Aptamer–Molecularly Imprinted Polymer Multiple-Recognition System: Construction and Application
Abstract
:1. Introduction
2. Acquisition of Molecularly Imprinted Layer
3. Multiple-Recognition Systems Based on Aptamer and MIPs
3.1. Sandwich Type
3.2. Hybrid Type
3.3. Recapture–Detection–Separate Sensing Strategy
4. Applications of MIP–Aptamer Multiple-Recognition Systems
4.1. Virus
4.2. Carcinogens
4.3. Antibiotics
4.4. Bacteria
4.5. Protein
4.6. Others
5. Conclusions
5.1. Limitations
5.2. Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Templates | |
EV71 | Enterovirus 71 |
AMOX | Amoxicillin |
FIX | Factor IX protein |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
H5N1 virus | Influenza A virus |
HBV | Hepatitis B virus |
HCV | Hepatitis C virus |
AFB1 | Aflatoxin B1 |
OTA | Ochratoxin |
KAN | Kanamycin |
TC | Tetracycline |
AβOs | Amyloid-beta oligomers |
cTnI | Troponin |
AFP | Alpha-fetoprotein |
HIS | Histamine |
Functional monomers | |
Apt | Aptamer |
AA | Acrylic acid |
MAA | Methacrylic acid |
MBA | Methylene diacrylamide |
MBAA | 5,5′-Methylenedianthranilic acid |
APTES | 3-Aminopropyltriethoxysilane |
AMPS | 2-Acrylamide-2-methylpropanesulfonic acid |
β-CD | β-Cyclodextrin |
Crosslinking agent | |
EDGMA | Ethylene glycol dimethacrylate |
APTES | 3-Aminopropyltriethoxysilane |
TEOS | Ethyl silicate |
Patterns | |
AIMIP | “Artificial intelligence” imprinted polymers |
AIE | Aggregation-induced emission |
AIDE | Archimedean Interdigitated Sensor |
Base | |
ZIF-8 | Zeolitic Imidazolate Framework-8 |
PDMS | Polydimethylsiloxane |
PC | Porous carbon |
MWCNT-CHIT | Multi-wall carbon-nanotube–chitosan nanocomposite |
Surface modification | |
MIPs | Molecularly imprinted polymers |
CDs | Carbon quantum dots |
AuNPs | Au nanoparticles |
GO | Graphene oxide |
ZGO | Zn2GeO4:Mn2+ |
NCs | Nanocubes |
SN-CQD/Au | Carbon quantum dots co-doped with sulfur and nitrogen atoms |
Others | |
AIBN | Azodiisobutyronitrile |
CV | Cyclic voltammetry |
DPV | Differential pulse voltammetry |
PL | Persistent luminescence |
FE-SEM | Field-Emission Scanning Electron Microscope |
ECL | Electrochemiluminescence |
PEI | Polyetherimide |
RuNP | Ru(bpy)32+ |
EIS | Electrochemical impedance spectroscopy |
References
- Cheng, Y.; Zhao, X.; Zhang, Q.; Li, X.; Wei, Z. Constructing imprinted reticular structure in molecularly imprinted hybrid membranes for highly selective separation of acteoside. Sep. Purif. Technol. 2022, 298, 121572. [Google Scholar] [CrossRef]
- Zhou, J.; Ni, Y.; Wang, D.; Fan, B.; Zhu, X.; Zhou, J.; Hu, Y.; Li, L.; Li, B. Development of a Competitive Enzyme-Linked Immunosorbent Assay Targeting the-p30 Protein for Detection of Antibodies against African Swine Fever Virus. Viruses 2023, 15, 154. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Gao, R.; Tian, X.; Heinlein, J.; Hussain, S.; Pfefferle, L.D.; Chen, X.; Zhang, X.; Hao, Y. Strategic design and fabrication of lightweight sesame ball-like hollow double-layer hybrid magnetic molecularly imprinted nanomaterials for the highly specific separation and recovery of tetracycline from milk. Green Chem. 2022, 24, 8036–8045. [Google Scholar] [CrossRef]
- Feng, D.; Ren, M.; Miao, Y.; Liao, Z.; Zhang, T.; Chen, S.; Ye, K.; Zhang, P.; Ma, X.; Ni, J.; et al. Dual selective sensor for exosomes in serum using magnetic imprinted polymer isolation sandwiched with aptamer/graphene oxide based FRET fluorescent ignition. Biosens. Bioelectron. 2022, 207, 114112. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, V.; Narula, P. Role of molecularly imprinted hydrogels in drug delivery—A current perspective. Int. J. Pharm. 2022, 625, 121883. [Google Scholar] [CrossRef]
- Gao, C.; Wei, M.; McKitrick, T.R.; McQuillan, A.M.; Heimburg-Molinaro, J.; Cummings, R.D. Glycan Microarrays as Chemical Tools for Identifying Glycan Recognition by Immune Proteins. Front. Chem. 2019, 7, 833. [Google Scholar] [CrossRef]
- Fang, Y.Z.; Jiang, L.; He, Q.; Cao, J.; Yang, B. Deubiquitination complex platform: A plausible mechanism for regulating the substrate specificity of deubiquitinating enzymes. Acta Pharm. Sin. B 2023, 13, 2295–2816. [Google Scholar] [CrossRef]
- Kachhawa, P.; Mishra, S.; Jain, A.K.; Tripura, C.; Joseph, J.; Radha, V.; Chaturvedi, N. Antigen-Antibody Interaction-Based GaN HEMT Biosensor for C3G Detection. IEEE Sens. J. 2022, 22, 6256–6262. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Cheng, N.; Luo, Y.; Lin, Y.; Xu, W.; Du, D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. TrAC Trends Anal. Chem. 2020, 132, 116041. [Google Scholar] [CrossRef]
- Cui, M.; Che, Z.; Gong, Y.; Li, T.; Hu, W.; Wang, S. A graphdiyne-based protein molecularly imprinted biosensor for highly sensitive human C-reactive protein detection in human serum. Chem. Eng. J. 2022, 431, 133455. [Google Scholar] [CrossRef]
- Carballido, L.; Karbowiak, T.; Cayot, P.; Gerometta, M.; Sok, N.; Bou-Maroun, E. Applications of molecularly imprinted polymers and perspectives for their use as food quality trackers. Chem 2022, 8, 2330–2341. [Google Scholar] [CrossRef]
- Yarman, A.; Scheller, F.W. Coupling Biocatalysis with Molecular Imprinting in a Biomimetic Sensor. Angew. Chem.-Int. Ed. 2013, 52, 11521–11525. [Google Scholar] [CrossRef] [PubMed]
- Rampey, A.M.; Umpleby, R.J.; Rushton, G.T.; Iseman, J.C.; Shah, R.N.; Shimizu, K.D. Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the Freundlich isotherm-affinity distribution analysis. Anal. Chem. 2004, 76, 1123–1133. [Google Scholar] [CrossRef]
- Aljohani, M.M.; Cialla-May, D.; Popp, J.; Chinnappan, R.; Al-Kattan, K.; Zourob, M. Aptamers: Potential Diagnostic and Therapeutic Agents for Blood Diseases. Molecules 2022, 27, 383. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the Therapeutics and Diagnostics Pipelines. Theranostics 2018, 8, 4016–4032. [Google Scholar] [CrossRef] [PubMed]
- Nxele, S.R.; Nkhahle, R.; Nyokong, T. The composites of asymmetric Co phthalocyanines-graphitic carbon nitride quantum dots-aptamer as specific electrochemical sensors for the detection of prostate specific antigen. J. Am. Chem. Soc. 2021, 900, 115730. [Google Scholar] [CrossRef]
- Poma, A.; Brahmbhatt, H.; Pendergraff, H.M.; Watts, J.K.; Turner, N.W. Generation of Novel Hybrid Aptamer-Molecularly Imprinted Polymeric Nanoparticles. Adv. Mater. 2015, 27, 750–758. [Google Scholar] [CrossRef]
- Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537–550. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Rosenthal, M.; Siegl, J.; Ewers, J.; Mayer, G. Customised nucleic acid libraries selection for enhanced aptamer and performance. Curr. Opin. Biotechnol. 2017, 48, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Rothlisberger, P.; Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018, 134, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Gariano, N.A.; Spivak, D.A. Macromolecular Amplification of Binding Response in Superaptamer Hydrogels. J. Am. Chem. Soc. 2013, 135, 6977–6984. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Spivak, D.A. A Double-Imprinted Diffraction-Grating Sensor Based on a Virus-Responsive Super-Aptamer Hydrogel Derived from an Impure Extract. Angew. Chem.-Int. Ed. 2014, 53, 2095–2209. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ren, J.; Su, L.; Gao, X.; Tang, Y.; Ma, T.; Zhu, L.; Li, J. Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing. Biosens. Bioelectron. 2017, 87, 203–208. [Google Scholar] [CrossRef]
- Zhou, Q.Q.; Xu, Z.G.; Liu, Z.M. Molecularly Imprinting-Aptamer Techniques and Their Applications in Molecular Recognition. Biosensors 2022, 12, 576. [Google Scholar] [CrossRef]
- Moein, M.M.; Abdel-Rehim, A.; Abdel-Rehim, M. Recent Applications of Molecularly Imprinted Sol-Gel Methodology in Sample Preparation. Molecules 2019, 24, 2889. [Google Scholar] [CrossRef]
- Gutiérrez-Climente, R.; Clavié, M.; Dumy, P.; Mehdi, A.; Subra, G. Sol-gel process: The inorganic approach in protein imprinting. J. Mater. Chem. B 2021, 9, 2155–2178. [Google Scholar] [CrossRef]
- Malitesta, C.; Mazzotta, E.; Picca, R.A.; Poma, A.; Chianella, I.; Piletsky, S.A. MIP sensors—The electrochemical approach. Anal. Bioanal. Chem. 2012, 402, 1827–1846. [Google Scholar] [CrossRef]
- Palladino, P.; Bettazzi, F.; Scarano, S. Polydopamine: Surface coating, molecular imprinting, and electrochemistry-successful applications and future perspectives in (bio)analysis. Anal. Bioanal. Chem. 2019, 411, 4327–4338. [Google Scholar] [CrossRef]
- You, M.; Yang, S.; An, Y.; Zhang, F.; He, P. A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-beta oligomer. J. Electroanal. Chem. 2020, 862, 114017. [Google Scholar] [CrossRef]
- Ocana, C.; del Valle, M. Three different signal amplification strategies for the impedimetric sandwich detection of thrombin. Anal. Chim. Acta 2016, 912, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liang, K.; Wang, L.; Chen, C.; Cai, C.; Gong, H. Construction of an Ultrasensitive Molecularly Imprinted Virus Sensor Based on an “Explosive” Secondary Amplification Strategy for the Visual Detection of Viruses. Anal. Chem. 2022, 94, 13879–13888. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.Y.; Lu, C.Y.; Tsao, K.C.; Shih, H.M.; Cheng, A.L.; Huang, L.M.; Chang, L.Y. Association of EV71 3C polymorphisms with clinical severity. J. Microbiol. Immunol. Infect. 2018, 51, 608–613. [Google Scholar] [CrossRef]
- Liao, Z.; Peng, J.; Chen, S.; Zhang, P.; Chen, H.; Feng, D.; Zhang, T.; Ye, K.; Deng, Y.; Dong, Y.; et al. Sensitive fluorescent sensor for the fuzzy exosomes in serum based on the exosome imprinted polymer sandwiched with aggregation induced emission. Sens. Actuators B-Chem. 2022, 358, 131182. [Google Scholar] [CrossRef]
- Lu, H.; Huang, Y.; Cui, H.; Li, L.; Ding, Y. A molecularly imprinted electrochemical aptasensor based on zinc oxide and co-deposited gold nanoparticles/reduced graphene oxide composite for detection of amoxicillin. Microchim. Acta 2022, 189, 421. [Google Scholar] [CrossRef]
- Krishnan, H.; Gopinath, S.C.; Arshad, M.M.; Zulhaimi, H.I.; Anbu, P.; Subramaniam, S. Molecularly imprinted polymer enhances affinity and stability over conventional aptasensor for blood clotting biomarker detection on regimented carbon nanohorn and gold nanourchin hybrid layers. Sens. Actuators B-Chem. 2022, 363, 131842. [Google Scholar] [CrossRef]
- Shahdost-fard, F.; Roushani, M. Impedimetric detection of trinitrotoluene by using a glassy carbon electrode modified with a gold nanoparticle@fullerene composite and an aptamer-imprinted polydopamine. Microchim. Acta 2017, 184, 3997–4006. [Google Scholar] [CrossRef]
- Ho, I.P.; Yoo, S.J.; Tefera, S. Determination of furan levels in coffee using automated solid-phase microextraction and gas chromatography/mass spectrometry. J. AOAC Int. 2005, 88, 574–576. [Google Scholar]
- Hashemi-Moghaddam, H.; Ahmadifard, M. Novel molecularly-imprinted solid-phase microextraction fiber coupled with gas chromatography for analysis of furan. Talanta 2016, 150, 148–154. [Google Scholar] [CrossRef]
- Dounin, V.; Veloso, A.J.; Schulze, H.; Bachmann, T.T.; Kerman, K. Disposable electrochemical printed gold chips for the analysis of acetylcholinesterase inhibition. Anal. Chim. Acta 2010, 669, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Mariyappan, V.; Keerthi, M.; Chen, S.M. Highly Selective Electrochemical Sensor Based on Gadolinium Sulfide Rod-Embedded RGO for the Sensing of Carbofuran. J. Agric. Food Chem. 2021, 69, 2679–2688. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Luo, J.; Xu, Z.; Ma, X. A microfluidic chip containing a molecularly imprinted polymer and a DNA aptamer for voltammetric determination of carbofuran. Microchim. Acta 2018, 185, 295. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.V.; Allabush, F.; Flynn, H.; Balansethupathy, B.; Reed, J.A.; Barnes, E.T.; Robson, C.; O’Hara, P.; Milburn, L.J.; Bunka, D.; et al. Highly Selective Aptamer-Molecularly Imprinted Polymer Hybrids for Recognition of SARS-CoV-2 Spike Protein Variants. Glob. Chall. 2021, 12, 4394–4405. [Google Scholar] [CrossRef] [PubMed]
- Abe-Chayama, H.; Hayes, C.N.; Chayama, K. Pan-genotypic cell culture system for propagation of hepatitis C virus clinical isolates. Hepatology 2016, 64, 1356–1358. [Google Scholar] [CrossRef]
- Chen, S.; Cai, G.; Gong, X.; Wang, L.; Cai, C.; Gong, H. Non-autofluorescence Detection of H5N1 Virus Using Photochemical Aptamer Sensors Based on Persistent Luminescent Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 46964–46971. [Google Scholar] [CrossRef]
- Shih, C.; Yang, C.C.; Choijilsuren, G.; Chang, C.H.; Liou, A.T. Hepatitis B Virus. Trends Microbiol. 2018, 26, 386–387. [Google Scholar] [CrossRef]
- Chen, S.; Luo, L.; Wang, L.; Chen, C.; Gong, H.; Cai, C. A sandwich sensor based on imprinted polymers and aptamers for highly specific double recognition of viruses. Analyst 2021, 146, 3924–3932. [Google Scholar] [CrossRef]
- Ghanbari, K.; Roushani, M. A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-Chit nanocomposite for sensing hepatitis C virus core antigen. Sens. Actuators B Chem. 2018, 258, 1066–1071. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Q.L.; Wu, W. Progress on Structured Biosensors for Monitoring Aflatoxin B1 From Biofilms: A Review. Front. Microbiol. 2020, 11, 408. [Google Scholar] [CrossRef]
- Roushani, M.; Farokhi, S.; Rahmati, Z. Development of a dual-recognition strategy for the aflatoxin B1 detection based on a hybrid of aptamer-MIP using a Cu2O NCs/GCE. Microchem. J. 2022, 178, 107328. [Google Scholar] [CrossRef]
- Chi, H.; Liu, G. A fluorometric sandwich biosensor based on molecular imprinted polymer and aptamer modified CdTe/ZnS for detection of aflatoxin B1 in edible oil. Food Sci. Technol. 2023, 180, 114726. [Google Scholar] [CrossRef]
- Khalil, O.A.A.; Hammad, A.A.; Sebaei, A.S. Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin A in maize by irradiation. Toxicon 2021, 198, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Sun, H.; Zhu, Y.; Wang, J.; Xie, Z.; Li, J. A double-recognized aptamer-molecularly imprinted monolithic column for high-specificity recognition of ochratoxin A. Anal. Chim. Acta 2020, 1103, 97–105. [Google Scholar] [CrossRef]
- Aralekallu, S.; Palanna, M.; Hadimani, S.; Prabhu C.P., K.; Sajjan, V.A.; Thotiyl, M.O.; Sannegowda, L.K. Biologically inspired catalyst for electrochemical reduction of hazardous hexavalent chromium. Dalton Trans. 2020, 49, 15061–15071. [Google Scholar] [CrossRef]
- Ma, Y.; Ran, D.; Shi, X.; Zhao, H.; Liu, Z. Cadmium toxicity: A role in bone cell function and teeth development. Sci. Total Environ. 2021, 769, 144646. [Google Scholar] [CrossRef]
- Li, S.; Ma, X.; Pang, C.; Tian, H.; Xu, Z.; Yang, Y.; Lv, D.; Ge, H. Fluorometric aptasensor for cadmium(II) by using an aptamer-imprinted polymer as the recognition element. Microchim. Acta 2019, 186, 823. [Google Scholar] [CrossRef]
- Hauser, A.R.; Mecsas, J.; Moir, D.T. Beyond antibiotics: New therapeutic approaches for bacterial infections. Int. J. Antimicrob. Agents 2017, 50, S19–S20. [Google Scholar] [CrossRef]
- Hoeksema, M.; Brul, S.; Kuile, B.H.T. Influence of Reactive Oxygen Species on De Novo Acquisition of Resistance to Bactericidal Antibiotics. Antimicrob. Agents Chemother. 2018, 62, 17. [Google Scholar] [CrossRef]
- Spizek, J.; Rezanka, T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem. Pharmacol. 2017, 133, 20–28. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Yin, G.; Zhang, Q.; Luo, J.; Wu, N. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Biosens. Bioelectron. 2017, 91, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Wu, Y.; Wang, Y.; Liu, G.; Ning, G.; Xu, Z. A molecularly imprinted polymer combined with dual functional Au@Fe3O4 nanocomposites for sensitive detection of kanamycin. J. Electroanal. Chem. 2020, 870, 114216. [Google Scholar] [CrossRef]
- Sanchez, A.R.; Rogers, R.S.; Sheridan, P.J. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity. Int. J. Dermatol. 2004, 43, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liao, X.; Zhao, Y.; Qiu, L.; Yao, Y.; Wang, S.; Yang, X.; Hu, X. Fabrication of magnetic molecularly imprinted polymers based on aptamers and ss-cyclodextrin for synergistic recognition and separation of tetracycline. Anal. Chim. Acta 2022, 1236, 340572. [Google Scholar] [CrossRef] [PubMed]
- Paprocka, P.; Durnaś, B.; Mańkowska, A.; Król, G.; Wollny, T.; Bucki, R. Pseudomonas aeruginosa Infections in Cancer Patients. Pathogens 2022, 11, 679. [Google Scholar] [CrossRef]
- Sarabaegi, M.; Roushani, M. Rapid and sensitive determination of Pseudomonas aeruginosa by using a glassy carbon electrode modified with gold nanoparticles and aptamer-imprinted polydopamine. Microchem. J. 2021, 168, 106388. [Google Scholar] [CrossRef]
- Jarneborn, A.; Mohammad, M.; Engdahl, C.; Hu, Z.; Na, M.; Ali, A.; Jin, T. Tofacitinib treatment aggravates Staphylococcus aureus septic arthritis, but attenuates sepsis and enterotoxin induced shock in mice. Sci. Rep. 2020, 10, 10891. [Google Scholar] [CrossRef]
- Cai, R.; Yin, F.; Zhang, Z.; Tian, Y.; Zhou, N. Functional chimera aptamer and molecular beacon based fluorescent detection of Staphylococcus aureus with strand displacement-target recycling amplification. Anal. Chim. Acta 2019, 1075, 128–136. [Google Scholar] [CrossRef]
- El-Wekil, M.M.; Halby, H.M.; Darweesh, M.; Ali, M.E.; Ali, R. An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe3O4 binary hybrid. Sci. Rep. 2022, 12, 12502. [Google Scholar] [CrossRef]
- De Oliveira, J.; Kucharska, E.; Garcez, M.L.; Rodrigues, M.S.; Quevedo, J.; Moreno-Gonzalez, I.; Budni, J. Inflammatory Cascade in Alzheimer’s Disease Pathogenesis: A Review of Experimental Findings. Cells 2021, 10, 2581. [Google Scholar] [CrossRef]
- Roos, A.; Edgren, G. Using historical cardiac troponins to identify patients at a high risk of myocardial infarction. Heart 2023, 109, 127–133. [Google Scholar] [CrossRef]
- Mokhtari, Z.; Khajehsharifi, H.; Hashemnia, S.; Solati, Z.; Azimpanah, R.; Shahrokhian, S. Evaluation of molecular imprinted polymerized methylene blue/aptamer as a novel hybrid receptor for Cardiac Troponin I (cTnI) detection at glassy carbon electrodes modified with new biosynthesized ZnONPs. Sens. Actuators B-Chem. 2020, 320, 108316. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, X.; Sun, N.; Deng, C. A rational route to hybrid aptamer-molecularly imprinted magnetic nanoprobe for recognition of protein biomarkers in human serum. Anal. Chim. Acta 2020, 1128, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Tian, Y.; Wang, B.; Guo, Q.; Nie, G. “Signal-on” molecularly imprinting-aptamer electrochemiluminescence platform for ultrasensitive detection of thrombin. Sens. Actuators B-Chem. 2021, 338, 129870. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Amini, M.; Rezaei, B. Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A. Microchim. Acta 2018, 185, 265. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Alkahtani, S.A.; Alyami, B.A.; El-Wekil, M.M. Dual-recognition molecularly imprinted aptasensor based on gold nanoparticles decorated carboxylated carbon nanotubes for highly selective and sensitive determination of histamine in different matrices. Anal. Chim. Acta 2020, 1133, 58–65. [Google Scholar] [CrossRef]
- Yu, C.; Li, L.; Ding, Y.; Liu, H.; Cui, H. Molecularly imprinted electrochemical aptasensor based on functionalized graphene and nitrogen-doped carbon quantum dots for trace cortisol assay. Analyst 2022, 147, 744–752. [Google Scholar] [CrossRef]
- Huang, Y.; Ye, D.; Yang, J.; Zhu, W.; Li, L.; Ding, Y. Dual recognition elements for selective determination of progesterone based on molecularly imprinted electrochemical aptasensor. Anal. Chim. Acta 2023, 1264, 341288. [Google Scholar] [CrossRef]
- Ali, R.; El-Wekil, M.M. A dual-recognition-controlled electrochemical biosensor for selective and ultrasensitive detection of acrylamide in heat-treated carbohydrate-rich food. Food Chem. 2023, 413, 135666. [Google Scholar] [CrossRef]
- Beiki, T.; Najafpour-Darzi, G.; Mohammadi, M.; Shakeri, M.; Boukherroub, R. Fabrication of a novel electrochemical biosensor based on a molecular imprinted polymer-aptamer hybrid receptor for lysozyme determination. Anal. Bioanal. Chem. 2023, 415, 899–911. [Google Scholar] [CrossRef]
- Rahmati, Z.; Roushani, M. SARS-CoV-2 virus label-free electrochemical nanohybrid MIP-aptasensor based on Ni-3(BTC)(2) MOF as a high-performance surface substrate. Microchim. Acta 2022, 189, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Kan, X.W. Sensitive and selective “signal-off” electrochemiluminescence sensing of prostate-specific antigen based on an aptamer and molecularly imprinted polymer. Analyst 2021, 146, 7693–7701. [Google Scholar] [CrossRef] [PubMed]
- Roushani, M.; Zalpour, N. Impedimetric ultrasensitive detection of trypsin based on hybrid aptamer-2DMIP using a glassy carbon electrode modified by nickel oxide nanoparticle. Microchem. J. 2021, 172, 106955. [Google Scholar] [CrossRef]
- Roushani, M.; Ghanbarzadeh, M.; Shahdost-Fard, F. Fabrication of an electrochemical biodevice for ractopamine detection under a strategy of a double recognition of the aptamer/molecular imprinting polymer. Bioelectrochemistry 2021, 138, 107722. [Google Scholar] [CrossRef] [PubMed]
- Roushani, M.; Rahmati, Z.; Hoseini, S.J.; Fath, R.H. Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle. Colloids Surf. B Biointerfaces 2019, 183, 110451. [Google Scholar] [CrossRef]
- Roushani, M.; Nezhadali, A.; Jalilian, Z. An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods. Microchim. Acta 2018, 185, 551. [Google Scholar] [CrossRef]
- Tan, J.; Guo, M.; Tan, L.; Geng, Y.; Huang, S.; Tang, Y.; Su, C.; Lin, C.C.; Liang, Y. Highly efficient fluorescent QDs sensor for specific detection of protein through double recognition of hybrid aptamer-molecular imprinted polymers. Sens. Actuators B Chem. 2018, 274, 627–635. [Google Scholar] [CrossRef]
- Geng, Y.; Guo, M.; Tan, J.; Huang, S.; Tang, Y.; Tan, L.; Liang, Y. A fluorescent molecularly imprinted polymer using aptamer as a functional monomer for sensing of kanamycin. Sens. Actuators B-Chem. 2018, 268, 47–54. [Google Scholar] [CrossRef]
- Duan, N.; Chen, X.; Lin, X.; Ying, D.; Wang, Z.; Yuan, W.; Wu, S. Paper-based fluorometric sensing of malachite green using synergistic recognition of aptamer-molecularly imprinted polymers and luminescent metal–organic frameworks. Sens. Actuators B Chem. 2023, 384, 133665. [Google Scholar] [CrossRef]
Electrochemical Polymerization | ||||||||
---|---|---|---|---|---|---|---|---|
Target | Potential Range | Monomers | Polymerization Time | Scan Rate | Recognition Systems | Detection Methods | Year | Ref. |
Acrylamide | −0.4–0.9 V | o-Phenanthroline | 15 cycles | 100 mV·s−1 | Hybrid | DPV | 2023 | [79] |
Progesterone | −0.2–0.6 V | p-Aminothiophenol | 15 cycles | 150 mV·s−1 | Hybrid | DPV | 2023 | [78] |
Lysozyme | −0.4–1.2 V | Methylene blue | 20 cycles | 50 mV·s−1 | Hybrid | DPV | 2022 | [80] |
SARS-CoV-2 virus | −0.5–0.5 V | Dopamine | 15 cycles | 50 mV·s−1 | Hybrid | EIS | 2022 | [81] |
Amoxicillin | −0.5–1.0 V | Dopamine | 15 cycles | 75 mV·s−1 | Hybrid | DPV | 2022 | [36] |
Prostate-specific antigen | −0.5–0.5 V | Dopamine | 12 cycles | 20 mV·s−1 | Hybrid | EIS | 2021 | [82] |
Pseudomonas aeruginosa | −0.5–0.5 V | Dopamine | 13 cycles | 20 mV·s−1 | Hybrid | DPV | 2021 | [66] |
Trypsin | −0.5–0.5 V | Dopamine | 15 cycles | 20 mV·s−1 | Hybrid | DPV | 2021 | [83] |
Ractopamine | −0.5–0.5 V | Dopamine | 13 cycles | 20 mV·s−1 | Hybrid | EIS | 2020 | [84] |
Cardiac troponin I | −0.4–1.2 V | Methylene blue | 20 cycles | 50 mV·s−1 | Hybrid | DPV | 2020 | [72] |
Kanamycin | 0–0. 8 V | 3-Aminophenylboronic acid | 20 cycles | 50 mV·s−1 | Sandwich | DPV | 2020 | [62] |
Chloramphenicol | 0–1.2 V | Risorcinol | 14 cycles | 100 mV·s−1 | Hybrid | EIS | 2019 | [85] |
Chlorpyrifos | 0–1.0 V | o-Dihydroxybenzene o-Phenylenediamine | 10 cycles | 50 mV·s−1 | Hybrid | DPV | 2018 | [86] |
Thermal Polymerization | ||||||||
Target | Monomers | Crosslinking agent | Temperature | Time | Recognition systems | Detection methods | Year | Ref. |
Human blood clotting factor IX protein | MAA | EGDMA | 40 °C | 24 h | Hybrid | UV-Vis | 2022 | [37] |
H5N1 Virus | AA MAA | MBA | 65 °C | 6 h | Sandwich | Fluorimetry | 2022 | [46] |
Cytochrome C | MAA | MBA | 37 °C | 12 h | Hybrid | Fluorimetry | 2018 | [87] |
Carbofuran | MAA | MBA | 50 °C | 2 h | Microfluidic | DPV | 2018 | [43] |
Kanamycin | MAA | MBAA | 40 °C | 6 h | Hybrid | Fluorimetry | 2018 | [88] |
Sol–Gel Method | ||||||||
Target | Monomers | Crosslinking agent | Solvent | Catalyst | Recognition systems | Detection methods | Year | Ref. |
Aflatoxin B1 | APTES | TEOS | Ethanol | NH3·H2O | Sandwich | Fluorimetry | 2023 | [49] |
Malachite green | APTES | TEOS | Ultrapure water | NH3·H2O | Hybrid | Fluorimetry UV-Vis | 2023 | [89] |
Virus enterovirus 71 | APTES | TEOS | Ultrapure water | NH3·H2O | Sandwich | Fluorimetry UV-Vis | 2022 | [33] |
Photopolymerization | ||||||||
Target | Monomers | Crosslinking agent | Illuminating source | Irradiation time | Recognition systems | Detection methods | Year | Ref. |
Cadmium (II) | L-Alanine | N-hydroxysuccinimide | UV | 30 min | Hybrid | Fluorimetry | 2019 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, K.; Shen, Y.; Yao, Y.; Xie, W.; Ma, C.; Xu, Q. Aptamer–Molecularly Imprinted Polymer Multiple-Recognition System: Construction and Application. Chemosensors 2023, 11, 465. https://doi.org/10.3390/chemosensors11080465
Ning K, Shen Y, Yao Y, Xie W, Ma C, Xu Q. Aptamer–Molecularly Imprinted Polymer Multiple-Recognition System: Construction and Application. Chemosensors. 2023; 11(8):465. https://doi.org/10.3390/chemosensors11080465
Chicago/Turabian StyleNing, Kangping, Yingzhuo Shen, Yao Yao, Wenzheng Xie, Cheng Ma, and Qin Xu. 2023. "Aptamer–Molecularly Imprinted Polymer Multiple-Recognition System: Construction and Application" Chemosensors 11, no. 8: 465. https://doi.org/10.3390/chemosensors11080465
APA StyleNing, K., Shen, Y., Yao, Y., Xie, W., Ma, C., & Xu, Q. (2023). Aptamer–Molecularly Imprinted Polymer Multiple-Recognition System: Construction and Application. Chemosensors, 11(8), 465. https://doi.org/10.3390/chemosensors11080465