GC/MS Profile and Antifungal Activity of Zanthoxylum caribaeum Lam Essential Oil against Moniliophthora roreri Cif and Par, a Pathogen That Infects Theobroma cacao L Crops in the Tropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Essential Oil
2.3. Chromatographic Analysis
2.4. Antimicrobial Activity
2.4.1. Isolation of Moniliophthora roreri
2.4.2. Antifungal Activity against Moniliophthora roreri
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appelhans, M.S.; Reichelt, N.; Groppo, M.; Paetzold, C.; Wen, J. Molecular Phylogenetics and Evolution Phylogeny and biogeography of the pantropical genus Zanthoxylum and its closest relatives in the proto-Rutaceae group (Rutaceae). Mol. Phylogenet. Evol. 2018, 126, 31–44. [Google Scholar] [CrossRef] [PubMed]
- De, P.; Rutaceae, Z.L.; Rivas-arancibia, S.P. Distribution patterns of the genus Zanthoxylum L. (Rutaceae) in Mexico. Rev. Mex. Biodivers. 2013, 84, 1179–1188. [Google Scholar] [CrossRef]
- Syowai, E.; Kimutai, F.; Mbandi, E.; Nyongesa, E.; Ochieng, W.; Nanjala, C.; Njambi, C.; Kirega, M.; Muguci, M.; Wahiti, R.; et al. Ethnobotanical uses, phytochemistry and pharmacology of pantropical genus Zanthoxylum L. (Rutaceae): An update nuclear Magnetic Resonance Spectroscopy. J. Ethnopharmacol. 2023, 303, 115895. [Google Scholar] [CrossRef]
- Tan, M.A.; Sharma, N. Phyto-Carbazole Alkaloids from the Rutaceae Family as Potential Protective Agents against Neurodegenerative Diseases. Antioxidants 2022, 11, 493. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Zhou, Q.; Zhou, Q.; Xie, Y.; Khan, A.; Zhou, Z.; Lv, X.; Liu, L. Fitoterapia (±)-Zanthonitidumines A and B: Two new benzophenanthridine alkaloids enantiomers from Zanthoxylum nitidum and their anti-inflammatory activity. Fitoterapia 2023, 164, 105362. [Google Scholar] [CrossRef]
- Qin, F.; Wang, F.; Wang, C.; Chen, Y.; Li, M.; Zhu, Y.; Huang, X.; Fan, C.; Wang, H. Fitoterapia The neurotrophic and antineuroinflammatory effects of phenylpropanoids from Zanthoxylum nitidum var. tomentosum (Rutaceae). Fitoterapia 2021, 153, 104990. [Google Scholar] [CrossRef]
- Kerubo, L.; Nchiozem-ngnitedem, V.; Guefack, M.F. South African Journal of Botany Antibacterial activities of thirteen naturally occuring compounds from two Kenyan medicinal plants: Zanthoxylum paracanthum (Mildbr). Kokwaro (Rutaceae) and Dracaena usambarensis Engl. (Asparagaceae) against MDR phenotypes. S. Afr. J. Bot. 2022, 151, 756–762. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Shi, X.; Xia, X.; He, Y.; Zhu, Y.; Xie, T.; Liu, T.; Xu, X.; Luo, X. Food Bioscience Comparison of chemical constituents in diverse zanthoxylum herbs, and evaluation of their relative antibacterial and nematicidal activity. Food Biosci. 2021, 42, 101206. [Google Scholar] [CrossRef]
- Rusconi, M.; Conti, A. Theobroma cacao L., the Food of the Gods: A scientific approach beyond myths and claims. Pharmacol. Res. 2010, 61, 5–13. [Google Scholar] [CrossRef]
- Dillinger, T.L.; Barriga, P.; Esca, S.; Jimenez, M.; Lowe, D.S.; Grivetti, L.E. Chocolate: Modern Science Investigates an Ancient Medicine Food of the Gods: Cure for Humanity? A Cultural History of the Medicinal and Ritual Use of Chocolate 1. J. Nutr. 2000, 130, 2057–2072. [Google Scholar] [CrossRef]
- Pérez-Vicente, L. Moniliophthora roreri H.C. Evans et al. y Moniliophthora perniciosa (Stahel) Aime: Impacto, síntomas, diagnóstico, epidemiología y manejo. Rev. Protección Veg. 2018, 33, 1–13. [Google Scholar]
- de Brito, E.S.; García, N.H.P.; Gallão, M.I.; Cortelazzo, A.L.; Fevereiro, P.S.; Braga, M.R. Structural and chemical changes in cocoa (Theobroma cacao L.) during fermentation, drying and roasting. J. Sci. Food Agric. 2001, 288, 281–288. [Google Scholar] [CrossRef]
- Bari, V.; Cihat, N.; Akyil, S.; Said, O. Trends in Food Science & Technology Cocoa based beverages–Composition, nutritional value, processing, quality problems and new perspectives. Trends Food Sci. Technol. 2023, 132, 65–75. [Google Scholar] [CrossRef]
- Swaray, R. Commodity buffer stock redux: The role of International Cocoa Organization in prices and incomes. J. Policy Model. 2011, 33, 361–369. [Google Scholar] [CrossRef]
- Hebbar, P.K. e-X tra * Cacao Diseases: Important Threats to Chocolate Production Worldwide Cacao Diseases: A Global Perspective from an Industry Point of View. 1997. [Google Scholar]
- Cubillos, G. Frosty Pod Rot, disease that affects the cocoa (Theobroma cacao) crops in Colombia. Crop. Prot. 2017, 96, 77–82. [Google Scholar] [CrossRef]
- Hütz-Adams, F.; Campos, P.; Fountain, A.C. Barómetro del cacao Base de referencia para Latinoamérica; Consorcio del Barómetro del Cacao. 2022. [Google Scholar]
- Wuellins, D. Cadena del Valor del Cacao; FONTAGRO: Washington, DC, USA, 2019; ISBN 9789942364654. [Google Scholar]
- Correa Alvarez, J.; Castro Martínez, S.; Coy, J. Estado de la Moniliasis del cacao causada por Moniliophthora roreri en Colombia. Acta Agronómica 2014, 63, 388–399. [Google Scholar] [CrossRef]
- Guillermo, J.; Gil, R. Pérdidas económicas asociadas a la pudrición de la mazorca del cacao causada por Phytophthora spp., y Moniliophthora roreri (Cif y Par) Evans et al., en la hacienda Theobroma, Colombia. Rev. De Protección Veg. 2016, 31, 42–49. [Google Scholar]
- Manrique-moreno, M.; Klaiss-luna, M.C.; Stashenko, E.; Zafra, G.; Ortiz, C. Effect of Essential Oils on Growth Inhibition, Biofilm Formation and Membrane Integrity of Escherichia coli and Staphylococcus aureus. Antibiotics 2021, 10, 1474. [Google Scholar]
- Palumbo, J.D.; Keeffe, T.L.O. Method for high-throughput antifungal activity screening of bacterial strain libraries. J. Microbiol. Methods 2021, 189, 106311. [Google Scholar] [CrossRef]
- Garnier, L.; Salas, M.L.; Pinon, N.; Wiernasz, N.; Pawtowski, A.; Coton, E.; Mounier, J.; Valence, F. Technical note: High-throughput method for antifungal activity screening in a cheese-mimicking model. J. Dairy Sci. 2018, 101, 4971–4976. [Google Scholar] [CrossRef]
- Hornby, B.D.; Bateman, G.L.; Payne, R.W.; Brown, M.E. Field tests of bacteria and soil-applied fungicides as control agents for take-all in winter wheat. Ann. Appl. Biol. 1993, 122, 253–270. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Dinh, M.H.; Chi, H.T.; Wang, S.L.; Nguyen, Q.V.; Tran, T.D.; Nguyen, A.D. Antioxidant and cytotoxic activity of lichens collected from Bidoup Nui Ba National Park, Vietnam. Res. Chem. Intermed. 2019, 45, 33–49. [Google Scholar] [CrossRef]
- Maric, M.; de Haan, E.; Huizenga, H.M. ScienceDirect Evaluating Statistical and Clinical Significance of Intervention Effects in Single-Case Experimental Designs: An SPSS Method to Analyze Univariate Data. Behav. Ther. 2015, 46, 230–241. [Google Scholar] [CrossRef]
- Liang, J.; Tang, M.; Chan, P.S. A generalized Shapiro–Wilk W statistic for testing high-dimensional. Comput. Stat. Data Anal. 2009, 53, 3883–3891. [Google Scholar] [CrossRef]
- Sesaazi, C.D.; Peter, E.L.; Mtewa, A.G. The anti-nociceptive effects of ethanol extract of aerial parts of Schkuhria pinnata in mice. J. Ethnopharmacol. 2021, 271, 113913. [Google Scholar] [CrossRef]
- Shirani, M.; Savabi, O.; Mosharraf, R. Comparison of translucency and opalescence among different dental monolithic ceramics. J. Prosthet. Dent. 2021, 126, 446.e1–446.e6. [Google Scholar] [CrossRef]
- Nogueira, J.; Mourão, S.C.; Dolabela, I.B. Zanthoxylum caribaeum (Rutaceae) essential oil: Chemical investigation and biological effects on Rhodnius prolixus nymph. Parasitol. Res. 2014, 113, 4271–4279. [Google Scholar] [CrossRef]
- Farouil, L.; Dias, R.P.; Popotte-julisson, G.; Bibian, G.; Adou, A.I.; de Mata, A.P.; Sylvestre, M.; Harynuk, J.J.; Cebri, G. The Metabolomic Profile of the Essential Oil from Zanthoxylum caribaeum (syn. chiloperone) Growing in Guadeloupe FWI using GC × GC-TOFMS. Metabolites 2022, 12, 1293. [Google Scholar] [CrossRef]
- de Lara de Souza, J.G.; Toledo, A.G.; Walerius, A.H.; Jann Favreto, W.A.; da Costa, W.F.; da Silva Pinto, F.G. Chemical Composition, Antimicrobial, Repellent and Antioxidant Activity of Essential Oil of Zanthoxylum caribaeum Lam. J. Essent. Oil Bear. Plants 2019, 22, 380–390. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Spectrometry, M.; Adams, R.P. Identification of Essential Oil Components by Gas Chromatography; Texensis Publishing: Gruver, TX, USA, 2017; ISBN 9781932633214. [Google Scholar]
- Le, N.V.; Sam, L.N.; Huong, L.T.; Ogunwande, I.A. Chemical Compositions of Essential Oils and Antimicrobial Activity of Piper albispicum C. DC. from Vietnam. J. Essent. Oil Bear. Plants 2022, 25, 82–92. [Google Scholar] [CrossRef]
- NIST Standard Reference Database. NIST/EPA/NIH Spectral Library with Search Program, Version 2.3; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
- McLafferty, F.W.; Douglas, B.S. The Wiley/NBS Registry of Mass Spectral Data, 2nd ed.; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Echeverri, L.I.; Arroyave, E.A.; Barajas, F.H. Comparación de pruebas de normalidad. XXI Simp. Int. Estad 2015, 8–11. [Google Scholar]
- Li, T.; Chen, M.; Ren, G.; Hua, G.; Mi, J.; Jiang, D. Antifungal Activity of Essential Oil From Zanthoxylum armatum DC. on Aspergillus flavus and Aflatoxins in Stored Platycladi Semen. Front. Microbiol. 2021, 12, 633714. [Google Scholar] [CrossRef] [PubMed]
- Houicher, A.; Hechachna, H.; Özogul, F. In Vitro Determination of the Antifungal Activity of Artemisia campestris Essential Oil from Algeria In Vitro Determination of the Antifungal Activity of Artemisia campestris Essential Oil from Algeria. Int. J. Food Prop. 2016, 19, 1749–1756. [Google Scholar] [CrossRef]
- Fraternale, D.; Ricci, D.; Biomolecolari, S.; Biologia, S.; Carlo, U. Essential oil composition and antifungal activity of aerial parts of Ballota nigra ssp foetida collected at flowering and fruiting times. Nat. Prod. Commun. 2014, 9, 1934578X1400900733. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Halima, N.B.; Abdelkafi, S.; Hamdi, N. Essential Oil from Artemisia phaeolepis: Chemical Composition and Antimicrobial Activities. J. Oleo Sci. 2013, 980, 973–980. [Google Scholar] [CrossRef]
- Alvarenga, E.S.; Moreira, C.; Barreto, R.W. Chemical Characterization of Volatile Compounds of Lantana camara L. and L. radula Sw. and Their Antifungal Activity. Molecules 2012, 17, 11447–11455. [Google Scholar] [CrossRef]
- Venturi, C.R.; Danielli, L.J.; Klein, F.; Apel, M.A.; Montanha, J.A.; Bordignon, S.A.L.; Roehe, P.M.; Alexandre, M.; Henriques, A.T.; Venturi, C.R.; et al. Chemical analysis and in vitro antiviral and antifungal activities of essential oils from Glechon spathulata and Glechon marifolia Chemical analysis and in vitro antiviral and antifungal activities of essential oils from Glechon spathulata and Glechon marifolia. Pharm. Biol. 2015, 53, 682–688. [Google Scholar] [CrossRef]
- Juárez, Z.N.; Bach, H.; Sánchez-Arreola, E.; Hernández, L.R. Protective antifungal activity of essential oils extracted from Buddleja perfoliata and Pelargonium graveolens against fungi isolated from stored grains. J. Appl. Microbiol. 2016, 120, 1264–1270. [Google Scholar] [CrossRef]
Peak N° | Compound | Linear Retention Indices | % Area, GC-FID DB-5MS | mg Compound/g EO, Value ± sx k | |||||
---|---|---|---|---|---|---|---|---|---|
DB-5 (Non-Polar) | DB-WAX (Polar) | ||||||||
Exp. | Lit. | Exp. | Lit. | ||||||
1 | (Z)-Hex-3-en-1-ol a,b,d | 855 | 856 [33] | 1383 | 1380 [33] | 0.3 | 3.7 | ± | 0.12 |
2 | (E)-Hex-2-en-1-ol a,b,d | 865 | 864 [33] | 1404 | 1399 [33] | 0.2 | 2.9 | ± | 0.13 |
3 | Hexan-1-ol a,b,d | 869 | 869 [33] | 1351 | 1351 [33] | 0.3 | 3.2 | ± | 0.13 |
4 | α-Thujene a,b,e | 926 | 927 [33] | 1022 | 1026 [33] | 0.2 | 1.64 | ± | 0.09 |
5 | α-Pinene a,b,c | 934 | 936 [33] | 1017 | 1025 [33] | 0.2 | 2.1 | ± | 0.10 |
6 | Sabinene a,b,c | 974 | 973 [33] | 1118 | 1122 [33] | 0.3 | 3.54 | ± | 0.08 |
7 | β-Myrcene a,b,c | 989 | 988 [34] | 1162 | 1160 [33] | 2.2 | 32 | ± | 2.40 |
8 | α-Terpinene a,b,c | 1018 | 1017 [33] | 1177 | 1177 [33] | 0.3 | 3.3 | ± | 0.15 |
9 | p-Cymene a,b,c | 1026 | 1024 [33] | 1270 | 1270 [33] | 1.5 | 13.6 | ± | 0.27 |
10 | Limonene a,b,c | 1032 | 1029 [33] | 1199 | 1198 [33] | 9.3 | 73 | ± | 1.9 |
11 | β-Phellandrene a,b,f | 1034 | 1030 [33] | 1207 | 1209 [33] | 1.4 | 14.0 | ± | 0.17 |
12 | (E)- β-Ocimene a,b,g | 1047 | 1047 [33] | 1251 | 1250 [33] | 1.2 | 17 | ± | 2.5 |
13 | γ-Terpinene a,b,c | 1060 | 1059 [35] | 1244 | 1245 [33] | 1.4 | 13.9 | ± | 0.13 |
14 | Linalool a,b,c | 1100 | 1099 [33] | 1546 | 1543 [33] | 0.6 | 6.01 | ± | 0.07 |
15 | 4,8-Dimethyl-1,3,7-nonatriene a,b,g | 1113 | 1116 [AA] | 1306 | 1306 [AA] | 0.2 | 2.33 | ± | 0.08 |
16 | Terpinen-4-ol a,b,c,h | 1185 | 1177 [AA] | 1605 | 1601 [33] | 0.2 | 2.39 | ± | 0.07 |
17 | N.I. M+• m/z 152 (C15H16O) a,b,h | 1201 | - | - | 0.3 | 3.19 | ± | 0.07 | |
18 | (E,E)-2,6-Dimethyl-3,5,7-octatriene-2-ol a,b,h | 1209 | 1209 [AA] | 1820 | 1830 [AA] | 1.4 | 14.73 | ± | 0.09 |
19 | (Z)-Ocimenone a,b,h | 1233 | 1226 [34] | 1698 | 1697 [AA] | 0.5 | 5.58 | ± | 0.07 |
20 | (E)-Ocimenone a,b,h | 1241 | 1235 [34] | 1718 | 1718 [AA] | 0.3 | 3.62 | ± | 0.07 |
21 | α-Cubebene a,b,i | 1349 | 1351 [33] | 1459 | 1460 [33] | 0.7 | 7 | ± | 1.4 |
22 | α-Copaene a,b,i | 1380 | 1376 [33] | 1495 | 1491 [33] | 3.0 | 27 | ± | 1.5 |
23 | N.I. M+• m/z 204 (C15H24) a,b,i | 1385 | - | 1581 | - | 0.6 | 6 | ± | 1.4 |
24 | β-Elemene a,b,i | 1395 | 1390 [33] | 1594 | 1590 [33] | 13.4 | 116 | ± | 1.6 |
25 | β-Ylangene a,b,i | 1426 | 1421 [33] | 1577 | 1576 [33] | 0.7 | 7 | ± | 1.4 |
26 | (E)-β-Caryophyllene a,b,c | 1429 | 1420 [33] | 1601 | 1598 [33] | 0.3 | 3.26 | ± | 0.08 |
27 | (E)-α-Bergamotene a,b,i | 1438 | 1434 [33] | 1587 | 1579 [AA] | 1.3 | 12 | ± | 1.5 |
28 | (E)-β-Farnesene a,b,i | 1457 | 1455 [33] | 1669 | 1663 [33] | 14.8 | 128 | ± | 1.5 |
29 | α-Humulene a,b,c,i | 1465 | 1453 [33] | 1674 | 1666 [33] | 0.3 | 2.81 | ± | 0.08 |
30 | Alloaromadendrene a,b,i | 1469 | 1460 [AA] | 1649 | 1649 [33] | 0.2 | 1.70 | ± | 0.08 |
31 | Germacrene D a,b,c,i | 1492 | 1480 [33] | 1718 | 1710 [33] | 26.4 | 228 | ± | 1.6 |
32 | Bicyclogermacrene a,b,i | 1504 | 1499 [34] | 1737 | 1734 [33] | 3.3 | 29 | ± | 1.4 |
33 | Cubebol a,b,j | 1524 | 1514 [34] | 1941 | 1941 [33] | 1.6 | 24 | ± | 2.3 |
34 | δ-Cadinene a,b,i | 1524 | 1523 [33] | 1758 | 1755 [33] | 2.3 | 21 | ± | 1.5 |
35 | Elemol a,b,j | 1554 | 1547 [34] | 2078 | 2078 [33] | 0.4 | 4.37 | ± | 0.07 |
36 | (E)-Nerolidol a,b,c,j | 1564 | 1560 [33] | 2040 | 2036 [33] | 6.2 | 74 | ± | 2.2 |
37 | Spathulenol a,b,j | 1585 | 1576 [33] | 2122 | 2126 [33] | 0.3 | 3.01 | ± | 0.06 |
38 | Germacrene D-4-ol a,b,j | 1585 | 1574 [33] | 2049 | 2056 [33] | 0.6 | 7.21 | ± | 0.07 |
39 | (E)-Sesquisabinene hydrate a,b,j | 1585 | 1583 [33] | 2084 | 2092 [33] | 0.5 | 5.42 | ± | 0.07 |
40 | Ledola,b,j | 1615 | 1601 [34] | 2029 | 2039 [33] | 0.2 | 1.89 | ± | 0.07 |
41 | N.I. M+• m/z 220 (C15H24O) a,b,j | 1649 | - | - | - | 0.6 | 6.67 | ± | 0.08 |
42 | α-Cadinol | 1664 | 1652 [34] | 2229 | 2227 [33] | 0.1 | 1.66 | ± | 0.07 |
43 | Phytol a,b,i | 2107 | 2102 [36] | - | 2613 [33] | 0.1 | 1.42 | ± | 0.08 |
Treatments | % Inhibition | GR * (cm/día) | Shapiro–Wilk | ||
---|---|---|---|---|---|
gl | Sig. | ||||
T1 (5 µL/mL) | 28.27 | 0.75 | 1.76 | 3 | 0.342 |
T2 (10 µL/mL) | 88.29 | 0.25 | 0.97 | 3 | 0.917 |
T3 (50 µL/mL) | 95.99 | 0.05 | 0.20 | 3 | 0.391 |
T4 (100 µL/mL) | 98.96 | 0.033 | 0.04 | 3 | 0.000 |
T5 (496 µL/mL) | 100.00 | 0.00 | 0.00 | 3 | 0.000 |
T6 (Control −) PDA | 0.00 | 0.83 | 2.63 | 3 | 0.000 |
T7 (Control +) copper oxychloride (Cu2(OH)3Cl) | 100.00 | 0.00 | 0.00 | 3 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Estrada, M.; Jiménez-González, A.; Duarte, D.; Saavedra-Barrera, R.; Areche, C.; Stashenko, E.; Pino Benítez, N.; Bárcenas-Pérez, D.; Cheel, J.; García-Beltrán, O. GC/MS Profile and Antifungal Activity of Zanthoxylum caribaeum Lam Essential Oil against Moniliophthora roreri Cif and Par, a Pathogen That Infects Theobroma cacao L Crops in the Tropics. Chemosensors 2023, 11, 447. https://doi.org/10.3390/chemosensors11080447
Fuentes-Estrada M, Jiménez-González A, Duarte D, Saavedra-Barrera R, Areche C, Stashenko E, Pino Benítez N, Bárcenas-Pérez D, Cheel J, García-Beltrán O. GC/MS Profile and Antifungal Activity of Zanthoxylum caribaeum Lam Essential Oil against Moniliophthora roreri Cif and Par, a Pathogen That Infects Theobroma cacao L Crops in the Tropics. Chemosensors. 2023; 11(8):447. https://doi.org/10.3390/chemosensors11080447
Chicago/Turabian StyleFuentes-Estrada, Marcial, Andrea Jiménez-González, Diannefair Duarte, Rogerio Saavedra-Barrera, Carlos Areche, Elena Stashenko, Nayive Pino Benítez, Daniela Bárcenas-Pérez, José Cheel, and Olimpo García-Beltrán. 2023. "GC/MS Profile and Antifungal Activity of Zanthoxylum caribaeum Lam Essential Oil against Moniliophthora roreri Cif and Par, a Pathogen That Infects Theobroma cacao L Crops in the Tropics" Chemosensors 11, no. 8: 447. https://doi.org/10.3390/chemosensors11080447
APA StyleFuentes-Estrada, M., Jiménez-González, A., Duarte, D., Saavedra-Barrera, R., Areche, C., Stashenko, E., Pino Benítez, N., Bárcenas-Pérez, D., Cheel, J., & García-Beltrán, O. (2023). GC/MS Profile and Antifungal Activity of Zanthoxylum caribaeum Lam Essential Oil against Moniliophthora roreri Cif and Par, a Pathogen That Infects Theobroma cacao L Crops in the Tropics. Chemosensors, 11(8), 447. https://doi.org/10.3390/chemosensors11080447