. Adv. 2022, 12, 100349. [Google Scholar] [CrossRef]
- Li, Z.; Yi, J. Drastically enhanced ammonia sensing of Pt/ZnO ordered porous ultra-thin films. Sens. Actuators B Chem. 2020, 317, 128217. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, M.; Wen, X.; Ho, H.P.; Lu, H. Nanostructured ZnO/Ag film prepared by magnetron sputtering method for fast response of ammonia gas detection. Molecules 2020, 25, 1899. [Google Scholar] [CrossRef]
- Tu, Y.; Kyle, C.; Luo, H.; Zhang, D.W.; Das, A.; Briscoe, J.; Dunn, S.; Titirici, M.M.; Krause, S. Ammonia gas sensor response of a vertical zinc oxide nanorod-gold junction diode at room temperature. ACS Sens. 2020, 5, 3568–3575. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, L.; Sun, S.; Wang, J.; Yan, W. One-dimensional nanomaterials in resistive gas sensor: From material design to application. Chemosensors 2021, 9, 198. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef]
- Lun, D.; Xu, K. Recent progress in gas sensor based on nanomaterials. Micromachines 2022, 13, 919. [Google Scholar] [CrossRef]
- Duan, X.; Duan, Z.; Zhang, Y.; Liu, B.; Li, X.; Zhao, Q.; Yuan, Z.; Jiang, Y.; Tai, H. Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy. Sens. Actuators B Chem. 2022, 369, 132302. [Google Scholar] [CrossRef]
- Jamnani, S.R.; Moghaddam, H.M.; Leonardi, S.G.; Neri, G.; Ferlazzo, A. VOCs sensing properties of samarium oxide nanorods. Ceram. Int. 2024, 50, 403–411. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, M.; Liu, S.; Hassan, M.; Zhang, X.; Lei, S.; Qiao, G.; Liu, G. One-pot hydrothermal synthesis of self-assembled MoS2/WS2 nanoflowers for chemiresistive room-temperature NO2 sensors. Sens. Actuators B Chem. 2024, 403, 135215. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, Y.; Liu, B.; Duan, Z.; Zhang, Y.; Yuan, Z.; Tai, H. Enhancing the carbon dioxide sensing performance of LaFeO3 by Co doping. Sens. Actuators B Chem. 2024, 402, 135136. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Duan, Z.; Zhang, Y.; Duan, X.; Liu, B.; Yuan, Z.; Wu, Y.; Jiang, Y.; Tai, H. Local dynamic neural network for quantitative analysis of mixed gases. Sens. Actuators B Chem. 2024, 404, 135230. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, B.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Batch fabrication of H2S sensors based on evaporated Pd/WO3 film with ppb-level detection limit. Mater. Chem. Phys. 2023, 302, 127768. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, Q.; Duan, Z.; Xie, C.; Duan, X.; Li, S.; Ye, Z.; Jiang, Y.; Tai, H. Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature. Sens. Actuators B Chem. 2022, 363, 131790. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, Z.; Zou, H.; Ma, M. Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection. Mater. Lett. 2018, 215, 58–61. [Google Scholar] [CrossRef]
- Zhao, Q.; Duan, Z.; Yuan, Z.; Li, X.; Si, W.; Liu, B.; Zhang, Y.; Jiang, Y.; Tai, H. High performance ethylene sensor based on palladium-loaded tin oxide: Application in fruit quality detection. Chin. Chem. Lett. 2020, 31, 2045–2049. [Google Scholar] [CrossRef]
- Ferlazzo, A.; Espro, C.; Iannazzo, D.; Moulaee, K.; Neri, G. A novel yttria-doped ZrO2 based conductometric sensor for hydrogen leak monitoring. Int. J. Hydrog. Energy 2022, 47, 9819–9828. [Google Scholar] [CrossRef]
- Yousefi, R.; Zak, A.K.; Mahmoudian, M.R. Growth and characterization of Cl-doped ZnO hexagonal nanodisks. J. Solid State Chem. 2011, 184, 2678–2682. [Google Scholar] [CrossRef]
- Wang, M.; Hahn, S.H.; Kim, J.S.; Chung, J.S.; Kim, E.J.; Koo, K.K. Solvent-controlled crystallization of zinc oxide nano(micro)disks. J. Cryst. Growth 2008, 310, 1213–1219. [Google Scholar] [CrossRef]
- Ramzan Parra, M.; Pandey, P.; Siddiqui, H.; Sudhakar, V.; Krishnamoorthy, K.; Haque, F.Z. Evolution of ZnO nanostructures as hexagonal disk: Implementation as photoanode material and efficiency enhancement in Al: ZnO based dye sensitized solar cells. Appl. Surf. Sci. 2019, 470, 1130–1138. [Google Scholar] [CrossRef]
- Zhao, Q.; Shen, Q.; Yang, F.; Zhao, H.; Liu, B.; Liang, Q.; Wei, A.; Yang, H.; Liu, S. Direct growth of ZnO nanodisk networks with an exposed (0001) facet on Au comb-shaped interdigitating electrodes and the enhanced gas-sensing property of polar {0001} surfaces. Sens. Actuators B Chem. 2014, 195, 71–79. [Google Scholar] [CrossRef]
- Gao, J.; Wu, B.; Cao, C.; Zhan, Z.; Ma, W.; Wang, X. Unraveling the dynamic evolution of Pd species on Pd-loaded ZnO nanorods for different hydrogen sensing behaviors. ACS Sustain. Chem. Eng. 2021, 9, 6370–6379. [Google Scholar] [CrossRef]
- Ganesh, R.S.; Durgadevi, E.; Navaneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patil, P.S.; Hayakawa, Y. Controlled synthesis of Ni-doped ZnO hexagonal microdiscs and their gas sensing properties at low temperature. Chem. Phys. Lett. 2017, 689, 92–99. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Fan, J.; Zhu, B.; Yu, J. Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sens. Actuators B Chem. 2021, 331, 129425. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Yuan, Z.; Liu, B.; Zhao, Q.; Huang, Q.; Li, Z.; Zeng, W.; Duan, Z.; Tai, H. Synergistic effect of electron scattering and space charge transfer enabled unprecedented room temperature NO2 sensing response of SnO2. Small 2023, 19, 2303631. [Google Scholar] [CrossRef]
- Li, C.F.; Hsu, C.Y.; Li, Y.Y. NH3 sensing properties of ZnO thin films prepared via sol-gel method. J. Alloys Compd. 2014, 606, 27–31. [Google Scholar] [CrossRef]
- Majumder, D.; Roy, S. Room temperature synthesis of TiO2 nanospheres: Ammonia sensing characteristics. Mater. Today Proc. 2018, 5, 9811–9816. [Google Scholar] [CrossRef]
- Pan, F.; Lin, H.; Zhai, H.; Miao, Z.; Zhang, Y.; Xu, K.; Guan, B.; Huang, H.; Zhang, H. Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing. Sens. Actuators B Chem. 2018, 261, 451–459. [Google Scholar] [CrossRef]
- Lavanya, N.; Anithaa, A.C.; Sekar, C.; Asokan, K.; Bonavita, A.; Donato, N.; Leonardi, S.G.; Neri, G. Effect of gamma irradiation on structural, electrical and gas sensing properties of tungsten oxide nanoparticles. J. Alloys Compd. 2017, 693, 366–372. [Google Scholar] [CrossRef]
- Samà, J.; Barth, S.; Domènech-Gil, G.; Prades, J.D.; López, N.; Casals, O.; Gràcia, I.; Cané, C.; Romano-Rodríguez, A. Site-selectively grown SnO2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions. Sens. Actuators B Chem. 2016, 232, 402–409. [Google Scholar] [CrossRef]
- Gayathri, K.; Ravichandran, K.; Sridharan, M.; Suvathi, S.; Sriram, S.; Mohan, R.; Jansi Santhosam, A.; Praseetha, P.K.; Sakthivel, P. Enhanced ammonia gas sensing by cost-effective SnO2 gas sensor: Influence of effective Mo doping. Mater. Sci. Eng. B 2023, 298, 116849. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, Y.; Jiang, B.; He, J.; Zheng, X.; Liang, Q. Effect of lanthanides on acetone sensing properties of LnFeO3 nanofibers (Ln = La, Nd, and Sm). IEEE Sens. J. 2017, 17, 2404–2410. [Google Scholar] [CrossRef]
Materials | Working Temperature (°C) | Response (Resistance Ratio) | Detection Range (ppm) | Response Time (s) | Refs. |
---|---|---|---|---|---|
ZnO nanoparticles | 150 | ~1.57 (600 ppm) | 50–600 | 160 | [55] |
TiO2 nanospheres | 250 | ~2 (300 ppm) | 100–400 | 5 | [56] |
Pd-TiO2 nanoparticles | 500 | ~1.8 (400 ppm) | - | 150 | [57] |
WO3 nanoparticles | 400 | 4 (50 ppm) | 25–100 | - | [58] |
SnO2 nanowires | 400 | ~1.6 (40 ppm) | 10–40 | >120 | [59] |
Mo-SnO2 nanoparticles | 350 | 3.1 (50 ppm) | 20–100 | 21 | [60] |
SnO2 | - | ~2 (50 ppm) | 5–500 | ~8 | MQ137 (Winsen) |
SnO2 | - | ~0.55 (150/50 ppm) | 30–300 | - | TGS826 (Figaro) |
SnO2 | - | ~0.84 (100/30 ppm) | 10–100 | - | TGS2444 (Figaro) |
SnO2 | - | ~0.5 (150/50 ppm) | 30–300 | - | TGS824 (Figaro) |
Pd-ZnO hexagonal microdiscs | 230 | 3.9 (50 ppm) | 0.5–50 | 23.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, B.; Li, J.; Duan, Z.; Yang, Y.; Yuan, Z.; Jiang, Y.; Tai, H. Pd-Decorated ZnO Hexagonal Microdiscs for NH3 Sensor. Chemosensors 2024, 12, 43. https://doi.org/10.3390/chemosensors12030043
Li Y, Zhang B, Li J, Duan Z, Yang Y, Yuan Z, Jiang Y, Tai H. Pd-Decorated ZnO Hexagonal Microdiscs for NH3 Sensor. Chemosensors. 2024; 12(3):43. https://doi.org/10.3390/chemosensors12030043
Chicago/Turabian StyleLi, Yi, Boyu Zhang, Juan Li, Zaihua Duan, Yajie Yang, Zhen Yuan, Yadong Jiang, and Huiling Tai. 2024. "Pd-Decorated ZnO Hexagonal Microdiscs for NH3 Sensor" Chemosensors 12, no. 3: 43. https://doi.org/10.3390/chemosensors12030043
APA StyleLi, Y., Zhang, B., Li, J., Duan, Z., Yang, Y., Yuan, Z., Jiang, Y., & Tai, H. (2024). Pd-Decorated ZnO Hexagonal Microdiscs for NH3 Sensor. Chemosensors, 12(3), 43. https://doi.org/10.3390/chemosensors12030043