Fe3O4-Nanoparticle-Modified Sensor for the Detection of Dopamine, Uric Acid and Ascorbic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Electrochemical Synthesis of Magnetite Nanoparticles (MNs)
2.3. Electrochemical Measurements
2.4. Preparation and Modification of the Electrocatalytic Surface
2.5. Analytical Response
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, D.; Zhuang, Q.; Han, Y.; Xu, L.; Wang, Z.; Jiang, L.; Su, J.; Lu, C.-H.; Chi, Y. Simultaneous Voltammetry Detection of Dopamine and Uric Acid in Human Serum and Urine with a Poly(Procaterol Hydrochloride) Modified Glassy Carbon Electrode. Talanta 2018, 185, 203–212. [Google Scholar] [CrossRef]
- Carrera, V.; Sabater, E.; Vilanova, E.; Sogorb, M. A Simple and Rapid HPLC-MS Method for the Simultaneous Determination of Epinephrine, Norepinephrine, Dopamine and 5-Hydroxytryptamine: Application to the Secretion of Bovine Chromaffin Cell Cultures. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 847, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, H.; Shi, H.; Ma, C.; Cong, B.; Kang, W. Determination of Three Major Catecholamines in Human Urine by Capillary Zone Electrophoresis with Chemiluminescence Detection. Anal. Biochem. 2012, 427, 10–17. [Google Scholar] [CrossRef]
- Naccarato, A.; Gionfriddo, E.; Sindona, G.; Tagarelli, A. Development of a Simple and Rapid Solid Phase Microextraction-Gas Chromatography–Triple Quadrupole Mass Spectrometry Method for the Analysis of Dopamine, Serotonin and Norepinephrine in Human Urine. Anal. Chim. Acta 2014, 810, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zheng, N.; Hou, S.; Li, X.; Yuan, Z. Selective Determination of Dopamine in the Presence of Ascorbic Acid at a Multi-Wall Carbon Nanotube-Poly(3,5-Dihydroxy Benzoic Acid) Film Modified Electrode. J. Electroanal. Chem. 2010, 642, 30–34. [Google Scholar] [CrossRef]
- Dayton, M.A.; Ewing, A.G.; Wightman, R.M. Response of Microvoltammetric Electrodes to Homogeneous Catalytic and Slow Heterogeneous Charge-Transfer Reactions. Anal. Chem. 1980, 52, 2392–2396. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Taei, M.; Khayamian, T. A Differential Pulse Voltammetric Method for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid Using Poly (3-(5-Chloro-2-Hydroxyphenylazo)-4,5-Dihydroxynaphthalene-2,7-Disulfonic Acid) Film Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2009, 633, 212–220. [Google Scholar] [CrossRef]
- Yusoff, N.; Pandikumar, A.; Ramaraj, R.; Lim, H.N.; Huang, N.M. Gold Nanoparticle Based Optical and Electrochemical Sensing of Dopamine. Microchim. Acta 2015, 182, 2091–2114. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Özkan, S.; Tomanec, O.; Zhou, X.; Zboril, R.; Schmuki, P. Nanoporous AuPt and AuPtAg Alloy Co-Catalysts Formed by Dewetting-Dealloying on Ordered TiO2 Nanotube Surface Lead to Significantly Enhanced Photocatalytic H2 Generation. J. Mater. Chem. A 2018, 6, 13599. [Google Scholar] [CrossRef]
- Oliveira, T.M.B.F.; Morais, S. New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. Appl. Sci. 2018, 8, 1925. [Google Scholar] [CrossRef]
- Gao, L.; Lian, C.; Zhou, Y.; Yan, L.; Li, Q.; Zhang, C.; Chen, L.; Chen, K. Graphene Oxide–DNA Based Sensors. Biosens. Bioelectron. 2014, 60, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Foroughi, F.; Rahsepar, M.; Kim, H. A Highly Sensitive and Selective Biosensor Based on Nitrogen-Doped Graphene for Non-Enzymatic Detection of Uric Acid and Dopamine at Biological PH Value. J. Electroanal. Chem. 2018, 827, 34–41. [Google Scholar] [CrossRef]
- Keerthi, M.; Boopathy, G.; Chen, S.-M.; Chen, T.-W.; Lou, B.-S. A Core-Shell Molybdenum Nanoparticles Entrapped f-MWCNTs Hybrid Nanostructured Material Based Non-Enzymatic Biosensor for Electrochemical Detection of Dopamine Neurotransmitter in Biological Samples. Sci. Rep. 2019, 9, 13075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhihua, L.; Xue, Z.; Xiaowei, H.; Xiaobo, Z.; Jiyong, S.; Yiwei, X.; Xuetao, H.; Yue, S.; Xiaodong, Z. Hypha-Templated Synthesis of Carbon/ZnO Microfiber for Dopamine Sensing in Pork. Food Chem. 2021, 335, 127646. [Google Scholar] [CrossRef]
- Liu, P.; Lu, K.; Li, J.; Wu, X.; Qian, L.; Wang, M.; Gao, S. Effect of Aging on Adsorption Behavior of Polystyrene Microplastics for Pharmaceuticals: Adsorption Mechanism and Role of Aging Intermediates. J. Hazard. Mater. 2019, 384, 121193. [Google Scholar] [CrossRef]
- Comba, F.N.; Rubianes, M.D.; Herrasti, P.; Rivas, G.A. Glucose Biosensing at Carbon Paste Electrodes Containing Iron Nanoparticles. Sens. Actuators B Chem. 2010, 149, 306–309. [Google Scholar] [CrossRef]
- Jaime, J.; Rangel, G.; Muñoz-Bonilla, A.; Mayoral, A.; Herrasti, P. Magnetite as a Platform Material in the Detection of Glucose, Ethanol and Cholesterol. Sens. Actuators B Chem. 2017, 238, 693–701. [Google Scholar] [CrossRef]
- Tripathy, A.; Nine, M.J.; Silva, F.S. Biosensing Platform on Ferrite Magnetic Nanoparticles: Synthesis, Functionalization, Mechanism and Applications. Adv. Colloid Interface Sci. 2021, 290, 102380. [Google Scholar] [CrossRef]
- Lozano, I.; López, C.; Menendez, N.; Casillas, N.; Herrasti, P. Design, Construction and Evaluation of a 3D Printed Electrochemical Flow Cell for the Synthesis of Magnetite Nanoparticles. J. Electrochem. Soc. 2018, 165, H688–H697. [Google Scholar] [CrossRef]
- Franger, S.; Berthet, P.; Dragos, O.; Baddour-Hadjean, R.; Bonville, P.; Berthon, J. Large Influence of the Synthesis Conditions on the Physico-Chemical Properties of Nanostructured Fe3O4. J. Nanopart. Res. 2007, 9, 389–402. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwermann, U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses; Crystal Structure; Wiley-VCH Verlang GmbH & Co.KGaA: Weinheim, Germany, 2003; pp. 9–38. [Google Scholar]
- Greenwood, N.N.; Gibb, T.C. Mössbauer Spectroscopy; Chapman and Hall: London, UK, 1971. [Google Scholar]
- Sun, W.; Wang, Y.; Zhang, Y.; Ju, X.; Li, G.; Sun, Z. Poly(Methylene Blue) Functionalized Graphene Modified Carbon Ionic Liquid Electrode for the Electrochemical Detection of Dopamine. Anal. Chim. Acta 2012, 751, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Peik-See, T.; Pandikumar, A.; Nay-Ming, H.; Hong-Ngee, L.; Sulaiman, Y. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode. Sensors 2014, 14, 15227–15243. [Google Scholar] [CrossRef] [PubMed]
- Salmimies, R.; Mannila, M.; Kallas, J.; Häkkinen, A. Acidic Dissolution of Magnetite: Experimental Study on the Effects of Acid Concentration and Temperature. Clays Clay Miner. 2011, 59, 136–146. [Google Scholar] [CrossRef]
- Gao, P.; Huang, Y.; Zhang, Y.; Sun, Q.; Ruan, S.; Yin, W.; Pu, H.; Yin, M.; Fa, H. Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid Using the Composite Materials of Fe3O4 and Nitrogen Self-Doped Sunflower Plate-Derived Carbon. Nano 2021, 16, 2150127. [Google Scholar] [CrossRef]
- Tkach, V.V.; Ivanushko, Y.G.; Lukanova, S.M.; Kushnir, M.V.; de Oliveira, S.C.; Ojani, R.; Luganska, O.V.; Yagodynets’, P.I. Evaluación teórica del desempeño del electrodo, modificado por el oxihidróxido de cobalto (III) en la detección del ácido úrico TT—Theoretical evaluation of the work of the electrode, modified by cobalt (III) oxyhydroxide, in the uric acid detection. Rev. Colomb. Cienc. Químico Farm. 2018, 47, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Pan, L.; Han, X.; Ha, M.N.; Li, K.; Yu, H.; Zhang, Q.; Li, Y.; Hou, C.; Wang, H. A Portable Ascorbic Acid in Sweat Analysis System Based on Highly Crystalline Conductive Nickel-Based Metal-Organic Framework (Ni-MOF). J. Colloid Interface Sci. 2022, 616, 326–337. [Google Scholar] [CrossRef]
- Zou, H.L.; Li, B.L.; Luo, H.Q.; Li, N.B. 0D-2D Heterostructures of Au Nanoparticles and Layered MoS2 for Simultaneous Detections of Dopamine, Ascorbic Acid, Uric Acid, and Nitrite. Sens. Actuators B Chem. 2017, 253, 352–360. [Google Scholar] [CrossRef]
- Joshi, A.; Schuhmann, W.; Nagaiah, T.C. Mesoporous Nitrogen Containing Carbon Materials for the Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B Chem. 2016, 230, 544–555. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, J.; Chou, K.C.; Su, L.; Hou, X. Simultaneously Electrochemical Detection of Uric Acid and Ascorbic Acid Using Glassy Carbon Electrode Modified with Chrysanthemum-like Titanium Nitride. J. Electroanal. Chem. 2017, 803, 11–18. [Google Scholar] [CrossRef]
- Song, H.; Xue, G.; Zhang, J.; Wang, G.; Ye, B.C.; Sun, S.; Tian, L.; Li, Y. Simultaneous Voltammetric Determination of Dopamine and Uric Acid Using Carbon-Encapsulated Hollow Fe3O4 Nanoparticles Anchored to an Electrode Modified with Nanosheets of Reduced Graphene Oxide. Microchim. Acta 2017, 184, 843–853. [Google Scholar] [CrossRef]
- Rosli, A.R.M.; Noorashikin, M.S.; Yusoff, F. Electrochemical Sensor Based on Reduced Graphene Oxide Incorporated with Magnetite and Silver Nanoparticles Composite Electrode for Determination of Dopamine. J. Electrochem. Soc. 2021, 168, 087512. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Q.; Lai, C.; Zhang, Y.; Deng, J.; Li, H.; Yao, S. A Double Signal Amplification Platform for Ultrasensitive and Simultaneous Detection of Ascorbic Acid, Dopamine, Uric Acid and Acetaminophen Based on a Nanocomposite of Ferrocene Thiolate Stabilized Fe3O4@Au Nanoparticles with Graphene Sheet. Biosens. Bioelectron. 2013, 48, 75–81. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Arashpour, B.; Rezaei, B.; Allafchian, A.R. Voltammetric Behavior of Dopamine at a Glassy Carbon Electrode Modified with NiFe2O44 Magnetic Nanoparticles Decorated with Multiwall Carbon Nanotubes. Mater. Sci. Eng. C 2014, 39, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Veera Manohara Reddy, Y.; Sravani, B.; Agarwal, S.; Gupta, V.K.; Madhavi, G. Electrochemical Sensor for Detection of Uric Acid in the Presence of Ascorbic Acid and Dopamine Using the Poly(DPA)/SiO2@Fe3O4 Modified Carbon Paste Electrode. J. Electroanal. Chem. 2018, 820, 168–175. [Google Scholar] [CrossRef]
- Gabunada, J.C.; Vinothkannan, M.; Kim, D.H.; Kim, A.R.; Yoo, D.J. Magnetite Nanorods Stabilized by Polyaniline/Reduced Graphene Oxide as a Sensing Platform for Selective and Sensitive Non-Enzymatic Hydrogen Peroxide Detection. Electroanalysis 2019, 31, 1507–1516. [Google Scholar] [CrossRef]
- Comba, F.N.; Rubianes, M.D.; Cabrera, L.; Gutiérrez, S.; Herrasti, P.; Rivas, G.A. Highly Sensitive and Selective Glucose Biosensing at Carbon Paste Electrodes Modified with Electrogenerated Magnetite Nanoparticles and Glucose Oxidase. Electroanalysis 2010, 22, 1566–1572. [Google Scholar] [CrossRef]
Properties | DA | UA | AA |
---|---|---|---|
Epa (mV) | 175 | 290 | −30 |
Lineal range (µM) | 10–100 | 20–160 | 1050–2300 |
LOD (µM) | 4.5 | 14 | 95 |
Sensitivity (µA µM−1) | 0.26 | 0.003 | 0.0098 |
Modification of GCE | Analyte | Lineal Range (µM) | LOD (µM) |
---|---|---|---|
Au nanoparticles MoS2 nanosheets [29] | Dopamine | 5.0–200.0 | 1.0 |
Uric acid | 20.0–400.0 | 5.0 | |
Ascorbic acid | 20.0–300.0 | 3.0 | |
Carbon materials doped with nitrogen (MNC) [30] | Dopamine | 0.001–300 | 0.001 |
Uric acid | 0.01–100 | 0.01 | |
Ascorbic acid | 1–700 | 0.01 | |
Titanium nitride [31] | Uric acid | 10–300 | 0.28 |
Ascorbic acid | 50–1500 | 1.52 | |
Fe3O4 Graphene oxide [32] | Dopamine | 0.1–150 | 0.053 |
Uric acid | 1.00–100 | 0.41 | |
Fe3O4 Ag nanoparticles Graphene oxide reduced [33] | Dopamine | 0.015–100 | 3.98 × 10−3 |
Fe3O4@Au Phenylethynylferrocene thiolate Graphene/chitosan [34] | Dopamine | 0.5–50 | 0.1 |
Uric acid | 1–90 | 0.2 | |
Ascorbic acid | 6–350 | 1 | |
NiFe2O4 Carbon nanotubes [35] | Dopamine | 0.05–100 | 0.02 |
Fe3O4 Graphene oxide reduced [24] | Dopamine | 0.5–100 | 0.12 |
Ascorbic acid | (1–9) × 103 | 0.42 | |
Nanocomposite SiO2@Fe3O4 Poli-DPA [36] | Uric acid | 1.2–1.8 | 0.4 |
Fe3O4 Nitrogen carbon [26] | Dopamine | 5–450 | 0.48 |
Uric acid | 15–1200 | 1.48 | |
Ascorbic acid | 3–150 | 1.0 |
Samples | 1 | 2 | 3 |
---|---|---|---|
Urine/mM | 1.4 | 4.0 | 4.4 |
Orange juice/mM | 1.6 | 1.6 | 1.6 |
Dopamine/µM | 55 | 53 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaya, E.; Menendez, N.; Mazario, E.; Herrasti, P. Fe3O4-Nanoparticle-Modified Sensor for the Detection of Dopamine, Uric Acid and Ascorbic Acid. Chemosensors 2023, 11, 79. https://doi.org/10.3390/chemosensors11020079
Gaya E, Menendez N, Mazario E, Herrasti P. Fe3O4-Nanoparticle-Modified Sensor for the Detection of Dopamine, Uric Acid and Ascorbic Acid. Chemosensors. 2023; 11(2):79. https://doi.org/10.3390/chemosensors11020079
Chicago/Turabian StyleGaya, Eduardo, Nieves Menendez, Eva Mazario, and Pilar Herrasti. 2023. "Fe3O4-Nanoparticle-Modified Sensor for the Detection of Dopamine, Uric Acid and Ascorbic Acid" Chemosensors 11, no. 2: 79. https://doi.org/10.3390/chemosensors11020079
APA StyleGaya, E., Menendez, N., Mazario, E., & Herrasti, P. (2023). Fe3O4-Nanoparticle-Modified Sensor for the Detection of Dopamine, Uric Acid and Ascorbic Acid. Chemosensors, 11(2), 79. https://doi.org/10.3390/chemosensors11020079