Electrochemical Sensing of Zinc Oxide and Peroxide Nanoparticles: Modification with Meso-tetrakis(4-carboxyphenyl) Porphyrin
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Preparation of Zinc Peroxide Nanoparticles
2.3. Sample Preparation
2.4. Scanning Electron Microscopy
2.5. Electrochemical Analysis
2.6. Modifications with Polypyrrole and Meso-tetrakis(4-carboxyphenyl) Porphyrin
3. Results and Discussion
3.1. Structural Characterization of ZnO2 Nanoparticles
3.2. Cyclic Voltammetry
3.3. Responsivity of Metabisulfite towards TMONPs
3.4. Modification of SPEs with Polypyrrole Coating
3.5. Modification of SPEs with Meso-tetrakis(4-carboxyphenyl) Porphyrin
3.6. Potential Shortcomings and Challenges
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albu, Z.; Alzaid, F.; AlQahtani, S.; AlAbass, N.; Alenazey, F.; Allehyani, I.; AlOtaibi, B. Improving water oxidation performance by implementing heterointerfaces between ceria and metal-oxide nanoparticles. J. Colloid Interface Sci. 2021, 587, 39–46. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Dourandish, Z.; Jahani, P.M.; Sheikhshoaie, I.; Askari, M.B.; Salarizadeh, P.; Nejad, F.G.; Kim, D.; Kim, S.Y.; et al. Applications of non-precious transition metal oxide nanoparticles in electrochemistry. Electroanalysis 2022, 34, 1065–1091. [Google Scholar] [CrossRef]
- Greiner, M.T.; Chai, L.; Helander, M.G.; Tang, W.M.; Lu, Z.H. Transition metal oxide work functions: The influence of cation oxidation state and oxygen vacancies. Adv. Funct. Mater. 2012, 22, 4557–4568. [Google Scholar] [CrossRef]
- Akbari, A.; Amini, M.; Tarassoli, A.; Eftekhari-Sis, B.; Ghasemian, N.; Jabbari, E. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct. Nano-Objects 2018, 14, 19–48. [Google Scholar] [CrossRef]
- Sarno, M. Chapter 22—Nanotechnology in energy storage: The supercapacitors. Stud. Surf. Sci. Catal. 2020, 179, 431–458. [Google Scholar]
- Diao, F.; Wang, Y. Transition metal oxide nanostructures: Premeditated fabrication and applications in electronic and photonic devices. Mater. Sci. 2018, 53, 4334–4359. [Google Scholar] [CrossRef]
- Dimapilis, E.A.S.; Hsu, C.; Mendoza, R.M.O.; Lu, M.C. Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 2018, 28, 47–56. [Google Scholar] [CrossRef]
- Vergara-Llanos, D.; Koning, T.; Pavicic, M.F.; Bello-Toledo, H.; Díaz-Gómez, A.; Jaramillo, A.; Melendrez-Castro, M.; Ehrenfeld, P.; Sánchez-Sanhueza, G. Antibacterial and cytotoxic evaluation of copper and zinc oxide nanoparticles as a potential disinfectant material of connections in implant provisional abutments: An in-vitro study. Arch. Oral Biol. 2021, 122, 105031. [Google Scholar] [CrossRef]
- Almaieli, L.M.A.; Khalaf, M.M.; Gouda, M.; Alhayyani, S.; Abou Taleb, M.F.; Abd El-Lateef, H.M. Titanium dioxide/chromium oxide/graphene oxide doped into cellulose acetate for medical applications. Polymers 2023, 15, 485. [Google Scholar] [CrossRef]
- Singh, S.; Pal, K. Exploration of polydopamine capped bimetallic oxide (CuO-NiO) nanoparticles inspired by mussels for enhanced and targeted paclitaxel delivery for synergistic breast cancer therapy. Appl. Surf. Sci. 2023, 626, 157266. [Google Scholar] [CrossRef]
- Bi, X.; Bai, Q.; Liang, M.; Yang, D.; Li, S.; Wang, L.; Liu, J.; Yu, W.W.; Sui, N.; Zhu, Z. Silver peroxide nanoparticles for combined antibacterial sonodynamic and photothermal therapy. Small 2022, 18, 2104160. [Google Scholar] [CrossRef] [PubMed]
- Belder, T.D. Titanium Dioxide Banned as a Food Additive in the EU; report number E42022-0011; United States Department of Agriculture Foreign Agricultural Service: Washington, DC, USA, 2012.
- Konstantinos, S.; Stefanous, M.; Efthimia, K.; Manassis, M.; Polavarapu, L. Inorganic engineered nanoparticles in drinking water treatment: A critical review. Environ. Sci. Water Res. Technol. 2016, 2, 42–70. [Google Scholar]
- Bedi, P.S.; Kaur, A. An overview on uses of zinc oxide nanoparticles. World J. Pharm. Pharm. Sci. 2015, 4, 1177–1196. [Google Scholar]
- Bocharov, D.; Chesnokov, A.; Chikvaidze, G.; Gabrusenoks, J.; Ignatans, R.; Kalendarev, R.; Krack, M.; Kundzins, K.; Kuzmin, A.; Mironova-Ulmane, N.; et al. A comprehensive study of structure and properties of nanocrystalline zinc peroxide. J. Phys. Chem. Solids 2022, 160, 110318. [Google Scholar] [CrossRef]
- Slušná, M.S.; Smržová, D.; Ecorchard, P.; Tolasz, J.; Motlochová, M.; Jakubec, I.; Maříková, M.; Kormunda, M.; Štengl, V. Photocatalytic activity of Sn-doped ZnO synthesized via peroxide route. J. Phys. Chem. Solids 2022, 160, 110340. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Chen, J.; Duan, X.; Guo, B. Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioact. Mater. 2022, 8, 341–354. [Google Scholar] [CrossRef]
- Azizan, A.; Samsudin, A.A.; Shamshul Baharin, M.B.; Dzulkiflee, M.H.; Rosli, N.R.; Bakar, N.F.A.; Adlim, M. Cellulosic fiber nanocomposite application review with zinc oxide antimicrobial agent nanoparticle: An opt for COVID-19 purpose. Environ. Sci. Pollut. Res. 2022, 30, 16779–16796. [Google Scholar] [CrossRef] [PubMed]
- Rastinfard, A.; Dalisson, B.; Barralet, J. Aqueous decomposition behavior of solid peroxides: Effect of pH and buffer composition on oxygen and hydrogen peroxide formation. Acta Biomater. 2022, 145, 390–402. [Google Scholar] [CrossRef]
- Kuzmin, A.; Pudza, I.; Klementiev, K. In situ study of zinc peroxide decomposition to zinc oxide by X-ray absorption spectroscopy and reverse monte carlo simulations. Solid State Phys. 2022, 259, 2200001. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflores, O.B.; Ger, T.; Hsiao, C. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef]
- Frechette-Viens, L.; Hadioui, M.; Wilkinson, K.J. Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta 2019, 200, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.Z.; Pumera, M. Simultaneous direct voltametric determination of metal-oxide nanoparticles from their mixture (CuO/NiO). ChemElectroChem 2013, 1, 249–253. [Google Scholar] [CrossRef]
- Patil, U.S.; Adireddy, S.; Jaiswal, A.; Mandava, S.; Lee, B.R.; Chrisey, D.B. In vitro/in vivo toxicity evalution and quantification of iron oxide nanoparticles. Int. J. Mol. Sci. 2015, 16, 24417–24450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, J.R.; Frey, W.; Emelianov, S. Quantitative photoacoustic imaging of nanoparticles in cells and tissues. ACS Nano 2013, 7, 1272–1280. [Google Scholar] [CrossRef] [Green Version]
- Erofeev, A.; Gorelkin, P.; Garanina, A.; Alova, A.; Efremova, M.; Vorobyeva, N.; Edwards, C.; Korchev, Y.; Majouga, A. Novel method for rapid toxicity screening of magnetic nanoparticles. Sci. Rep. 2018, 8, 7462. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, M. Experimental study on dielectric relaxation of SiO2 nanoparticle suspensions for developing a particle characterization method based on electrical impedance spectroscopy. Powder Technol. 2015, 281, 200–213. [Google Scholar] [CrossRef]
- Benehkohal, N.P.; Demopoulos, G.P. Electrophoretically self-assembled mixed metal oxide-TiO2 nano-composite film structures for photoelectrochemical energy conversion: Probing of charge recombination and electron transport resistances. J. Power Sources 2013, 240, 667–675. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, W.; Lai, E.P.C. Electrochemical impedance spectroscopy of zinc oxide nanoparticles after deposition on screen-printed electrode. J. Nanosci. Nanotechnol. 2021, 21, 5207–5214. [Google Scholar] [CrossRef]
- Ravikumar, C.R.; Kotteeswaran, P.; Murugan, A.; Bheema Raju, V.; Santosh, M.; Nagaswarupa, H.; Prashantha, S.C.; Anil Kumar, M.R.; Gurushantha, K. Electrochemical studies of nano metal oxide reinforced nickel hydroxide materials for energy storage applications. Mater. Today Proc. 2017, 4, 12205–12214. [Google Scholar] [CrossRef]
- Cheng, W.; Compton, R.G. Electrochemical detection of nanoparticles by ‘nano-impact’ methods. Trends Anal. Chem. 2014, 58, 79–89. [Google Scholar] [CrossRef]
- Wang, K.; Lai, E.P.C. Electrochemical oxidation of sodium metabisulfite for sensing zinc oxide nanoparticles deposited on graphite electrode. Chemosensors 2022, 10, 145. [Google Scholar] [CrossRef]
- Sriprasertsuk, S.; Varcoe, J.R.; Crean, C. Reduced Graphene Oxide Fibre Electrodes for Drug Sensing. Available online: https://etextilesconference.files.wordpress.com/2020/10/poster-presentation_ssriprasertsuk_surrey.pdf (accessed on 28 February 2023).
- Pires, B.M.; Silva, D.M.; Visentin, L.C.; Rodrigues, B.L.; Carvalho, N.M.F.; Faria, R.B. Synthesis and characterization of cobalt(III), nickel(II) and copper(II) mononuclear complexes with the ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol and their catalase-like activity. PLoS ONE 2015, 10, 0137926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElNahrawy, A.M.; Haroun, A.A.; Hamadneh, I.; Al-Dujaili, A.H. Conducting cellulose/TiO2 composites by in situ polymerization of pyrrole. Carbohydr. Polym. 2017, 168, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, S.; Liang, Y.; Li, Z.; Wu, S.; Luo, S.; Chang, C.; Cui, Z. 3D N-doped mesoporous carbon/SnO2 with polypyrrole coating layer as high-performance anode material for Li-ion batteries. J. Alloys Compd. 2022, 892, 162083. [Google Scholar] [CrossRef]
- Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. TrAC—Trends Anal. Chem. 2017, 97, 363–373. [Google Scholar] [CrossRef]
- Bahadoran, A.; Baghbadorani, N.B.; Roshan De Lile, J.; Masudy-Panah, S.; Sadeghi, B.; Li, J.; Ramakrishna, S.; Liu, Q.; Janani, B.J.; Fakhri, A. Ag doped Sn3O4 nanostructure and immobilized on hyperbranched polypyrrole for visible light sensitized photocatalytic, antibacterial agent and microbial detection process. J. Photochem. Photobiol. B Biol. 2022, 228, 112393. [Google Scholar] [CrossRef]
- Pasha, A.; Khasim, S.; Darwish, A.A.A.; Hamdalla, T.A.; Al-Ghamdi, S.A. High-performance organic coatings of polypyrrole embedded with manganese iron oxide nanoparticles for corrosion protection of conductive copper surface. J. Inorg. Organomet. Polym. 2022, 32, 499–512. [Google Scholar] [CrossRef]
- Al-hakimi, A.N.; Alminderej, F.; Alhagri, I.A.; Al-Hazmy, S.M.; Farea, M.O.; Abdallah, E.M. Inorganic nanofillers TiO2 nanoparticles reinforced host polymer polypyrrole for microelectronic devices and high-density energy storage systems. J. Mater. Sci. Mater. Electron. 2023, 34, 238. [Google Scholar] [CrossRef]
- Irfan, M.; Aslam, M.; Raza, Z.A. Gamma irradiation protection via flexible polypyrrole coated bismuth oxide nanocomposites. Polym. Bull. 2022, 80, 791–807. [Google Scholar] [CrossRef]
- Gahlot, A.P.S.; Paliwal, A.; Kapoor, A. Theoretical and experimental investigation on SPR gas sensor based on ZnO/polypyrrole interface for ammonia sensing applications. Plasmonics 2022, 17, 1619–1632. [Google Scholar] [CrossRef]
- Lo, M.; Ktari, N.; Gningue-Sall, D.; Madani, A.; Aaron, S.E.; Aaron, J.; Mekhalif, Z.; Delhalle, J.; Chenimi, M.M. Polypyrrole: A reactive and functional conductive polymer for the selective electrochemical detection of heavy metals in water. Emerg. Mater. Res. 2020, 3, 815–839. [Google Scholar] [CrossRef]
- Kumar, S.; Choudhary, R.B. Influence of MnO2 nanoparticles on the optical properties of polypyrrole matrix. Mater. Sci. Semicond. 2022, 139, 106322. [Google Scholar] [CrossRef]
- Fazeli, M.; Alizadeh, M.; Pirsa, S. Nanocomposite film based on gluten modified with heracleum persicum essence/MgO/polypyrrole: Investigation of physicochemical and electrical properties. J. Polym. Environ. 2022, 30, 954–970. [Google Scholar] [CrossRef]
- Gogoi, R.; Singh, A.; Moutam, V.; Sharma, L.; Sharma, K.; Halder, A.; Siril, P.F. Revealing the unexplored effect of residual iron oxide on the photoreforming activities of polypyrrole nanostructures on plastic waste and photocatalytic pollutant degradation. J. Environ. Chem. Eng. 2022, 10, 106649. [Google Scholar] [CrossRef]
- Wang, T.; Yan, L.; He, Y.; Alhassana, S.I.; Gang, H.; Wu, B.; Jin, L.; Wang, H. Application of polypyrrole-based adsorbents in the removal of fluoride: A review. RSC Adv. 2022, 12, 3505–3517. [Google Scholar] [CrossRef]
- Heydari, S.; Asefnejad, A.; Nemati, N.H.; Goodarzi, V.; Vaziri, A. Fabrication of multicomponent cellulose/polypyrrole composed with zinc oxide nanoparticles for improving mechanical and biological properties. React. Funct. Polym. 2022, 170, 105126. [Google Scholar] [CrossRef]
- El Nady, J.; Shokry, A.; Khalil, M.; Ebrahium, S.; Elshaer, A.M.; Anas, M. One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Sci. Rep. 2022, 12, 3611. [Google Scholar] [CrossRef]
- Mansur, F.A.; Sridewi, N.; Anwar, A.; Anwar, A.; Shahabuddin, S. Polypyrrole-conjugated zinc oxide nanoparticle as antiamoebic drugs against Acanthamoeba castellanii. Mater. Today Proc. 2022, 62, 7077–7081. [Google Scholar] [CrossRef]
- Ahmed, J.; Faisal, M.; Alsareii, S.A.; Harraz, F.A. Highly sensitive and selective non-enzymatic uric acid electrochemical sensor based on novel polypyrrole-carbon black-Co3O4 nanocomposite. Adv. Compos. Mater. 2022, 5, 920–933. [Google Scholar] [CrossRef]
- Shi, X.Y.; Gao, M.H.; Hu, W.W.; Luo, D.; Hu, S.Z.; Huang, T.; Zhang, N.; Wang, Y. Largely enhanced adsorption performance and stability of MXene through in-situ depositing polypyrrole nanoparticles. Sep. Purif. Technol. 2022, 287, 120596. [Google Scholar] [CrossRef]
- Varghese, A.; Devi, K.R.S.; Kausar, F.; Pinheiro, D. Evaluative study on supercapacitance behavior of polyaniline/polypyrrole—Metal oxide based composites electrodes: A review. Mater. Today Chem. 2023, 29, 101424. [Google Scholar] [CrossRef]
- Das, M.; Roy, S. Polypyrrole and associated hybrid nanocomposites as chemiresistive gas sensors: A comprehensive review. Mater. Sci. Semicond. 2021, 121, 105332. [Google Scholar] [CrossRef]
- Chen, D.; Peng, R.; Mo, X.; Jin, Y.; Li, H. Photoelectrochemical sensing of hydrogen peroxide and inhibition of breast cancer cell growth based on a porphyrin derivative modified TiO2 composite. Surf. Interfaces 2023, 36, 102569. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, M.; Sun, Q.; Wang, D.; Li, C. Recent advances in tetrakis (4-carboxyphenyl) porphyrin-based nanocomposites for tomor therapy. Adv. Biomed. Res. 2022, 3, 2200136. [Google Scholar]
- Deng, W.; He, L.; Chen, E.; Wang, G.; Ye, X.; Fu, Z.; Lin, Q.; Xu, G. Crystalline microporous small molecule semiconductors based on porphyrin for high-performance chemiresistive gas sensing. J. Mater. Chem. A 2022, 24, 12977–12983. [Google Scholar] [CrossRef]
- Liu, M.; Yan, X.; Xing, Y.; Xu, Z.; Liu, Y.; Zhao, P.; Zhu, Y.; Lu, N.; Zhai, S.; Zhang, Z.; et al. A novel handy polymerized copper porphyrin sensor detects bases simultaneously. J. Electroanal. Chem. A 2023, 931, 117171. [Google Scholar] [CrossRef]
- Fagadar-Cosma, E. Sensors based on biomimetic porphyrin derivatives and their hybrid combinations. Res. Rev. Electrochem. 2018, 9, 111. [Google Scholar]
- Gao, J.; Sun, X.; Liu, Y.; Niu, B.; Chen, Q.; Fang, X. Ultrathin metal-organic framework nanosheet (Cu-TCPP)-based isothermal nucleic acid amplification for food allergen detection. Food Sci. Hum. Wellness A 2023, 12, 1788–1798. [Google Scholar] [CrossRef]
- Cai, J.; Song, S.; Zhu, L.; Lu, Q.; Lu, Z.; Wei, Y.; Wang, H. Two-dimensional Cu-porphyrin nanosheet membranes for nanofiltration. Nano Res. 2023, 16, 6290–6297. [Google Scholar] [CrossRef]
- Wu, G.; Shen, H.; Li, J.; Guo, J.; Yin, X.; Mu, M. Syntheses of ZnTi-LDH sensitized by tetra (4-carboxyphenyl) porphyrin for accelating photocatalytic reduction of carbon dixoide. J. Solid State Chem. A 2022, 309, 122955. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Sun, X.; Hao, S.; Zhao, P.; Zhu, X.; Dong, S. Bifunctional bio-photoelectrochemical cells: A “trading” platform for simultaneous production of electric power and hydrogen peroxide. J. Mater. Chem. A 2023, 2, 600–608. [Google Scholar] [CrossRef]
- Tu, W.; Lei, J.; Wang, P.; Ju, H. Photoelectrochemistry of free-base-porphyrin-functionalized zinc oxide nanoparticles and their applications in biosensing. Chem. Eur. J. 2011, 17, 9440–9447. [Google Scholar] [CrossRef] [PubMed]
- Ekrami, M.; Magna, G.; Emam-djomeh, Z.; Saeed Yarmand, M.; Paolesse, R.; Di Natale, C. Porphyrin-functionalized zinc oxide nanostructures for sensor applications. Sensors 2018, 18, 2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Yang, J.; Feng, L.; Zhang, Y.; Liang, L.; Xing, W.; Liu, C. Photoelectrochemical biofuel cell using porphyrin-sensitized nanocrystalline titanium dioxide mesoporous film as photoanode. Biosens. Bioelectron. 2012, 32, 177–182. [Google Scholar] [CrossRef]
- Chen, D.; Yang, D.; Geng, J.; Zhu, J.; Jiang, Z. Improving visible-light photocatalytic activity of N-doped TiO2 nanoparticles via sensitization by Zn porphyrin. Appl. Surf. Sci. 2008, 255, 2879–2884. [Google Scholar] [CrossRef]
- Peshoria, S.; Narula, A.K. One-pot synthesis of porphyrin@polypyrrole hybrid and its application as an electrochemical sensor. J. Mater. Sci. Eng. B 2018, 229, 53–58. [Google Scholar] [CrossRef]
- Yu, J.C.C.; Lai, E.P.C. Polypyrrole modified stainless steel frits for on-line micro solid phase extraction of ochratoxin A. Anal. Bioanal. Chem. 2005, 381, 948–952. [Google Scholar] [CrossRef]
- Hamidian, K.; Sarani, M.; Sheikhi, E.; Khatami, M. Cytotoxicity evaluation of green synthesized ZnO and Ag-doped ZnO nanoparticles on brain glioblastoma cells. J. Mol. Struct. 2022, 1251, 131962. [Google Scholar] [CrossRef]
- Kareem, M.A.; Bello, I.T.; Shittu, H.A.; Sivaprakash, P.; Adedokun, O.; Arumugam, S. Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles. Clean. Mater. 2022, 3, 100041. [Google Scholar] [CrossRef]
- Bembibre, A.; Benamara, M.; Hjiri, M.; Gómez, E.; Alamri, H.R.; Dhahri, R.; Serrà, A. Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. J. Chem. Eng. 2022, 427, 132006. [Google Scholar] [CrossRef]
- Karthik, K.V.; Raghu, A.V.; Reddy, K.R.; Ravishankar, R.; Sangeeta, M.; Shetti, N.P.; Reddy, C.V. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 2022, 287, 132081. [Google Scholar] [CrossRef] [PubMed]
- Al-Namshah, K.S.; Shkir, M.; Ibrahim, F.A.; Hamdy, M.S. Auto combustion synthesis and characterization of Co doped ZnO nanoparticles with boosted photocatalytic performance. Phys. B Condens. Matter 2022, 625, 413459. [Google Scholar] [CrossRef]
- Vasudevan, J.; Jeyakumar, S.J.; Arunkumar, B.; Jothibas, M.; Muthuvel, A.; Vijayalakshmi, S. Optical and magnetic investigation of Cu doped ZnO nanoparticles synthesized by solid state method. Mater. Today Proc. 2022, 48, 438–442. [Google Scholar] [CrossRef]
- Fathima, A.F.; Mani, R.J.; Roshan, M.M.; Sakthipandi, K. Enhancing structural and optical properties of ZnO nanoparticles induced by the double co-doping of iron and cobalt. Mater. Today Proc. 2022, 49, 2598–2601. [Google Scholar] [CrossRef]
- Kumawat, A.; Chattopadhyay, S.; Verma, R.K.; Misra, K.P. Eu doped ZnO nanoparticles with strong potential of thermal sensing and bioimaging. Mater. Lett. 2022, 308, 131221. [Google Scholar] [CrossRef]
- Islam, M.M.; Yoshida, T.; Fujita, Y. Effects of ambience on thermal-diffusion type Ga-doping process for ZnO nanoparticles. Coatings 2022, 12, 57. [Google Scholar] [CrossRef]
- Ayon, S.A.; Jamal, M.; Billah, M.M.; Neaz, S. Augmentation of magnetic properties and antimicrobial activities of band gap modified Ho3+ and Sm3+ doped ZnO nanoparticles: A comparative experimental study. J. Alloys Compd. 2022, 897, 163179. [Google Scholar] [CrossRef]
- Haghighat, M.; Alijani, H.Q.; Ghasemi, M.; Khosravi, S.; Borhani, F.; Sharifi, F.; Iravani, S.; Najafi, K.; Khatami, M. Cytotoxicity properties of plant-mediated synthesized K-doped ZnO nanostructures. Bioprocess Biosyst. Eng. 2022, 45, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, K.; Sarani, M.; Barani, M.; Khakbaz, F. Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO nanoparticles using Salvadora persica extract against MDA-MB-231 and MCF-10 cells. Arab. J. Chem. 2022, 15, 103792. [Google Scholar] [CrossRef]
- Chandekar, K.V.; Shkir, M.; Yadav, S.P.; Behera, P.K.; AlFaify, S. Facile synthesis of Mn-doped ZnO nanoparticles by flash combustion route and their characterizations for optoelectronic applications. J. Mater. Sci. Mater. Electron. 2022, 33, 3849–3869. [Google Scholar] [CrossRef]
- Saleem, S.; Jameel, M.H.; Akhtar, N.; Nazir, N.; Ali, A.; Zaman, A.; Rehman, A.; Butt, S.; Sultana, F.; Mushtaq, M.; et al. Modification in structural, optical, morphological, and electrical properties of zinc oxide nanoparticles by metal dopants for electronic device applications. Arab. J. Chem. 2022, 15, 103518. [Google Scholar] [CrossRef]
- Shkir, M.; Palanivel, B.; Khan, A.; Kumar, M.; Chang, J.H.; Mani, A.; AlFaify, S. Enhanced photocatalytic activities of facile auto-combustion synthesized ZnO nanoparticles for wastewater treatment: An impact of Ni doping. Chemosphere 2022, 291, 132687. [Google Scholar] [CrossRef] [PubMed]
- Feizi, S.; Kosari-Nasab, M.; Divband, B.; Mahjouri, S.; Movafeghi, A. Comparison of the toxicity of pure and samarium-doped zinc oxide nanoparticles to the green microalga Chlorella vulgaris. Environ. Sci. Pollut. Res. 2022, 29, 32002–32015. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Sakthivel, P.; Sankaranarayanan, R.K. Influence of Sn4+ ion on band gap tailoring, optical, structural and dielectric behaviors of ZnO nanoparticles. Spectrochim. Acta A Mol. Biomol. 2022, 267, 120487. [Google Scholar] [CrossRef]
- Zandsalimi, Y.; Maleki, A.; Shahmoradi, B.; Dehestani, S.; Rezaee, R.; McKay, G. Photocatalytic removal of 2,4-dichlorophenoxyacetic acid from aqueous solution using tungsten oxide doped zinc oxide nanoparticles immobilised on glass beads. Environ. Technol. 2022, 43, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.I.D.L.; Villegas, V.A.R.; Sicairos, S.P.; Guevara, E.H.; Brito Perea, M.D.C.; Sánchez, B.L. Synthesis and characterization of zinc peroxide nanoparticles for the photodegradation of nitrobenzene assisted by UV light. Catalysts 2020, 10, 1041. [Google Scholar] [CrossRef]
- Pare, A.; Ghosh, S.K. Temperature dependent rheological behavior of zinc oxide based water nanofluid. In Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference 2019, Roorkee, India, 28–31 December 2019; pp. 317–321. [Google Scholar]
- Brief Introduction to Coating Technology for Electron Microscopy. 2013. Available online: https://www.leica-microsystems.com/science-lab/brief-introduction-to-coating-technology-for-electron-microscopy/ (accessed on 28 February 2023).
- Saranya, M.; Ramachandran, R.; Wang, F. Graphene-zinc oxide nanocomposite for electrochemical supercapacitor applications. J. Sci. Adv. Mater. Devices 2016, 1, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Metters, J.P.; Kadara, R.O.; Banks, C.E. New direction in screen printed electroanalytical sensors: And overview of recent development. Analyst 2011, 136, 1067–1076. [Google Scholar] [CrossRef]
- Pakrashi, S.; Dalai, S.; Prathna, T.C.; Trivedi, S.; Myneni, R.; Raichur, A.M.; Chandrasekaran, N.; Mukherjee, A. Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat. Toxicol. 2013, 132–133, 34–45. [Google Scholar] [CrossRef]
- Roman, L.E.; Maurtua, D.; Paraguay-Delgado, F.; Solis, J.L.; Gómez, M.M. Green synthesis of ZnO2 nanoparticles and their annealing transformation into ZnO nanoparticles: Characterization and antimicrobial activity. J. Nanosci. Nanotechnol. 2016, 16, 9889–9895. [Google Scholar] [CrossRef]
- Cho, W.S.; Duffin, R.; Bradley, M.; Megson, I.L.; MacNee, W.; Lee, J.K.; Jeong, J.; Donaldson, K. Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part. Fibre Toxicol. 2013, 10, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Shamy, A.G. New carbon quantum dots nano-particles decorated zinc peroxide nano-composite with superior photocatalytic efficiency for removal of different dyes under UV-A light. Synth. Met. 2020, 267, 116472. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Lai, E.P.C. Electrochemical Sensing of Zinc Oxide and Peroxide Nanoparticles: Modification with Meso-tetrakis(4-carboxyphenyl) Porphyrin. Chemosensors 2023, 11, 369. https://doi.org/10.3390/chemosensors11070369
Wang K, Lai EPC. Electrochemical Sensing of Zinc Oxide and Peroxide Nanoparticles: Modification with Meso-tetrakis(4-carboxyphenyl) Porphyrin. Chemosensors. 2023; 11(7):369. https://doi.org/10.3390/chemosensors11070369
Chicago/Turabian StyleWang, Kailai, and Edward P. C. Lai. 2023. "Electrochemical Sensing of Zinc Oxide and Peroxide Nanoparticles: Modification with Meso-tetrakis(4-carboxyphenyl) Porphyrin" Chemosensors 11, no. 7: 369. https://doi.org/10.3390/chemosensors11070369
APA StyleWang, K., & Lai, E. P. C. (2023). Electrochemical Sensing of Zinc Oxide and Peroxide Nanoparticles: Modification with Meso-tetrakis(4-carboxyphenyl) Porphyrin. Chemosensors, 11(7), 369. https://doi.org/10.3390/chemosensors11070369