Novel Robust Internal Calibration Procedure for Precise FT-IR Measurements of Nitrogen Impurities in Diamonds
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Interference and Refractive Index of Diamond
3.2. Intrinsic Diamond Lattice Absorption in IR Range
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashfold, M.N.R.; Goss, J.P.; Green, B.L.; May, P.W.; Newton, M.E.; Peaker, C.V. Nitrogen in diamond. Chem. Rev. 2020, 120, 5745–5794. [Google Scholar] [CrossRef] [PubMed]
- Walker, J. Optical absorption and luminescence in diamond. Rep. Prog. Phys. 1979, 42, 1605–1659. [Google Scholar] [CrossRef]
- Green, B.L.; Collins, A.T.; Breeding, C.M. Diamond spectroscopy, defect centers, color, and treatments. Rev. Mineral. Geochem. 2022, 88, 637–688. [Google Scholar] [CrossRef]
- Kupriyanov, I.N.; Palyanov, Y.N.; Kalinin, A.A.; Shatsky, V.S. Effect of HPHT treatment on spectroscopic features of natural type Ib-IaA diamonds containing Y centers. Crystals 2020, 10, 378. [Google Scholar] [CrossRef]
- Wu, G.C.; Yu, X.Y.; Liu, F.; Li, H.B.; Long, Z.Y.; Wang, H. Color genesis of brown diamond from the Mengyin kimberlite, China. Crystals 2022, 12, 449. [Google Scholar] [CrossRef]
- Laidlaw, F.H.J.; Diggle, P.L.; Breeze, B.G.; Dale, M.W.; Fisher, D.; Beanland, R. Spatial distribution of defects in a plastically deformed natural brown diamond. Diam. Relat. Mater. 2021, 117, 108465. [Google Scholar] [CrossRef]
- Yuryeva, O.P.; Rakhmanova, M.I.; Zedgenizov, D.A.; Kalinina, V.V. Spectroscopic evidence of the origin of brown and pink diamonds family from Internatsionalnaya kimberlite pipe (Siberian craton). Phys. Chem. Miner. 2020, 47, 1–19. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Vins, V.G.; Danilov, P.A.; Kuzmin, E.V.; Muratov, A.V.; Kriulina, G.Y.; Levchenko, A.O. Permanent optical bleaching in HPHT-diamond via aggregation of C-and NV-centers excited by visible-range femtosecond laser pulses. Carbon 2023, 201, 399–407. [Google Scholar] [CrossRef]
- Lawson, S.C.; Fisher, D.; Hunt, D.C.; Newton, M.E. On the existence of positively charged single-substitutional nitrogen in diamond. J. Phys. Condens. Matter 1998, 10, 6171–6180. [Google Scholar] [CrossRef]
- Howell, D.; O’Neill, C.J.; Grant, K.J.; Griffin, W.L.; Pearson, N.J.; O’Reilly, S.Y. μ-FTIR mapping: Distribution of impurities in different types of diamond growth. Diam. Relat. Mater. 2012, 29, 29–36. [Google Scholar] [CrossRef]
- Babich, Y.V.; Babich, I.Y. Batch processing of diamond IR spectra for mineralogical-geochemical research. Geochem. Int. 2012, 50, 711–717. [Google Scholar] [CrossRef]
- Spetsius, Z.V.; Bogush, I.N.; Kovalchuk, O.E. FTIR mapping of diamond plates of eclogitic and peridotitic xenoliths from the Nyurbinskaya pipe, Yakutia: Genetic implications. Russ. Geol. Geophys. 2015, 56, 344–353. [Google Scholar] [CrossRef]
- Speich, L.; Kohn, S.C. QUIDDIT—QUantification of infrared active Defects in Diamond and Inferred Temperatures. Comput. Geosci. 2020, 144, 104558. [Google Scholar] [CrossRef]
- Khmelnitsky, R.A.; Kovalchuk, O.E.; Gulina, Y.S.; Nastulyavichus, A.A.; Kriulina, G.Y.; Boldyrev, N.Y.; Kudryashov, S.I.; Levchenko, A.O.; Shiryaev, V.S. Optimal direction and propagation of mid-IR light inside rough and polished diamonds for highly-sensitive transmission measurements of nitrogen content. Diam. Relat. Mater. 2022, 128, 109278. [Google Scholar] [CrossRef]
- Smith, S.D.; Hardy, J.R. Activation of single phonon infra-red lattice absorption in neutron irradiated diamond. Philos. Mag. 1960, 5, 1311–1314. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Rimskaya, E.N.; Kuzmin, E.V.; Kriulina, G.Y.; Pryakhina, V.I.; Muratov, A.V.; Khmelnitskii, R.A.; Greshnyakov, E.D.; Danilov, P.A.; Shur, V.Y. Advanced Mapping of Optically-Blind and Optically-Active Nitrogen Chemical Impurities in Natural Diamonds. Chemosensors 2023, 11, 24. [Google Scholar] [CrossRef]
- Wehner, R.; Borik, H.; Kress, W.; Goodwin, A.; Smith, S. Lattice dynamics and infra-red absorption of diamond. Solid State Commun. 1967, 5, 307–309. [Google Scholar] [CrossRef]
- Clement, R.E. LWIR spectral properties of CVD diamond at cryogenic temperatures. Diam. Relat. Mater. 1997, 6, 169–171. [Google Scholar] [CrossRef]
- Mollart, T.P.; Lewis, K.L.; Pickles, C.S.J.; Wort, C.J.H. Factors affecting the optical performance of CVD diamond infrared optics. Semicond. Sci. Technol. 2003, 18, S117. [Google Scholar] [CrossRef]
- Koidl, P.; Klages, C.P. Optical applications of polycrystalline diamond. Diam. Relat. Mater. 1992, 1, 1065–1074. [Google Scholar] [CrossRef]
- Hardy, J.R.; Smith, S.D. Two-phonon infra-red lattice absorption in diamond. Philos. Mag. 1961, 6, 1163–1172. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond. Data Handbook; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Soler, F.J.P. Multiple reflections in an approximately parallel plate. Opt. Commun. 1997, 139, 165–169. [Google Scholar] [CrossRef]
- Ruf, T.; Cardona, M.; Pickles, C.S.J.; Sussmann, R. Temperature dependence of the refractive index of diamond up to 925 K. Phys. Rev. B 2000, 62, 16578–16581. [Google Scholar] [CrossRef]
- Edwards, D.; Philipp, H.R. Cubic carbon (diamond). In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Orlando, FL, USA, 1985; pp. 665–673. [Google Scholar] [CrossRef]
- Collins, A.T. Intrinsic and extrinsic absorption and luminescence in diamond. Physica B 1993, 185, 284. [Google Scholar] [CrossRef]
- Edwards, D.; Ochoa, E. Infrared refractive index of diamond. J. Opt. Soc. Am. 1981, 71, 607–608. [Google Scholar] [CrossRef]
- Fontanella, J.; Johnston, R.L.; Colwell, J.H.; Andeen, C. Temperature and pressure variation of the refractive index of diamond. Appl. Opt. 1977, 16, 2949–2951. [Google Scholar] [CrossRef]
- Bokii, G.B.; Bezrukov, G.N.; Klyuev, Y.A.; Naletov, A.M.; Nepsha, V.I. Natural and Synthetic Diamonds; Nauka: Moscow, Russia, 1986. [Google Scholar]
- Piccirillo, C.; Davies, G.; Mainwood, A.; Scarle, S.; Penchina, C.M.; Mollart, T.P.; Lewis, K.L.; Nesládek, M.; Remes, Z.; Pickles, C.S.J. Temperature dependence of intrinsic infrared absorption in natural and chemical-vapor deposited diamond. J. Appl. Phys. 2002, 92, 756–763. [Google Scholar] [CrossRef]
- Vogelgesang, R.; Alvarenga, A.D.; Hyunjung, K.; Ramdas, A.K.; Rodriguez, S.; Grimsditch, M.; Anthony, T.R. Multiphonon Raman and infrared spectra of isotopically controlled diamond. Phys. Rev. B 1998, 58, 5408–5416. [Google Scholar] [CrossRef]
- Charette, J.J. Absorption spectra of type I and type II synthetic diamonds. J. Chem. Phys. 1962, 37, 3014. [Google Scholar] [CrossRef]
- Harris, D. Properties of diamond for window and dome applications. Proc. SPIE 1994, 2286, 218–228. [Google Scholar] [CrossRef]
- Thomas, M. Multiphonon model for absorption in diamond. Proc. SPIE 1994, 2286, 152–159. [Google Scholar] [CrossRef]
- Sussmann, R.S.; Pickles, C.S.J.; Brandon, J.R.; Wort, C.J.H.; Coe, S.E.; Wasenczuk, A.; Dodge, C.N.; Beale, A.C.; Krehan, A.J.; Dore, P.; et al. CVD diamond windows for infrared synchrotron applications. Nuovo Cim. D 1998, 20, 503–525. [Google Scholar] [CrossRef]
Sample Number | Sample Type | Thickness, µm | Error, µm | ||||
---|---|---|---|---|---|---|---|
Method 1 | Method 2 | Method 3 | Method 4 | Interf. * | |||
T200 | IIa | 216.2 | 0.9 | 51.1 | −16.3 | −4.8 | −1.6 |
T201 | IIa-IaA | 211.3 | −0.8 | 47.2 | −16.2 | −6.4 | −3.1 |
T202 | IIa-IaA | 168.4 | −1.9 | 55.7 | −16.4 | −6.7 | −6.2 |
T203 | IIa-IaAB | 166.8 | −0.9 | 64.7 | −14.7 | −6.7 | −7.3 |
T204 | IIa | 220.8 | −2.2 | 63.0 | −18.6 | −8.2 | −6.1 |
T206 | IIa | 150.2 | 2.9 | 34.3 | −9.7 | −1.7 | −1.7 |
T207 | IIa | 314.4 | −1.9 | 53.4 | −23.3 | −9.9 | −6.9 |
T208 | IIa | 192.4 | 3.1 | 29.5 | −10.9 | −1.4 | −0.8 |
T210 | IIa-IaB | 395.4 | −1.0 | 22.1 | −24.7 | −10.1 | −2.8 |
T211 | IIa-IaB | 259.7 | 1.9 | 44.7 | −15.7 | −4.9 | −2.7 |
T213 | IaA | 281.7 | 8.3 | −15.5 | 26.7 | −1.9 | −0.4 |
T214 | IaA | 295.3 | 1.3 | 29.8 | 0.6 | −7.9 | −5.1 |
T215 | IIa-IaAB | 331.5 | 4.5 | 37.0 | −15.8 | −3.3 | 2.8 |
T216 | IaB | 412.3 | 2.6 | 53.2 | 20.5 | −7.7 | −0.4 |
T218 | IIa-IaA | 205.6 | 7.4 | 34.5 | −8.2 | 0.3 | 0.1 |
T220 | IIa | 201.3 | 2.2 | 27.6 | −11.4 | −4.0 | −2.0 |
T221 | IaB | 218.7 | 3.5 | 49.5 | −11.4 | −3.4 | −2.8 |
T222 | IIa-IaA | 184.8 | −1.3 | 30.2 | −15.2 | −7.3 | −1.8 |
Mean | - | - | 1.6 | 39.6 | −10.0 | −5.3 | −2.7 |
Standard dev. | - | - | 3.0 | 18.7 | 13.5 | 3.0 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khmelnitsky, R.; Kovalchuk, O.; Gorevoy, A.; Danilov, P.; Pomazkin, D.; Kudryashov, S. Novel Robust Internal Calibration Procedure for Precise FT-IR Measurements of Nitrogen Impurities in Diamonds. Chemosensors 2023, 11, 313. https://doi.org/10.3390/chemosensors11060313
Khmelnitsky R, Kovalchuk O, Gorevoy A, Danilov P, Pomazkin D, Kudryashov S. Novel Robust Internal Calibration Procedure for Precise FT-IR Measurements of Nitrogen Impurities in Diamonds. Chemosensors. 2023; 11(6):313. https://doi.org/10.3390/chemosensors11060313
Chicago/Turabian StyleKhmelnitsky, Roman, Oleg Kovalchuk, Alexey Gorevoy, Pavel Danilov, Daniil Pomazkin, and Sergey Kudryashov. 2023. "Novel Robust Internal Calibration Procedure for Precise FT-IR Measurements of Nitrogen Impurities in Diamonds" Chemosensors 11, no. 6: 313. https://doi.org/10.3390/chemosensors11060313
APA StyleKhmelnitsky, R., Kovalchuk, O., Gorevoy, A., Danilov, P., Pomazkin, D., & Kudryashov, S. (2023). Novel Robust Internal Calibration Procedure for Precise FT-IR Measurements of Nitrogen Impurities in Diamonds. Chemosensors, 11(6), 313. https://doi.org/10.3390/chemosensors11060313