Wearable Chemosensors in Physiological Monitoring
Abstract
:1. Introduction
2. Sensing Methods
2.1. Amperometric Sensors
2.2. Voltammetric Sensors
2.3. Potentiometric Sensors
2.4. Conductometric Sensors
3. Sweat-Based Sensors
4. Interstitial Fluid-Based Sensors
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gray, J.A.M. The Shift to Personalised and Population Medicine. Lancet 2013, 382, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Jameson, J.L. Precision Medicine Personalized, Problematic, and Promising. N. Engl. J. Med. 2015, 372, 2229–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierman, A.S.; Tinetti, M.E. Precision Medicine to Precision Care: Managing Multimorbidity. Lancet 2016, 388, 2721–2723. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H.T. Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Haghi Kashani, M.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E. A Systematic Review of IoT in Healthcare: Applications, Techniques, and Trends. J. Netw. Comput. Appl. 2021, 192, 103–164. [Google Scholar] [CrossRef]
- Chamola, V.; Hassija, V.; Gupta, V.; Guizani, M. A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing Its Impact. IEEE Access 2020, 8, 90225–90265. [Google Scholar] [CrossRef]
- Dang, L.M.; Piran, M.J.; Han, D.; Min, K.; Moon, H. A Survey on Internet of Things and Cloud Computing for Healthcare. Electronics 2019, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Hassanalieragh, M.; Page, A.; Soyata, T.; Sharma, G.; Aktas, M.; Mateos, G.; Kantarci, B.; Andreescu, S. Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges. In Proceedings of the 2015 IEEE International Conference on Services Computing, Washington, DC, USA, 27 June–2 July 2015; pp. 285–292. [Google Scholar]
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narvez, E.; Gder, F.; Collins, J.J.; Dincer, C. End-to-End Design of Wearable Sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef]
- Lyu, Q.; Gong, S.; Yin, J.; Dyson, J.M.; Cheng, W. Soft Wearable Healthcare Materials and Devices. Adv. Healthc. Mater. 2021, 10, e2100577. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Vila, B.E.-F.; Wang, J. Wearable Biosensors for Healthcare Monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in Healthcare Wearable Devices. NPJ Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W.; Zhang, R.; Wang, Z.L. Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Lett. 2012, 12, 3109–3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwdiauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. An Ultra-Lightweight Design for Imperceptible Plastic Electronics. Nature 2013, 499, 458–463. [Google Scholar] [CrossRef]
- Kim, D.-H.; Ghaffari, R.; Lu, N.; Rogers, J.A. Flexible and Stretchable Electronics for Biointegrated Devices. Annu. Rev. Biomed. Eng. 2012, 14, 113–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; et al. A Graphene-Based Electrochemical Device with Thermoresponsive Microneedles for Diabetes Monitoring and Therapy. Nat. Nanotechnol. 2016, 11, 566–572. [Google Scholar] [CrossRef]
- Schwartz, G.; Tee, B.C.-K.; Mei, J.; Appleton, A.L.; Kim, D.H.; Wang, H.; Bao, Z. Flexible Polymer Transistors with High Pressure Sensitivity for Application in Electronic Skin and Health Monitoring. Nat. Commun. 2013, 4, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.-Y.; Zhao, X.; Suo, Z. Highly Stretchable and Tough Hydrogels. Nature 2012, 489, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.-Q.; Tian, H.; Liu, Y.; Ju, Z.-Y.; Pang, Y.; Chen, Y.-Q.; Wang, D.-Y.; Tian, X.-G.; Yan, J.-C.; Deng, N.-Q.; et al. An Intelligent Artificial Throat with Sound-Sensing Ability Based on Laser Induced Graphene. Nat. Commun. 2017, 8, 14579. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.; Zhang, K.; Yang, Z.; Jiang, S.; Ju, Z.; Li, Y.; Wang, X.; Wang, D.; Jian, M.; Zhang, Y.; et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. ACS Nano 2018, 12, 2346–2354. [Google Scholar] [CrossRef] [PubMed]
- Trung, T.Q.; Lee, N.-E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv. Mater. 2016, 28, 4338–4372. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Pang, Y.; Han, X.; Yang, Y.; Ling, J.; Jian, M.; Zhang, Y.; Yang, Y.; Ren, T.-L. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. ACS Nano 2018, 12, 9134–9141. [Google Scholar] [CrossRef]
- Tao, L.-Q.; Zhang, K.-N.; Tian, H.; Liu, Y.; Wang, D.-Y.; Chen, Y.-Q.; Yang, Y.; Ren, T.-L. Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano 2017, 11, 8790–8795. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, R.; Ji, S.; Zhao, B.; Cui, T.; Tan, X.; Gou, G.; Jian, J.; Xu, H.; Qiao, Y.; et al. Multifunctional Graphene Microstructures Inspired by Honeycomb for Ultrahigh Performance Electromagnetic Interference Shielding and Wearable Applications. ACS Nano 2021, 15, 8907–8918. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Wang, Y.; Jian, J.; Li, M.; Jiang, G.; Li, X.; Deng, G.; Ji, S.; Wei, Y.; Pang, Y.; et al. Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon 2020, 156, 253–260. [Google Scholar] [CrossRef]
- Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-Inspired Highly Stretchable and Conformable Matrix Networks for Multifunctional Sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Amjadi, M.; Kyung, K.-U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable Pressure Sensors for Pulse Wave Monitoring. Adv. Mater. 2022, 34, e2109357. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Zhou, X.; Yuan, M.; Qu, D.; Zheng, Y.; Vishinkin, R.; Khatib, M.; Wu, W.; Haick, H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem. Rev. 2019, 119, 11761–11817. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Lasalde-Ramrez, J.A.; Mahato, K.; Wang, J.; Gao, W. Wearable Chemical Sensors for Biomarker Discovery in the Omics Era. Nat. Rev. Chem. 2022, 6, 899–915. [Google Scholar] [CrossRef]
- Kammarchedu, V.; Butler, D.; Ebrahimi, A. A Machine Learning-Based Multimodal Electrochemical Analytical Device Based on EMoSx-LIG for Multiplexed Detection of Tyrosine and Uric Acid in Sweat and Saliva. Anal. Chim. Acta 2022, 1232, 340–447. [Google Scholar] [CrossRef]
- Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R.M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; et al. A Soft, Wearable Microfluidic Device for the Capture, Storage, and Colorimetric Sensing of Sweat. Sci. Transl. Med. 2016, 8, 366ra165. [Google Scholar] [CrossRef] [Green Version]
- Sempionatto, J.R.; Lin, M.; Yin, L.; De La Paz, E.; Pei, K.; Sonsa-ard, T.; de Loyola Silva, A.N.; Khorshed, A.A.; Zhang, F.; Tostado, N.; et al. An Epidermal Patch for the Simultaneous Monitoring of Haemodynamic and Metabolic Biomarkers. Nat. Biomed. Eng. 2021, 5, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, J.; Guo, Y.; Lv, T.; Chen, Z.; Li, N.; Cao, S.; Chen, B.; Chen, T. Integration of Interstitial Fluid Extraction and Glucose Detection in One Device for Wearable Non-Invasive Blood Glucose Sensors. Biosens. Bioelectron. 2021, 179, 113078. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, F.; Teymourian, H.; Wuerstle, B.; Kavner, J.; Patel, R.; Furmidge, A.; Aghavali, R.; Hosseini-Toudeshki, H.; Brown, C.; Zhang, F.; et al. An Integrated Wearable Microneedle Array for the Continuous Monitoring of Multiple Biomarkers in Interstitial Fluid. Nat. Biomed. Eng. 2022, 6, 1214–1224. [Google Scholar] [CrossRef]
- Kim, J.; Valds-Ramrez, G.; Bandodkar, A.J.; Jia, W.; Martinez, A.G.; Ramrez, J.; Mercier, P.; Wang, J. Non-Invasive Mouthguard Biosensor for Continuous Salivary Monitoring of Metabolites. Analyst 2014, 139, 1632–1636. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeerapan, I.; Imani, S.; Cho, T.N.; Bandodkar, A.; Cinti, S.; Mercier, P.P.; Wang, J. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 2016, 1, 1011–1019. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Z.; Zong, S.; Cui, Y. Rapid and Reproducible Analysis of Thiocyanate in Real Human Serum and Saliva Using a Droplet SERS-Microfluidic Chip. Biosens. Bioelectron. 2014, 62, 13–18. [Google Scholar] [CrossRef]
- Kim, J.; Sempionatto, J.R.; Imani, S.; Hartel, M.C.; Barfidokht, A.; Tang, G.; Campbell, A.S.; Mercier, P.P.; Wang, J. Simultaneous Monitoring of Sweat and Interstitial Fluid Using a Single Wearable Biosensor Platform. Adv. Sci. 2018, 5, 1800880. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valds-Ramrez, G.; Paixo, T.R.L.C.; Mercier, P.P.; Wang, J. Wearable Salivary Uric Acid Mouthguard Biosensor with Integrated Wireless Electronics. Biosens. Bioelectron. 2015, 74, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- Rittweger, J.; Beller, G.; Felsenberg, D. Acute Physiological Effects of Exhaustive Whole-Body Vibration Exercise in Man. Clin. Physiol. Funct. Imaging 2000, 20, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Van Kessel, A.L.; Burton, G.G.; O’Connor, S.M.; Wong, J.D.; Donelan, J.M.; Wilcox, S.L.; Broxterman, R.M.; Barstow, T.J.; Arad, A.D.; DiMenna, F.J.; et al. Interaction of physiological mechanisms during exercise. J. Appl. Physiol. 1967, 22, 71–85. [Google Scholar] [CrossRef]
- Imani, S.; Bandodkar, A.J.; Mohan, A.M.V.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P.P. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 2016, 7, 11650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jeang, W.J.; Ghaffari, R.; Rogers, J.A. Wearable Sensors for Biochemical Sweat Analysis. Annu. Rev. Anal. Chem. 2019, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Nilghaz, A.; Bagherbaigi, S.; Lam, C.L.; Mousavi, S.M.; Crcoles, E.P.; Wicaksono, D.H.B. Multiple Semi-Quantitative Colorimetric Assays in Compact Embeddable Microfluidic Cloth-Based Analytical Device (CAD) for Effective Point-of-Care Diagnostic. Microfluid. Nanofluidics 2015, 19, 317–333. [Google Scholar] [CrossRef]
- Kwon, K.; Kim, J.U.; Deng, Y.; Krishnan, S.R.; Choi, J.; Jang, H.; Lee, K.; Su, C.-J.; Yoo, I.; Wu, Y.; et al. An On-Skin Platform for Wireless Monitoring of Flow Rate, Cumulative Loss and Temperature of Sweat in Real Time. Nat. Electron. 2021, 4, 302–312. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, J.H.; Chung, S.J.; Chung, B.H. An Operationally Simple Colorimetric Assay of Hyaluronidase Activity Using Cationic Gold Nanoparticles. Analyst 2009, 134, 1291–1293. [Google Scholar] [CrossRef]
- Huang, P.; Wang, H.; Cao, Z.; Jin, H.; Chi, H.; Zhao, J.; Yu, B.; Yan, F.; Hu, X.; Wu, F.; et al. A Rapid and Specific Assay for the Detection of MERS-CoV. Front. Microbiol. 2018, 9, 1101. [Google Scholar] [CrossRef]
- Yue, X.; Xu, F.; Zhang, L.; Ren, G.; Sheng, H.; Wang, J.; Wang, K.; Yu, L.; Wang, J.; Li, G.; et al. Simple, Skin-Attachable, and Multifunctional Colorimetric Sweat Sensor. ACS Sens. 2022, 7, 2198–2208. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Analytical Electrochemistry | Wiley Online Books. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/0471790303 (accessed on 20 February 2023).
- Brad, A.; Faulkner, L. Electrochemical Methods: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2000; Volume 12. [Google Scholar]
- Electrochemical Stripping Analysis | Nature Reviews Methods Primers. Available online: https://www.nature.com/articles/s43586-022-00155-1 (accessed on 20 February 2023).
- Garcia-Cordero, E.; Bellando, F.; Zhang, J.; Wildhaber, F.; Longo, J.; Gurin, H.; Ionescu, A.M. Three-Dimensional Integrated Ultra-Low-Volume Passive Microfluidics with Ion-Sensitive Field-Effect Transistors for Multiparameter Wearable Sweat Analyzers. ACS Nano 2018, 12, 12646–12656. [Google Scholar] [CrossRef] [PubMed]
- Takaloo, S.; Moghimi Zand, M. Wearable Electrochemical Flexible Biosensors: With the Focus on Affinity Biosensors. Sens. Bio-Sens. Res. 2021, 32, 100403. [Google Scholar] [CrossRef]
- Mitsubayashi, K.; Suzuki, M.; Tamiya, E.; Karube, I. Analysis of Metabolites in Sweat as a Measure of Physical Condition. Anal. Chim. Acta 1994, 289, 2734. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing Analytes in Biofluids for Peripheral Biochemical Monitoring. Nat. Biotechnol. 2019, 37, 407–419. [Google Scholar] [CrossRef]
- Xue, M.; Mackin, C.; Weng, W.-H.; Zhu, J.; Luo, Y.; Luo, S.-X.L.; Lu, A.-Y.; Hempel, M.; McVay, E.; Kong, J.; et al. Integrated Biosensor Platform Based on Graphene Transistor Arrays for Real-Time High-Accuracy Ion Sensing. Nat. Commun. 2022, 13, 50–64. [Google Scholar] [CrossRef]
- Nyein, H.Y.Y.; Tai, L.-C.; Ngo, Q.P.; Chao, M.; Zhang, G.B.; Gao, W.; Bariya, M.; Bullock, J.; Kim, H.; Fahad, H.M.; et al. A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis. ACS Sens. 2018, 3, 944–952. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Molinnus, D.; Mirza, O.; Guinovart, T.; Windmiller, J.R.; Valds-Ramrez, G.; Andrade, F.J.; Schning, M.J.; Wang, J. Epidermal Tattoo Potentiometric Sodium Sensors with Wireless Signal Transduction for Continuous Non-Invasive Sweat Monitoring. Biosens. Bioelectron. 2014, 54, 603–609. [Google Scholar] [CrossRef]
- Tai, L.-C.; Gao, W.; Chao, M.; Bariya, M.; Ngo, Q.P.; Shahpar, Z.; Nyein, H.Y.Y.; Park, H.; Sun, J.; Jung, Y.; et al. Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Adv. Mater. 2018, 30, e1707442. [Google Scholar] [CrossRef]
- Nyein, H.Y.Y.; Bariya, M.; Tran, B.; Ahn, C.H.; Brown, B.J.; Ji, W.; Davis, N.; Javey, A. A Wearable Patch for Continuous Analysis of Thermoregulatory Sweat at Rest. Nat. Commun. 2021, 12, 18–23. [Google Scholar] [CrossRef]
- Gao, W.; Nyein, H.Y.Y.; Shahpar, Z.; Fahad, H.M.; Chen, K.; Emaminejad, S.; Gao, Y.; Tai, L.-C.; Ota, H.; Wu, E.; et al. Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sens. 2016, 1, 866–874. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S.; et al. A Wearable Electrochemical Biosensor for the Monitoring of Metabolites and Nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef]
- Torrente-Rodrguez, R.M.; Tu, J.; Yang, Y.; Min, J.; Wang, M.; Song, Y.; Yu, Y.; Xu, C.; Ye, C.; IsHak, W.W.; et al. Investigation of Cortisol Dynamics in Human Sweat Using a Graphene-Based Wireless MHealth System. Matter 2020, 2, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Parlak, O.; Keene, S.T.; Marais, A.; Curto, V.F.; Salleo, A. Molecularly Selective Nanoporous Membrane-Based Wearable Organic Electrochemical Device for Noninvasive Cortisol Sensing. Sci. Adv. 2018, 4, eaar2904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, L.B. Physiology of Sweat Gland Function: The Roles of Sweating and Sweat Composition in Human Health. Temperature 2019, 6, 211–259. [Google Scholar] [CrossRef] [Green Version]
- Heikenfeld, J. Non-Invasive Analyte Access and Sensing through Eccrine Sweat: Challenges and Outlook circa 2016. Electroanalysis 2016, 28, 1242–1249. [Google Scholar] [CrossRef]
- Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N.; et al. The Microfluidics of the Eccrine Sweat Gland, Including Biomarker Partitioning, Transport, and Biosensing Implications. Biomicrofluidics 2015, 9, 031301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sant’agnese, P.D.; Darling, R.C.; Perara, G.A.; Shea, E.C. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas. Pediatrics 1953, 12, 549563. [Google Scholar]
- Buono, M.J. Sweat Ethanol Concentrations Are Highly Correlated with Co-Existing Blood Values in Humans. Exp. Physiol. 1999, 84, 401–404. [Google Scholar] [CrossRef]
- Alvear-Ordenes, I.; Garca-Lpez, D.; Paz, J.A.D.; Gonzlez-Gallego, J. Sweat Lactate, Ammonia, and Urea in Rugby Players. Int. J. Sports Med. 2005, 26, 632–637. [Google Scholar] [CrossRef]
- Yeung, K.K.; Li, J.; Huang, T.; Hosseini, I.I.; Al Mahdi, R.; Alam, M.M.; Sun, H.; Mahshid, S.; Yang, J.; Ye, T.T.; et al. Utilizing Gradient Porous Graphene Substrate as the Solid-Contact Layer To Enhance Wearable Electrochemical Sweat Sensor Sensitivity. Nano Lett. 2022, 22, 6647–6654. [Google Scholar] [CrossRef]
- Yin, L.; Kim, K.N.; Lv, J.; Tehrani, F.; Lin, M.; Lin, Z.; Moon, J.-M.; Ma, J.; Yu, J.; Xu, S.; et al. A Self-Sustainable Wearable Multi-Modular E-Textile Bioenergy Microgrid System. Nat. Commun. 2021, 12, 154. [Google Scholar] [CrossRef]
- Liang, B.; Cao, Q.; Mao, X.; Pan, W.; Tu, T.; Fang, L.; Ye, X. An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring. IEEE Sens. J. 2021, 21, 9642–9648. [Google Scholar] [CrossRef]
- Dang, W.; Manjakkal, L.; Navaraj, W.T.; Lorenzelli, L.; Vinciguerra, V.; Dahiya, R. Stretchable Wireless System for Sweat PH Monitoring. Biosens. Bioelectron. 2018, 107, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Lin, Y.; Wu, J.; Nyein, H.Y.Y.; Bariya, M.; Tai, L.-C.; Chao, M.; Ji, W.; Zhang, G.; Fan, Z.; et al. A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring. ACS Sens. 2019, 4, 1925–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abelln-Llobregat, A.; Jeerapan, I.; Bandodkar, A.; Vidal, L.; Canals, A.; Wang, J.; Moralln, E. A Stretchable and Screen-Printed Electrochemical Sensor for Glucose Determination in Human Perspiration. Biosens. Bioelectron. 2017, 91, 885–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, X.; Yoon, H.S.; Park, J.Y. A Wearable Electrochemical Glucose Sensor Based on Simple and Low-Cost Fabrication Supported Micro-Patterned Reduced Graphene Oxide Nanocomposite Electrode on Flexible Substrate. Biosens. Bioelectron. 2018, 109, 7582. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, Q.; Dong, D.; An, T.; Gong, S.; Shi, Q.; Cheng, W. Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat. Anal. Chem. 2019, 91, 6569–6576. [Google Scholar] [CrossRef]
- Lin, P.-H.; Sheu, S.-C.; Chen, C.-W.; Huang, S.-C.; Li, B.-R. Wearable Hydrogel Patch with Noninvasive, Electrochemical Glucose Sensor for Natural Sweat Detection. Talanta 2022, 241, 123187. [Google Scholar] [CrossRef]
- Jia, W.; Bandodkar, A.J.; Valds-Ramrez, G.; Windmiller, J.R.; Yang, Z.; Ramrez, J.; Chan, G.; Wang, J. Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration. Anal. Chem. 2013, 85, 6553–6560. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Xu, K.; Zhong, Y.; He, C.; Jiang, L.; Sun, J.; Rao, Z.; Zhu, J.; Huang, J.; et al. Natural Oxidase-Mimicking Copper-Organic Frameworks for Targeted Identification of Ascorbate in Sensitive Sweat Sensing. Nat. Commun. 2023, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhao, C.; Wang, Z.; Yang, K.-A.; Cheng, X.; Liu, W.; Yu, W.; Lin, S.; Zhao, Y.; Cheung, K.M.; et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 2022, 8, eabk0967. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; de Araujo, W.R.; Samek, I.A.; Bandodkar, A.J.; Jia, W.; Brunetti, B.; Paixo, T.R.L.C.; Wang, J. Wearable Temporary Tattoo Sensor for Real-Time Trace Metal Monitoring in Human Sweat. Electrochem. Commun. 2015, 51, 41–45. [Google Scholar] [CrossRef]
- Yin, L.; Cao, M.; Kim, K.N.; Lin, M.; Moon, J.-M.; Sempionatto, J.R.; Yu, J.; Liu, R.; Wicker, C.; Trifonov, A.; et al. A Stretchable Epidermal Sweat Sensing Platform with an Integrated Printed Battery and Electrochromic Display. Nat. Electron. 2022, 5, 694705. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, X.; Zhang, N.; Zheng, J.; Chen, X.; Wen, Q.; Luo, X.; Lee, C.-Y.; Liu, X.; Zhang, X.; et al. A Non-Printed Integrated-Circuit Textile for Wireless Theranostics. Nat. Commun. 2021, 12, 4876. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, B.; Hojaiji, H.; Wang, Z.; Lin, S.; Yeung, C.; Lin, H.; Nguyen, P.; Chiu, K.; Salahi, K.; et al. A Wearable Freestanding Electrochemical Sensing System. Sci. Adv. 2020, 6, eaaz0007. [Google Scholar] [CrossRef] [Green Version]
- Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; et al. Battery-Free, Skin-Interfaced Microfluidic/Electronic Systems for Simultaneous Electrochemical, Colorimetric, and Volumetric Analysis of Sweat. Sci. Adv. 2019, 5, eaav3294. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Wang, C.; Wang, H.; Jian, M.; Lu, W.; Liang, X.; Zhang, X.; Yang, F.; Zhang, Y. Integrated Textile Sensor Patch for Real-Time and Multiplex Sweat Analysis. Sci. Adv. 2019, 5, eaax0649. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, Y.; Fan, Z.; Sun, Y.; Sun, Y.; Yang, Y.; Zhang, Y.; Ma, J.; Wang, Z.; Zhu, Z. A Dual-Function Wearable Electrochemical Sensor for Uric Acid and Glucose Sensing in Sweat. Biosensors 2023, 13, 105. [Google Scholar] [CrossRef]
- Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; et al. A Laser-Engraved Wearable Sensor for Sensitive Detection of Uric Acid and Tyrosine in Sweat. Nat. Biotechnol. 2020, 38, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Hou, L.; Bariya, M.; Nyein, H.Y.Y.; Tai, L.-C.; Ji, W.; Li, L.; Javey, A. A Multi-Modal Sweat Sensing Patch for Cross-Verification of Sweat Rate, Total Ionic Charge, and Na+ Concentration. Lab. Chip 2019, 19, 3179–3189. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, W.; Zhang, Y.; Jiang, Q.; He, J.-H.; Baeumner, A.J.; Wolfbeis, O.S.; Wang, Z.L.; Salama, K.N.; Alshareef, H.N. A MXene-Based Wearable Biosensor System for High-Performance In Vitro Perspiration Analysis. Small 2019, 15, e1901190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Tan, J.; Zhu, J.; Lin, S.; Zhao, Y.; Yu, W.; Hojaiji, H.; Wang, B.; Yang, S.; Cheng, X.; et al. A Programmable Epidermal Microfluidic Valving System for Wearable Biofluid Management and Contextual Biomarker Analysis. Nat. Commun. 2020, 11, 4405. [Google Scholar] [CrossRef] [PubMed]
- Nyein, H.Y.Y.; Gao, W.; Shahpar, Z.; Emaminejad, S.; Challa, S.; Chen, K.; Fahad, H.M.; Tai, L.-C.; Ota, H.; Davis, R.W.; et al. A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and PH. ACS Nano 2016, 10, 7216–7224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z.A.; Yin Yin Nyein, H.; Challa, S.; Ryan, S.P.; Fahad, H.M.; Chen, K.; Shahpar, Z.; et al. Autonomous Sweat Extraction and Analysis Applied to Cystic Fibrosis and Glucose Monitoring Using a Fully Integrated Wearable Platform. Proc. Natl. Acad. Sci. USA 2017, 114, 4625–4630. [Google Scholar] [CrossRef]
- Martn, A.; Kim, J.; Kurniawan, J.F.; Sempionatto, J.R.; Moreto, J.R.; Tang, G.; Campbell, A.S.; Shin, A.; Lee, M.Y.; Liu, X.; et al. Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection. ACS Sens. 2017, 2, 1860–1868. [Google Scholar] [CrossRef]
- Bariya, M.; Li, L.; Ghattamaneni, R.; Ahn, C.H.; Nyein, H.Y.Y.; Tai, L.-C.; Javey, A. Glove-Based Sensors for Multimodal Monitoring of Natural Sweat. Sci. Adv. 2020, 6, eabb8308. [Google Scholar] [CrossRef]
- Yu, M.; Li, Y.-T.; Hu, Y.; Tang, L.; Yang, F.; Lv, W.-L.; Zhang, Z.-Y.; Zhang, G.-J. Gold Nanostructure-Programmed Flexible Electrochemical Biosensor for Detection of Glucose and Lactate in Sweat. J. Electroanal. Chem. 2021, 882, 115029. [Google Scholar] [CrossRef]
- Nyein, H.Y.Y.; Bariya, M.; Kivimki, L.; Uusitalo, S.; Liaw, T.S.; Jansson, E.; Ahn, C.H.; Hangasky, J.A.; Zhao, J.; Lin, Y.; et al. Regional and Correlative Sweat Analysis Using High-Throughput Microfluidic Sensing Patches toward Decoding Sweat. Sci. Adv. 2019, 5, eaaw9906. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.Y.; Hong, S.Y.; Jeong, Y.R.; Yun, J.; Park, H.; Jin, S.W.; Lee, G.; Oh, J.H.; Lee, H.; Lee, S.-S.; et al. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and PH Detection. ACS Appl. Mater. Interfaces 2018, 10, 13729–13740. [Google Scholar] [CrossRef]
- Lee, H.; Song, C.; Hong, Y.S.; Kim, M.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.-H. Wearable/Disposable Sweat-Based Glucose Monitoring Device with Multistage Transdermal Drug Delivery Module. Sci. Adv. 2017, 3, e1601314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, J.; Bae, G.Y.; Lee, S.; Lee, G.; Kim, S.W.; Kim, D.; Chung, S.; Cho, K. Cactus Spine Inspired Sweat Collecting Patch for Fast and Continuous Monitoring of Sweat. Adv. Mater. 2021, 33, 2102740. [Google Scholar] [CrossRef] [PubMed]
- An, J.E.; Kim, K.H.; Park, S.J.; Seo, S.E.; Kim, J.; Ha, S.; Bae, J.; Kwon, O.S. Wearable Cortisol Aptasensor for Simple and Rapid Real-Time Monitoring. ACS Sens. 2022, 7, 99–108. [Google Scholar] [CrossRef]
- Min, J.; Demchyshyn, S.; Sempionatto, J.R.; Song, Y.; Hailegnaw, B.; Xu, C.; Yang, Y.; Solomon, S.; Putz, C.; Lehner, L.E.; et al. An Autonomous Wearable Biosensor Powered by a Perovskite Solar Cell. Nat. Electron. 2023, 112. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Zhou, J.; Nejad, S.K.; Wong, T.H.; Huang, Y.; Li, H.; Yiu, C.K.; Park, W.; Li, J.; et al. Garment Embedded Sweat-Activated Batteries in Wearable Electronics for Continuous Sweat Monitoring. Npj Flex. Electron. 2022, 6, 10. [Google Scholar] [CrossRef]
- Mukasa, D.; Wang, M.; Min, J.; Yang, Y.; Solomon, S.A.; Han, H.; Ye, C.; Gao, W. A Computationally Assisted Approach for Designing Wearable Biosensors toward Non-Invasive Personalized Molecular Analysis. Adv. Mater. 2023, 9, e2212161. [Google Scholar] [CrossRef]
- Tu, J.; Min, J.; Song, Y.; Xu, C.; Li, J.; Moore, J.; Hanson, J.; Hu, E.; Parimon, T.; Wang, T.-Y.; et al. A Wireless Patch for the Monitoring of C-Reactive Protein in Sweat. Nat. Biomed. Eng. 2023; 1–14, Online ahead of print. [Google Scholar] [CrossRef]
- Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in Microfluidic Materials, Functions, Integration, and Applications. Chem. Rev. 2013, 113, 2550–2583. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.-M.; Del Cao, R.; Moonla, C.; Sakdaphetsiri, K.; Saha, T.; Francine Mendes, L.; Yin, L.; Chang, A.-Y.; Seker, S.; Wang, J. Self-Testing of Ketone Bodies, along with Glucose, Using Touch-Based Sweat Analysis. ACS Sens. 2022, 7, 3973–3981. [Google Scholar] [CrossRef]
- Jiang, Y.; Ji, S.; Sun, J.; Huang, J.; Li, Y.; Zou, G.; Salim, T.; Wang, C.; Li, W.; Jin, H.; et al. A Universal Interface for Plug-and-Play Assembly of Stretchable Devices. Nature 2023, 614, 456–462. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W. Wearable and Flexible Electronics for Continuous Molecular Monitoring. Chem. Soc. Rev. 2019, 48, 14651491. [Google Scholar] [CrossRef]
- Friedel, M.; Thompson, I.A.P.; Kasting, G.; Polsky, R.; Cunningham, D.; Soh, H.T.; Heikenfeld, J. Opportunities and Challenges in the Diagnostic Utility of Dermal Interstitial Fluid. Nat. Biomed. Eng. 2023; 1–15, Online ahead of print. [Google Scholar] [CrossRef]
- Fogh-Andersen, N.; Altura, B.M.; Altura, B.T.; Siggaard-Andersen, O. Composition of Interstitial Fluid. Clin. Chem. 1995, 41, 1522–1525. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.Q.; Miller, P.R.; Taylor, R.M.; Boyd, G.; Mach, P.M.; Rosenzweig, C.N.; Baca, J.T.; Polsky, R.; Glaros, T. Proteomic Characterization of Dermal Interstitial Fluid Extracted Using a Novel Microneedle-Assisted Technique. J. Proteome Res. 2018, 17, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.R.; Taylor, R.M.; Tran, B.Q.; Boyd, G.; Glaros, T.; Chavez, V.H.; Krishnakumar, R.; Sinha, A.; Poorey, K.; Williams, K.P.; et al. Extraction and Biomolecular Analysis of Dermal Interstitial Fluid Collected with Hollow Microneedles. Commun. Biol. 2018, 1, 173. [Google Scholar] [CrossRef] [Green Version]
- Degim, I.T.; Ilbasmis, S.; Dundaroz, R.; Oguz, Y. Reverse Iontophoresis: A Non-Invasive Technique for Measuring Blood Urea Level. Pediatr. Nephrol. 2003, 18, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Moonla, C.; Mishra, R.K.; Yu, C.; Narayan, R.; Litvan, I.; Wang, J. Wearable Electrochemical Microneedle Sensor for Continuous Monitoring of Levodopa: Toward Parkinson Management. ACS Sens. 2019, 4, 2196–2204. [Google Scholar] [CrossRef]
- Leboulanger, B.; Guy, R.H.; Delgado-Charro, M.B. Non-Invasive Monitoring of Phenytoin by Reverse Iontophoresis. Eur. J. Pharm. Sci. 2004, 22, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Sieg, A.; Jeanneret, F.; Fathi, M.; Hochstrasser, D.; Rudaz, S.; Veuthey, J.-L.; Guy, R.H.; Begoa Delgado-Charro, M. Extraction of Amino Acids by Reverse Iontophoresis in Vivo. Eur. J. Pharm. Biopharm. 2009, 72, 226–231. [Google Scholar] [CrossRef]
- Tobias, A.; Ballard, B.D.; Mohiuddin, S.S. Physiology, Water Balance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Madden, J.; OMahony, C.; Thompson, M.; ORiordan, A.; Galvin, P. Biosensing in Dermal Interstitial Fluid Using Microneedle Based Electrochemical Devices. Sens. Bio-Sens. Res. 2020, 29, 100348. [Google Scholar] [CrossRef]
- Groenendaal, W.; von Basum, G.; Schmidt, K.A.; Hilbers, P.A.J.; van Riel, N.A.W. Quantifying the Composition of Human Skin for Glucose Sensor Development. J. Diabetes Sci. Technol. 2010, 4, 1032–1040. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.M.; Itallie, C.M.V. Physiology and Function of the Tight Junction. Cold Spring Harb. Perspect. Biol. 2009, 1, a002584. [Google Scholar] [CrossRef]
- Rao, G.; Glikfeld, P.; Guy, R.H. Reverse Iontophoresis: Development of a Noninvasive Approach for Glucose Monitoring. Pharm. Res. 1993, 10, 1751–1755. [Google Scholar] [CrossRef]
- Prausnitz, M.R. The Effects of Electric Current Applied to Skin: A Review for Transdermal Drug Delivery. Adv. Drug Deliv. Rev. 1996, 18, 395–425. [Google Scholar] [CrossRef]
- Glikfeld, P.; Hinz, R.S.; Guy, R.H. Noninvasive Sampling of Biological Fluids by Iontophoresis. Pharm. Res. 1989, 6, 988–990. [Google Scholar] [CrossRef]
- Teymourian, H.; Tehrani, F.; Mahato, K.; Wang, J. Lab under the Skin: Microneedle Based Wearable Devices. Adv. Healthc. Mater. 2021, 10, 2002255. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K. Non-Invasive Glucose Monitoring Technology in Diabetes Management: A Review. Anal. Chim. Acta 2012, 750, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Garca-Guzmn, J.J.; Prez-Rfols, C.; Cuartero, M.; Crespo, G.A. Microneedle Based Electrochemical (Bio)Sensing: Towards Decentralized and Continuous Health Status Monitoring. TrAC Trends Anal. Chem. 2021, 135, 116–148. [Google Scholar] [CrossRef]
- Himawan, A.; Vora, L.K.; Permana, A.D.; Sudir, S.; Nurdin, A.R.; Nislawati, R.; Hasyim, R.; Scott, C.J.; Donnelly, R.F. Where Microneedle Meets Biomarkers: Futuristic Application for Diagnosing and Monitoring Localized External Organ Diseases. Adv. Healthc. Mater. 2023, 12, e2202066. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jia, W.; Yardmc, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-Based Noninvasive Glucose Monitoring: A Proof-of-Concept Study. Anal. Chem. 2015, 87, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Haghniaz, R.; Hartel, M.C.; Guan, S.; Bahari, J.; Li, Z.; Baidya, A.; Cao, K.; Gao, X.; Li, J.; et al. A Breathable, Passive Cooling, NonInflammatory, and Biodegradable Aerogel Electronic Skin for Wearable Physical Electrophysiological Chemical Analysis. Adv. Mater. 2023, 35, e2209300. [Google Scholar] [CrossRef]
- Pu, Z.; Zhang, X.; Yu, H.; Tu, J.; Chen, H.; Liu, Y.; Su, X.; Wang, R.; Zhang, L.; Li, D. A Thermal Activated and Differential Self-Calibrated Flexible Epidermal Biomicrofluidic Device for Wearable Accurate Blood Glucose Monitoring. Sci. Adv. 2021, 7, eabd0199. [Google Scholar] [CrossRef]
- De la Paz, E.; Barfidokht, A.; Rios, S.; Brown, C.; Chao, E.; Wang, J. Extended Noninvasive Glucose Monitoring in the Interstitial Fluid Using an Epidermal Biosensing Patch. Anal. Chem. 2021, 93, 12767–12775. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, S.; Zhang, S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B.; Wang, X.; Feng, X. Skin-like Biosensor System via Electrochemical Channels for Noninvasive Blood Glucose Monitoring. Sci. Adv. 2017, 3, e1701629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipani, L.; Dupont, B.G.R.; Doungmene, F.; Marken, F.; Tyrrell, R.M.; Guy, R.H.; Ilie, A. Non-Invasive, Transdermal, Path-Selective and Specific Glucose Monitoring via a Graphene-Based Platform. Nat. Nanotechnol. 2018, 13, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Gong, X.; Yang, J.; Zheng, G.; Zheng, Y.; Li, Y.; Xu, Y.; Nie, G.; Xie, X.; Chen, M.; et al. A Touch-Actuated Glucose Sensor Fully Integrated with Microneedle Array and Reverse Iontophoresis for Diabetes Monitoring. Biosens. Bioelectron. 2022, 203, 114026. [Google Scholar] [CrossRef] [PubMed]
- Kemp, E.; Palomki, T.; Ruuth, I.A.; Boeva, Z.A.; Nurminen, T.A.; Vnsk, R.T.; Zschaechner, L.K.; Prez, A.G.; Hakala, T.A.; Wardale, M.; et al. Influence of Enzyme Immobilization and Skin-Sensor Interface on Non-Invasive Glucose Determination from Interstitial Fluid Obtained by Magnetohydrodynamic Extraction. Biosens. Bioelectron. 2022, 206, 114–123. [Google Scholar] [CrossRef]
- Wu, Y.; Tehrani, F.; Teymourian, H.; Mack, J.; Shaver, A.; Reynoso, M.; Kavner, J.; Huang, N.; Furmidge, A.; Duvvuri, A.; et al. Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring. Anal. Chem. 2022, 94, 8335–8345. [Google Scholar] [CrossRef]
- Li, H.; Wu, G.; Weng, Z.; Sun, H.; Nistala, R.; Zhang, Y. Microneedle-Based Potentiometric Sensing System for Continuous Monitoring of Multiple Electrolytes in Skin Interstitial Fluids. ACS Sens. 2021, 6, 2181–2190. [Google Scholar] [CrossRef]
- Zhu, D.D.; Tan, Y.R.; Zheng, L.W.; Lao, J.Z.; Liu, J.Y.; Yu, J.; Chen, P. Microneedle-Coupled Epidermal Sensors for In-Situ-Multiplexed Ion Detection in Interstitial Fluids. ACS Appl. Mater. Interfaces 2023, 15, 14146–14154. [Google Scholar] [CrossRef]
- Lin, S.; Cheng, X.; Zhu, J.; Wang, B.; Jelinek, D.; Zhao, Y.; Wu, T.-Y.; Horrillo, A.; Tan, J.; Yeung, J.; et al. Wearable Microneedle-Based Electrochemical Aptamer Biosensing for Precision Dosing of Drugs with Narrow Therapeutic Windows. Sci. Adv. 2022, 8, eabq4539. [Google Scholar] [CrossRef]
- Zheng, Y.; Omar, R.; Zhang, R.; Tang, N.; Khatib, M.; Xu, Q.; Milyutin, Y.; Saliba, W.; Broza, Y.Y.; Wu, W.; et al. A Wearable Microneedle-Based Extended Gate Transistor for Real-Time Detection of Sodium in Interstitial Fluids. Adv. Mater. 2022, 34, 2108607. [Google Scholar] [CrossRef]
- Dervisevic, M.; Alba, M.; Yan, L.; Senel, M.; Gengenbach, T.R.; Prieto-Simon, B.; Voelcker, N.H. Transdermal Electrochemical Monitoring of Glucose via High-Density Silicon Microneedle Array Patch. Adv. Funct. Mater. 2022, 32, 2009850. [Google Scholar] [CrossRef]
- Jin, X.; Li, G.; Xu, T.; Su, L.; Yan, D.; Zhang, X. Fully Integrated Flexible Biosensor for Wearable Continuous Glucose Monitoring. Biosens. Bioelectron. 2022, 196, 113760. [Google Scholar] [CrossRef] [PubMed]
- Parrilla, M.; Vanhooydonck, A.; Johns, M.; Watts, R.; De Wael, K. 3D-Printed Microneedle-Based Potentiometric Sensor for PH Monitoring in Skin Interstitial Fluid. Sens. Actuators B Chem. 2023, 378, 133–159. [Google Scholar] [CrossRef]
- Zhu, D.D.; Zheng, L.W.; Duong, P.K.; Cheah, R.H.; Liu, X.Y.; Wong, J.R.; Wang, W.J.; Tien Guan, S.T.; Zheng, X.T.; Chen, P. Colorimetric Microneedle Patches for Multiplexed Transdermal Detection of Metabolites. Biosens. Bioelectron. 2022, 212, 114412. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, H.; Li, J.; Bandodkar, A.J.; Rogers, J.A. Body-Interfaced Chemical Sensors for Noninvasive Monitoring and Analysis of Biofluids. Trends Chem. 2019, 1, 559–571. [Google Scholar] [CrossRef]
- Sim, D.; Brothers, M.C.; Slocik, J.M.; Islam, A.E.; Maruyama, B.; Grigsby, C.C.; Naik, R.R.; Kim, S.S. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Adv. Sci. 2022, 9, e2104426. [Google Scholar] [CrossRef]
- Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable Electrochemical Biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. [Google Scholar] [CrossRef]
- Parrilla, M.; Cuartero, M.; Crespo, G.A. Wearable Potentiometric Ion Sensors. TrAC Trends Anal. Chem. 2019, 110, 303–320. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Jeerapan, I.; Krishnan, S.; Wang, J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal. Chem. 2020, 92, 378–396. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jeerapan, I.; Wang, J. Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sens. 2016, 1, 464–482. [Google Scholar] [CrossRef]
- Pearlmutter, P.; DeRose, G.; Samson, C.; Linehan, N.; Cen, Y.; Begdache, L.; Won, D.; Koh, A. Sweat and Saliva Cortisol Response to Stress and Nutrition Factors. Sci. Rep. 2020, 10, 19050. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Yu, W.; Wang, B.; Zhao, Y.; En, K.; Zhu, J.; Cheng, X.; Zhou, C.; Lin, H.; Wang, Z.; et al. Noninvasive Wearable Electroactive Pharmaceutical Monitoring for Personalized Therapeutics. Proc. Natl. Acad. Sci. 2020, 117, 1901719025. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Schlenvoigt, G.; Ladwig, K.; Herrmann, D.; Moths, C.; Linse, R.; Neumann, C. The Sweat of Patients with Atopic Dermatitis Contains Specific IgE Antibodies to Inhalant Allergens. Clin. Exp. Dermatol. 1996, 21, 347–350. [Google Scholar] [CrossRef]
- Katchman, B.A.; Zhu, M.; Blain Christen, J.; Anderson, K.S. Eccrine Sweat as a Biofluid for Profiling Immune Biomarkers. PROTEOMICS Clin. Appl. 2018, 12, e1800010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Analyte | Electrochemical Method | Recognition Material | System Structure | Application Information | Ref. |
---|---|---|---|---|---|
Na+ | Potentiometry | ISE for Na+ | Tattoo | 0.1–100 mM, 63.75 mV/log10[Na+], | [62] |
Na+ | Potentiometry | ISE for Na+ | Epidermal Patch | 10 µM–1 M, 65.1 ± 0.25 mV decade−1 | [75] |
Na+ | Potentiometry | ISE for Na+ | Dual-Electrode | 0.1–100 mM, 0.05913 V per decade | [76] |
K+ | Potentiometry | ISE for K+ | Paper-Based Device | 1–32 mM, 61.79 mV per decade | [77] |
pH | Voltammetry | Graphite-polyurethane for pH | Epidermal Patch | pH 5–9, 11.13 ± 5.8 mV/pH | [78] |
Glucose | Amperometry | Glucose oxidase (GOx) | Self-Powered Smartwatch | 15–200 uM, 3.29 nA μM−1 | [79] |
Glucose | Amperometry | GOx | Epidermal Patch | 33 μM–0.9 mM, 105 μA cm−2 mM−1 | [80] |
Glucose | Amperometry | GOx | Band-Aid | 0–2.4 mM, 45 µA/mM | [81] |
Glucose | Amperometry | GOx | Fiber-Based Sensor | 0–500 μM, 11.7 μA mM−1 cm−2 | [82] |
Glucose | Amperometry | GOx | Epidermal Patch | 6.25 μM–0.8 mM, LOD of 4 μM, 20 µA/mM cm2 | [83] |
Lactate | Amperometry | Lactate oxidase (LOx) | Tattoo | 1 mM–20 mM, 10.31 μA/mM cm2 | [84] |
Ascorbate | Amperometry | Metal–organic frameworks | Epidermal Patch | 3 µM–0.897 mM, LOD of 1.0 μM, 0.41 mA cm−2 mM−1 | [85] |
Caffeine | Voltammetry | Carbon nanotubes (CNTs)/Nafion films | Wristband | 0–40 μM, LOD of 3 × 10−6 M, 110 nA mm−1 | [63] |
Cortisol | Amperometry | Carboxylate-rich pyrrole-derivative grafting graphene surface | Wearable Sensing Array | Cortisol 0.43–50.2 ng/mL, 2.41 nA/mm2 | [67] |
Cortisol | Conductometry | Organic electrochemical transistor with molecularly selective membrane (MSM) | Epidermal Patch | 0.01 to 10.0 μM, 2.68 μA dec−1 | [68] |
Cortisol | Conductometry | Aptamer field effect transistor | Flexible FET Array | 1 pM–1 μM | [86] |
Zn2+ | Voltammetry | Directly deposition and stripping | Temporary Tattoo-Based Printable Sensor | 0.1–2.0 μg/mL, LOD of 0.05 μg/mL, 23.8 μA∙mL/μg | [87] |
Glucose, lactate, pH, Na+ | Potentiometry; Amperometry | ISE for Na+; Polyaniline (PANI) for pH; LOx; GOx | Epidermal Patch | 0.1–100.0 mM and 62.4 mV per decade for Na+; pH 3–8 and 62.62 mV for pH; 0–30 mM lactate; 0–10 mM Glucose | [88] |
pH | Potentiometry | PANI for pH; | Non-Printed Integrated-Circuit Textile | 3–8 pH | [89] |
Amino acids, vitamins, lipids, and metabolites | Voltammetry | Laser-engraved graphene (LEG); redox-active nanoreporters (RARs); molecularly imprinted polymer (MIP)-based ‘artificial antibodies’ | Epidermal Flexible Patch | The average sensitivity is 1034.15 nA mm−2 μM−1 including Amino acids and Vitamins and Metabolites | [66] |
Glucose, lactate, choline | Amperometry | LOx and GOx and Choline oxidase | Freestanding Watch | Glucose: 0 to 1000 μM, 22.8 ± 0.7 μA mM−1 cm−2, LOD: 1.7 ± 0.7 μM; Lactate: 0 to 20 mM, 4.1 ± 0.3 μA mM−1 cm−2, LOD: 4.6 ± 3.0 μM; Choline: 0 to 350 μM, 4.1 ± 0.3 μA mM−1 cm−2, LOD: 4.6 ± 3.0 μM | [90] |
Glucose, lactate, chloride, pH | Potentiometry | LOx; GOx; silver chloranilate for chloride. pH-sensitive dye for pH | Epidermal Patch | Lactate 0–20 mM; glucose 0–400 μM | [91] |
Ca2+, K+, Na+ | Conductometry | ISEs for Na K Ca electrolyte-gated field-effect transistor (EGFET) | Sensing Array and Print-Circuit-Board | Concentration is within the 10 µM–100 mM range. −54.7 ± 2.90 mV/decade for K+; −56.8 ± 5.87 mV/decade for Na+ and −30.1 ± 1.90 mV/decade for Ca2+ | [60] |
Uric acid, ascorbic acid, glucose, lactate, Na+, K+ | Amperometry; Potentiometry | Nitrogen-doped carbon textiles as working electrode. GOx, LOx, ISE for Na+, K+. | Epidermal Patch | Glucose 25–300 μM, 6.3 nA μM−1, LOD 5 μM; lactate 5–35 mM, 174.0 nA mM−1, LOD 0.5 mM; AA.20–300 μM, LOD 1 μM, 22.7 nA μM−1; UA 2.5–115 μM, 196.6 nA μM−1, LOD 0.1 μM; 5 to 100 mM for Na+; 1.25 to 40 mM for K+; sensitivity of 51.8 and 31.8 mV per decade of concentration for Na+ and K+; LODs of the Na+ and K+ sensors are 1 and 0.5 mM | [92] |
Uric acid, glucose | Amperometry | Carboxyl-functionalized multiwall carbon nanotubes (MWCNT-COOH) for UA and Prussian Blue (PB)–glucose oxidase (GOD)-MWCNT-COOH composite for glucose. | Four-Electrode Sensor | 0–1.6 mM and 0–3.7 mM towards uric acid and glucose; LOD of 3.58 μM for UA and 9.10 μM for Glucose; 0.00389 μA μM−1 for UA and 1.341 μA mM−1 for glucose; | [93] |
Glucose, pH, temperature, humidity, tremor | Amperometry; Potentiometry | PEDOT for humidity; GOx for glucose; PANI for pH; graphene and au mesh for tremor and temperature. | Epidermal Patch | Glucose: LOD of 10 μM, 0.01–0.7 mM, 1 μA mM−1; pH 5–8 | [18] |
Uric acid and tyrosine, temperature, stress | Voltammetry | Direct oxidation of UA and Tyr by laser-engraved graphene-based chemical sensor (LEG-CS). LEG for temperature and strain | Epidermal Patch | Sensitivity 3.50 µA µM−1 cm−2 and 0.61 µA µM−1 cm−2 for UA and Tyr; LOD of 0.74 µM and 3.6 µM; 0–1 mM range | [94] |
Sweat rate and Na+ | Potentiometry | ISE for Na+; | Epidermal Patch | 10 to 160 mM, 57.635 mV/log (Na+) | [95] |
Glucose, lactate, pH | Amperometry; Potentiometry | GOx, LOx, PANI for pH | Epidermal Patch | pH 4–8; 35.3 µA mm−1 cm−2 and 11.4 µA mm−1 cm−2 for glucose and lactate; 0–1.5 mM glucose; 0–22 mM lactate | [96] |
Glucose, lactate | Amperometry | GOx, LOx | Epidermal Patch or Smartwatch | Glucose 0–400 mM and lactate 2 mM–10 mM | [97] |
Lactate, ECG | Amperometry | LOx. Single-lead monitoring systems for ECG. | Epidermal Patch | lactate 0–28 mM; 96 nA/mM | [45] |
Ca2+ pH temperature | Potentiometry | ISE for Ca2+; PANI for pH; | Wearable Sensing Array | pH 4–8; 34.2 mV/ per decade; 0.25–2 mM Ca2+ | [98] |
H+, Na+, K+, Cl−, sweat rate | Potentiometry | ISE for ions; microfluidic channel for sweat rate | Epidermal Patch | 15 mM–120 mM, 56 mV/decade for Na+ | [61] |
Sweat rate and pH and Cl− and Levodopa monitoring | Potentiometry; Amperometry | PANI for pH; ISE for Cl−; tyrosinase enzyme for levodopa. | Epidermal Patch | pH 4–8; Cl− 55 mV/decade, 25–200 mM; levodopa 0.2 nA μm−1, 0–50 μM | [64] |
Blood pressure, heart rate, glucose, lactate, caffeine, alcohol | Amperometry; Voltammetry | Multi-walled carbon nanotubes (MNCNTs) functionalized carbon electrode for caffeine. | Epidermal Patch | Lactate 0–30 mM; glucose 0–10 mM; alcohol 0–80 mM; caffeine 0–200 μM | [35] |
Na+, Cl−, glucose | Potentiometry; Amperometry | GOx, ion-selective films for Na+ and Cl− | Wearable Sensing Band | Glucose 2.1 nA/µM, 0–100 μM; Na+ and Cl− 10–160 mM, 63.2 and 55.1 mV per decade for Na+ Cl− | [99] |
Glucose, lactate | Amperometry | GOx, LOx | Epidermal Patch | Lactate 4–20 mM, 29.6 μM/μA; Glucose 2–10 mM | [100] |
Glucose, lactate, Na+, K+, temperature | Amperometry; Potentiometry | GOx, LOx, ISE for Na+ and K+, Au electrode for temperature | Flexible Sensor Array | Na+ 20–120 mM; K+ 2–16 mM; glucose 0–200 μM; lactate 2–30 mM. | [14] |
Zn2+, alcohol, pH, and Cl− and Vitamin C | Voltammetry; Potentiometry; Amperometry | Bismuth metal for Zn2+; alcohol oxidase enzyme; PANI for pH; Ag/AgCl for Cl−; ascorbate oxidase for Vitamin C. | Glove-Based Sensing Platform. Or Functionalized Finger Cots | 60.3 mV/pH and Cl− 52.8 mV per decade; vitamin C 0–300 μM; Zinc 0–2 mg/liter; Alcohol 0–6.5 mM | [101] |
Glucose, lactate | Amperometry | GOx, LOx | Three Electrode System | Glucose 25 to 250 μM, 0.0021 μA/μM; Lactate 1 to 25 mM, 0.65 μA/μM | [102] |
Na+, K+, glucose, and sweat rate | Potentiometry; Amperometry | ISE, GOx, silver electrode lines for sweat rate | Sensing Patches | Na+ sensor in 15 to 120 mM, 56.2 mV/decade; 51.3 mV/decade in standard solution of 5 to 40 mM K+; 1.0 nA/μM concentration range of 50 to 200 μM glucose | [103] |
Glucose, alcohol | Amperometry | GOx, AOx | Epidermal Patch | Glucose 0–160 μM; Alcohol 0–40 mM | [41] |
Glucose pH | Amperometry; Potentiometry | CoWO4/CNT for glucose; PANI/CNT for pH | Three Electrode Patch | Glucose 10.89 μA/mM, LOD of 1.3 μM, 0.05 mM–0.3 mM; pH 4–8, 71.44 mV/pH | [104] |
Na+, K+, pH | Conductometry | Ion-selective FET for ions | Lab On Skin FET System | K+ 55 mV/dec; Na+ 62 mV/dec; pH 36 mV/dec; Na 5–100 mM; K 5–50 mM | [56] |
Heave Metal Zn, Cd, Pb, Cu, and Hg temperature | Voltammetry; Potentiometry | Direct deposition and stripping, Au/Cr micro-lines for temperature | Four-Electrode System | Au WE sensitivities of 1.4, 4.1, and 2.9 nA·L/μg for Pb, Cu, and Hg, respectively Bi WE sensitivities for Zn, Cd, and Pb are 10.4, 7.1, and 5.4 nA·L/μg, respectively | [65] |
Glucose, humidity, pH, temperature | Amperometry; Potentiometry | GOx for glucose. PANI for pH. PEDOT Electrode for humidity. | Wearable/Disposable Epidermal Patch/Strip | Glucose 10 μM to 1 mM; pH 4–7 | [105] |
Glucose, lactate | Amperometry | GOx, LOx | Sweat-Collecting Patch | Lactate 0–20 mM; Glucose 0–250 mM | [106] |
Extraction | Analyte | Recognition Material | Application Information | Ref. |
---|---|---|---|---|
RI | ISF glucose | Glucose oxidase (GOx)-modified Prussian Blue transducer for glucose | 0–100 μM, sensitivity, 23 nA/μM; limit of detection, 3 μM | [135] |
ISF glucose and sweat alcohol | Alcohol oxidase (AOx) for alcohol and GOx for glucose | Glucose 0–160 μM; Alcohol 0–40 mM | [41] | |
Blood pressure heart rate glucose in ISF lactate, caffeine and alcohol in sweat, | GOx for glucose and LOx for lactate and alcohol oxidase for alcohol; Pulse-voltammetry for caffeine | Glucose 0–10 mM; Lactate 0–30 mM; Alcohol 0–80 mM; Caffeine 0–200 μM | [35] | |
Body temperature, hydration, and biopotentials via electrophysiological sensors and detect ISF glucose, lactate, and alcohol | GOx for glucose; LOx for lactate; AOx for alcohol | Glucose 0–10 mM; Lactate 0–20 mM; Alcohol 0–100 mM; Caffeine 0–200 μM | [136] | |
ISF glucose and Na+ | GOx for glucose and Na+ selective membrane for sodium | Glucose 0–400 mg/dL; | [137] | |
ISF glucose | GOx-modified Prussian Blue for glucose | Glucose 0–22 mM, sensitivity, 0.4 μA/mM | [138] | |
ISF glucose | GOx for glucose | Sensitivity: 130.4 μA/mM @ 5 to 35 μM, 158.0 μA/mM @ 50 to 100 μM, 196.3 μA/mM @150 to 225 μM | [139] | |
RI | ISF glucose | GOx for glucose | Glucose 1μM–2.8 mM; Sensitivity 2.2 µA mM−1 cm−2; LOD 2.8 μM | [140] |
ISF glucose | GOx for glucose | Glucose 0–30 mM; Sensitivity 14.45 ± 2.97 μA mM−1 cm−2; LOD 0.06 μM | [36] | |
ISF glucose | GOx for glucose | Glucose 3 mM to 13 mM; Sensitivity 0.50 μA mM−1; LOD 0.92 mM | [141] | |
Magnetohydrodynamic extraction | ISF glucose | GOx for glucose | Glucose 0–35 μM; Sensitivity 3.5 ± 1.7 A/M·cm2; LOD 2.1 μM | [142] |
MN | ISF glucose alcohol lactate | GOx for glucose LOx for lactate AOx for alcohol | Glucose 0–40 mM, LOD 0.32 mM; Lactate 0–28 mM, LOD 0.15 mM; Alcohol 0–100 mM, LOD 0.50 mM; | [37] |
Drug monitoring: tobramycin and irinotecan and doxorubicin. | Directly by square-wave voltammetry | Tobramycin: Dynamic range 100 μM–5 mM and LOD of 50 μM @ 150 Hz, 50 μM–5 mM and LOD of 1 μM @ 800 Hz; Irinotecan: Dynamic range 10 nM–2 μM and LOD of 10 nM @ 10 Hz, 100 nM–5 μM and LOD of 10 nM @ 100 Hz; Doxorubicin: Dynamic range 10 nM–5 μM and LOD of 10 nM @ 10 Hz, 200 nM–5 μM and LOD of 100 nM @ 100 Hz; | [143] | |
Na+ and K+ | Na+ selective membrane for sodium; K+ selective membrane for potassium | Na+: 0–200 mM, 56.08 mV/decade; K+: 0–15 mM, 50.03 mV/decade. | [144] | |
Na+, K+, Ca2+ and pH | ion-selective membrane for Na+ K+ Ca2+ and H+ | Na+: 0.75–200 mM, K+: 1–128 mM, Ca2+: 0.25–4.25 mM, pH: 5.5–8.5; 6.87 μL/needle in 5 min for ISF extraction. | [145] | |
Drug monitoring: tobramycin and vancomycin | Directly by square-wave voltammograms with aptamers | Tobramycin: 0–100 μM; Vancomycin: 0–100 μM | [146] | |
Drug monitoring: levodopa | Directly by square-wave voltammograms and chronoamperometry at unmodified and tyrosinase-modified carbon-paste microneedle electrodes, respectively | Square wave voltammograms: 0–160 μM, sensitivity 0.037 μA/μM; Chronoamperometry: 20–300 μM, sensitivity 0.048 nA/μM. | [121] | |
Na+ | ion-selective membrane for Na+ | Na+: 10–160 mM, sensitivity 5.61 mA/mM, LOD 2.78 μM. | [147] | |
ISF glucose | GOx for glucose | Glucose 1–11 mM, sensitivity 0.58 μA/mM cm2, LOD 0.45 mM | [148] | |
ISF glucose | GOx for glucose | Glucose 1–30 mM, sensitivity 12.69 μA/mM cm2 | [149] | |
ISF pH | PANI for pH; | pH 5–9, sensitivity 67.2 ± 1 mV/pH | [150] | |
ISF glucose, lactate, cholesterol, and pH | GOx for glucose; LOx for lactate; cholesterol oxidase for cholesterol; bromocresol green for pH | 16.22 μL in 20 min for ISF extraction; Glucose 0–16 mM; Lactate 0–3.2 mM; Cholesterol 0–12 mM; pH 0–8; | [151] |
Analytes Found in Blood, Interstitial Fluid (ISF), and Sweat | |||||||
---|---|---|---|---|---|---|---|
Reported Range in Biofluids | Molecular Weight (Da) | Diagnostic Example | Ref. | ||||
Blood | Sweat | ISF | |||||
Electrolytes | Na+ | 135–145 mM | 10–100 mM | Similar to blood | 23 | Hydration, heart failure | [14,59,62,152,153,154] |
K+ | 3.5–5 mM | ~5–15 mM | Similar to blood | 39 | Hydration state | [14,59,60,77,152,153] | |
Cl− | 96–106 mM | 10–100 mM | Similar to blood | 35 | Cystic fibrosis | [14,59,77,152,153,154,155] | |
Metabolites | Glucose | 3.9–5.5 mM | 6–300 μM | 0.8–5 mM | 180 | Diabetes, metabolic syndrome | [14,59,79,80,82,83,88,90,152,153] |
Lactate | 0.35–10 mM | 3.7–50 mM | 2.5–6.6 mM | 90 | Lactic acidosis | [14,59,90,91,97,152,153,156] | |
Uric Acid | 0.1–0.4 mM | 4–100 μM | Similar to blood | 168 | Gout | [92,93,94,157] | |
Hormones | Cortisol | 0.7 × 10−4–0.69 μM | 10−4–0.02 μM | Similar to blood | 362 | Psychological stress, anxiety | [67,68,86,152,153,158] |
Drug | Levodopa | 0.5–15 μM | Similar to blood | Similar to blood | 197 | Treatment for Parkinson | [64,159] |
Antibodies | Varies; total ~0.4–16 mg mL−1 | highly diluted | 15–25% of blood | Hundreds of kilodaltons | To identify host response | [9,32,59,160,161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Cui, T.; Liu, H.; Jian, J.; Li, D.; Yang, Y.; Ren, T. Wearable Chemosensors in Physiological Monitoring. Chemosensors 2023, 11, 459. https://doi.org/10.3390/chemosensors11080459
Tang Z, Cui T, Liu H, Jian J, Li D, Yang Y, Ren T. Wearable Chemosensors in Physiological Monitoring. Chemosensors. 2023; 11(8):459. https://doi.org/10.3390/chemosensors11080459
Chicago/Turabian StyleTang, Zeyi, Tianrui Cui, Houfang Liu, Jinming Jian, Ding Li, Yi Yang, and Tianling Ren. 2023. "Wearable Chemosensors in Physiological Monitoring" Chemosensors 11, no. 8: 459. https://doi.org/10.3390/chemosensors11080459
APA StyleTang, Z., Cui, T., Liu, H., Jian, J., Li, D., Yang, Y., & Ren, T. (2023). Wearable Chemosensors in Physiological Monitoring. Chemosensors, 11(8), 459. https://doi.org/10.3390/chemosensors11080459