Rapid Correction of Turbidity Interference on Chemical Oxygen Demand Measurements by Using Ultraviolet-Visible Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Principle
2.2. Sample Preparation and Spectrum Measurement
2.3. The Method for Turbidity Correction Based on DOSC-PLS
3. Results
3.1. Spectral Characteristics of Turbidity
3.2. Influence of Turbidity on COD Measurement
3.3. Turbidity Correction Results Based on DOSC-PLS
3.4. Comparison of Different Turbidity Correction Methods
3.5. Experiments of Actual Water Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karaouzas, I.; Kapetanaki, N.; Mentzafou, A.; Kanellopoulos, T.D.; Skoulikidis, N. Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere 2021, 263, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z.L.; Shan, Z.X.; Ren, L.J. The deep challenge of nitrate pollution in river water of China. Sci. Total Environ. 2021, 770, 12. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 15. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, J.H.; Li, J.A.; Fan, A.X.; Zhang, Y.H.; Xu, C.; Qin, H.L.; Mu, F.; Xu, T.F. Research on COD measurement method based on UV-Vis absorption spectra of transmissive and reflective detection systems. Front. Environ. Sci. 2023, 11, 12. [Google Scholar] [CrossRef]
- Yu, J.M.; Wu, J.; Yu, S.N.; Chen, S.Y.; Wang, F.; Zhang, X.J. Compensation of environmental parameters for optical detection of chemical oxygen demand. Meas. Sci. Technol. 2023, 34, 9. [Google Scholar] [CrossRef]
- Yang, Y.J.; Wen, Y.Z.; He, Z.X.; Zhao, J.J. Optical Absorption COD Sensor for Real-Time, Low-Power-Consumption, Long-Term Monitoring. IEEE Trans. Instrum. Meas. 2023, 72, 7. [Google Scholar] [CrossRef]
- Kang, Z.F.; He, Z.X.; Wen, Y.Z.; Liao, M.; Li, X.Y.; Chen, H.W.; Zhang, Q. Smart COD sensor using UV-Vis spectroscopy against optical window surface contamination. Measurement 2022, 187, 7. [Google Scholar] [CrossRef]
- Chen, J.; Liu, S.; Qi, X.; Yan, S.F.; Guo, Q. Study and design on chemical oxygen demand measurement based on ultraviolet absorption. Sens. Actuator B-Chem. 2018, 254, 778–784. [Google Scholar] [CrossRef]
- Mrkva, M. Evaluation of Correlations Between Absorbance at 254 nm and Cod of River Waters. Water Res. 1983, 17, 231–235. [Google Scholar] [CrossRef]
- Jiang, R.; Chai, X.S.; Zhang, C.; Tang, H.L. A Dual-Wavelength Spectroscopic Method for the Low Chemical Oxygen Demand Determination. Spectrosc. Spectr. Anal. 2011, 31, 2007–2010. [Google Scholar]
- Ye, B.Q.; Cao, X.J.; Liu, H.; Wang, Y.; Tang, B.; Chen, C.H.; Chen, Q. Water chemical oxygen demand prediction model based on the CNN and ultraviolet-visible spectroscopy. Front. Environ. Sci. 2022, 10, 9. [Google Scholar] [CrossRef]
- Chen, X.W.; Yin, G.F.; Zhao, N.J.; Gan, T.T.; Yang, R.F.; Xia, M.; Feng, C.; Chen, Y.A.; Huang, Y. Simultaneous determination of nitrate, chemical oxygen demand and turbidity in water based on UV-Vis absorption spectrometry combined with interval analysis. Spectroc. Acta Part A-Molec. Biomolec. Spectr. 2021, 244, 6. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-Q.; Bi, W.-H.; Fu, G.-W.; Li, J.-G.; Ji, H.-Y. The turbidity and pH impact analysis of low concentration water chemical oxygen demand ultraviolet absorption detection. Spectrosc. Spectr. Anal. 2013, 33, 3079–3082. [Google Scholar]
- Langergraber, G.; Fleischmann, N.; Hofstaedter, F. A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater. Water Sci. Technol. 2003, 47, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, N.; Staubmann, K.; Langergraber, G. Management of sensible water uses with real-time measurements. Water Sci. Technol. 2002, 46, 33–40. [Google Scholar] [CrossRef]
- Tsunekawa, S.; Fukuda, T.; Kasuya, A. Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles. J. Appl. Phys. 2000, 87, 1318–1321. [Google Scholar] [CrossRef]
- Hu, Y.T.; Wen, Y.Z.; Wang, X.P. Novel method of turbidity compensation for chemical oxygen demand measurements by using UV-vis spectrometry. Sens. Actuator B-Chem. 2016, 227, 393–398. [Google Scholar] [CrossRef]
- Chen, X.W.; Yin, G.F.; Zhao, N.J.; Yang, R.F.; Xia, M.; Feng, C.; Chen, Y.N.; Dong, M.; Zhu, W. Turbidity compensation method based on Mie scattering theory for water chemical oxygen demand determination by UV-Vis spectrometry. Anal. Bioanal. Chem. 2021, 413, 877–883. [Google Scholar] [CrossRef]
- Hu, Y.T.; Zhao, D.D.; Qin, Y.L.; Wang, X.P. An order determination method in direct derivative absorption spectroscopy for correction of turbidity effects on COD measurements without baseline required. Spectroc. Acta Part A—Molec. Biomolec. Spectr. 2020, 226, 8. [Google Scholar] [CrossRef]
- Wang, C.X.; Li, W.X.; Huang, M.Z. High precision wide range online chemical oxygen demand measurement method based on ultraviolet absorption spectroscopy and full-spectrum data analysis. Sens. Actuator B-Chem. 2019, 300, 9. [Google Scholar] [CrossRef]
- Torres, A.; Bertrand-Krajewski, J.-L. Partial Least Squares local calibration of a UV–visible spectrometer used for in situ measurements of COD and TSS concentrations in urban drainage systems. Water Sci. Technol. 2008, 57, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wu, H.; Li, S.F.Y. Development of variable pathlength UV–vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring. Talanta 2014, 120, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Alavi, J.; Ewees, A.A.; Ansari, S.; Shahid, S.; Yaseen, Z.M. A new insight for real-time wastewater quality prediction using hybridized kernel-based extreme learning machines with advanced optimization algorithms. Environ. Sci. Pollut. Res. 2022, 29, 20496–20516. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-S.; Lee, S.-H.; Shin, H.-S. Feasibility of on-line measurement of sewage components using the UV absorbance and the neural network. Environ. Monit. Assess. 2007, 133, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.M.; Zhou, X.; Tao, Z.; Lv, T.T.; Wang, J. Deep learning-based turbidity compensation for ultraviolet-visible spectrum correction in monitoring water parameters. Front. Environ. Sci. 2022, 10, 8. [Google Scholar] [CrossRef]
- Stavn, R.H. Lambert-Beer law in ocean waters: Optical properties of water and of dissolved/suspended material, optical energy budgets. Appl. Opt. 1988, 27, 222–231. [Google Scholar] [CrossRef]
- Sjoblom, J.; Svensson, O.; Josefson, M.; Kullberg, H.; Wold, S. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemom. Intell. Lab. Syst. 1998, 44, 229–244. [Google Scholar] [CrossRef]
- Li, X.; Wu, F.; Zhang, R.D.; Gao, F.R. Nonlinear Multivariate Quality Prediction Based on OSC-SVM-PLS. Ind. Eng. Chem. Res. 2019, 58, 8154–8161. [Google Scholar] [CrossRef]
- Westerhuis, J.A.; de Jong, S.; Smilde, A.K. Direct orthogonal signal correction. Chemom. Intell. Lab. Syst. 2001, 56, 13–25. [Google Scholar] [CrossRef]
- Helland, I.S.; Saebo, S.; Almoy, T.; Rimal, R. Model and estimators for partial least squares regression. J. Chemometr. 2018, 32, 13. [Google Scholar] [CrossRef]
- GB 11914-89; Water Quality Determination of the Chemical Oxygen Demand Dichromate Method. National Standard of People’s Republic of China. Standards Press of China: Beijing, China, 1989.
Samples | COD (mg/L) | Turbidity (NTU) |
---|---|---|
1~7 | 5 | 0, 5, 10, 20, 30, 40, 50 |
8~14 | 10 | |
15~21 | 15 | |
22~28 | 20 | |
29~35 | 25 | |
36~42 | 30 | |
43~49 | 35 | |
50~56 | 40 | |
57~63 | 45 | |
64~70 | 50 |
Methods | R2 | RMSE |
---|---|---|
Without correction | 0.5455 | 12.3604 |
MSC-PLS | 0.9994 | 3.2771 |
DOSC-PLS | 0.9997 | 0.2295 |
DOSC-BP | 0.9970 | 0.8639 |
Sample | Type | COD (mg/L) | Turbidity |
---|---|---|---|
1 | Untreated | 347.3 | 98.95 |
2 | 277.8 | 79.16 | |
3 | 231.5 | 65.97 | |
4 | 173.6 | 49.48 | |
5 | 138.9 | 39.58 | |
6 | 86.81 | 24.74 | |
7 | 57.88 | 12.37 | |
8 | 23.15 | 7.916 | |
9 | Treated | 45.7 | 4.45 |
10 | 30.47 | 2.967 | |
11 | 22.85 | 2.225 | |
12 | 15.23 | 1.483 | |
13 | 11.43 | 0.7417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, S.; Ji, Y.; Deng, H.; Wu, Z.; Yang, T.; Wang, X. Rapid Correction of Turbidity Interference on Chemical Oxygen Demand Measurements by Using Ultraviolet-Visible Spectrometry. Chemosensors 2024, 12, 247. https://doi.org/10.3390/chemosensors12120247
Shan S, Ji Y, Deng H, Wu Z, Yang T, Wang X. Rapid Correction of Turbidity Interference on Chemical Oxygen Demand Measurements by Using Ultraviolet-Visible Spectrometry. Chemosensors. 2024; 12(12):247. https://doi.org/10.3390/chemosensors12120247
Chicago/Turabian StyleShan, Shihan, Yihuan Ji, Hanjing Deng, Zhuohui Wu, Tinglong Yang, and Xiaoping Wang. 2024. "Rapid Correction of Turbidity Interference on Chemical Oxygen Demand Measurements by Using Ultraviolet-Visible Spectrometry" Chemosensors 12, no. 12: 247. https://doi.org/10.3390/chemosensors12120247
APA StyleShan, S., Ji, Y., Deng, H., Wu, Z., Yang, T., & Wang, X. (2024). Rapid Correction of Turbidity Interference on Chemical Oxygen Demand Measurements by Using Ultraviolet-Visible Spectrometry. Chemosensors, 12(12), 247. https://doi.org/10.3390/chemosensors12120247