Fabrication of GO/Fe3O4@Au MNPs for Magnetically Enriched and Adsorptive SERS Detection of Bifenthrin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of GO/Fe3O4@Au MNPs
2.2.1. Preparation of High-Quality Fe3O4 Magnetic Particles
2.2.2. Preparation of PEI-Modified Fe3O4 Magnetic Particles
2.2.3. Preparation of GO/Fe3O4@Au Magnetic Nanoparticles
2.2.4. Preparation and Detection of Bifenthrin
2.3. Instruments and Measurements
3. Results and Discussion
3.1. Preparation Principle and Optimization of GO/Fe3O4@Au MNPs
3.1.1. Preparation Principle of GO/Fe3O4@Au MNPs
3.1.2. Effect of Colloidal Gold Volume with 20 nm Particle Size on GO/Fe3O4@Au MNP Synthesis
3.1.3. Effect of Different GO Volumes on GO Fe3O4@Au MNP Synthesis
3.2. GO/Fe3O4@Au MNP Characterization
3.3. FDTD Simulation Results of GO/Fe3O4@Au MNPs
3.4. Detection of Different Concentrations of Bifenthrin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dar, M.A.; Khan, A.M.; Raina, R.; Verma, P.K.; Wani, N.M. Effect of bifenthrin on oxidative stress parameters in the liver, kidneys, and lungs of rats. Environ. Sci. Pollut. Res. 2019, 26, 9365–9370. [Google Scholar] [CrossRef] [PubMed]
- Gammon, D.W.; Liu, Z.W.; Chandrasekaran, A.; El-Naggar, S.F.; Kuryshev, Y.A.; Jackson, S. Pyrethroid neurotoxicity studies with bifenthrin indicate a mixed Type I/II mode of action. Pest. Manag. Sci. 2019, 75, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Wang, X.; Yao, X.; Xi, F.; He, Y.; Xu, Y.; Ma, L.; Chen, X.; Zhao, C.; Du, R.; et al. Bifenthrin induces fat deposition by improving fatty acid uptake and inhibiting lipolysis in mice. J. Agric. Food. Chem. 2019, 67, 14048–14055. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Park, S.; Lim, W.; Song, G.H. Bifenthrin reduces pregnancy potential via induction of oxidative stress in porcine trophectoderm and uterine luminal epithelial cells. Sci. Total Environ. 2021, 784, 147143. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, N.X.; Wang, C.L. Toxicity of the pyrethroid bifenthrin insecticide. Environ. Chem. Lett. 2018, 16, 1377–1391. [Google Scholar] [CrossRef]
- Barbosa, J.M.G.; Botelho, A.F.M.; Silva, R.H.S.; Almeida, S.S.F.; Ferreira, E.R.; David, L.C.; Lima, D.A.F.; Silva, T.C.E.; Cunha, P.H.J.; Antoniosi, N.R. Identification of cattle poisoning by Bifenthrin via earwax analysis by HS/GC-MS. Biomed. Chromatogr. 2021, 35, e5017. [Google Scholar]
- Chaudhary, R.; Singh, R.; Singh, M.; Mogha, N.K.; Kumari, P.; Paliwal, G.; Singh, P.P.; Das, M. LC-MS/MS method for the simultaneous quantification of pyriproxyfen and bifenthrin and their dissipation kinetics under field conditions in chili and brinjal. J. Food Sci. 2022, 87, 1331–1341. [Google Scholar] [CrossRef]
- Fan, M.K.; Andrade, G.F.S.; Brolo, A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020, 1097, 1–29. [Google Scholar] [CrossRef]
- Tang, H.; Zhu, C.; Meng, G.; Wu, N. Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. J. Electrochem. Soc. 2018, 165, B3098–B3118. [Google Scholar] [CrossRef]
- Wu, S.R.; Tian, X.D.; Liu, S.Y.; Yun, Z.; Li, J.F. Surface-enhanced Raman spectroscopy solution and solid substrates with built-in calibration for quantitative applications. J. Raman Spectrosc. 2018, 49, 659–667. [Google Scholar] [CrossRef]
- Ansar, S.M.; Li, X.; Zou, S.; Zhang, D. Quantitative Comparison of Raman Activities, SERS Activities, and SERS Enhancement Factors of Organothiols: Implication to Chemical Enhancement. J. Phys. Chem. 2012, 3, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Hidayah, A.N.; Triyono, D.; Herbani, Y.; Saleh, R. Liquid Surface-Enhanced Raman Spectroscopy (SERS) Sensor-Based Au-Ag Colloidal Nanoparticles for Easy and Rapid Detection of Deltamethrin Pesticide in Brewed Tea. Crystals 2022, 12, 24. [Google Scholar] [CrossRef]
- Pham, T.B.; Hoang, T.H.C.; Pham, V.H.; Nguyen, V.C.; Nguyen, T.V.; Vu, D.C.; Pham, V.H.; Bui, H. Detection of Permethrin pesticide using silver nano-dendrites SERS on optical fibre fabricated by laser-assisted photochemical method. Sci. Rep. 2019, 9, 12590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, T.H.; Mehedi Hassan, M.; Zhu, J.J.; Ali, S.; Ahmad, W.; Wang, J.J.; Lv, C.X.; Chen, Q.S.; Li, H.H. Quantification of deltamethrin residues in wheat by Ag@ZnO NFs-based surface-enhanced Raman spectroscopy coupling chemometric models. Food Chem. 2021, 337, 127652. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.; Chen, B.; Gu, Y.F.; Song, C.; Lei, J.J.; Gao, X. The Study of Raman Spectroscopy of Bifenthrin Molecular. Spectrosc. Spect. Anal. 2020, 40, 1952–1955. [Google Scholar]
- Norton, R.D.; Phan, H.T.; Gibbons, S.N.; Haes, A.J. Quantitative Surface-Enhanced Spectroscopy. Annu. Rev. Phys. Chem. 2022, 73, 141–162. [Google Scholar] [CrossRef]
- Thomas, S.; Biswas, N.; Malkar, V.V.; Mukherjee, T.; Kapoor, S. Studies on adsorption of carnosine on silver nanoparticles by SERS. Chem. Phys. Lett. 2010, 491, 59–64. [Google Scholar] [CrossRef]
- Yaseen, T.; Pu, H.B.; Sun, D.W. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends. Trends Food Sci. Technol. 2018, 72, 162–174. [Google Scholar] [CrossRef]
- Liu, Z.G.; Wang, Y.; Deng, R.; Yang, L.Y.; Yu, S.H.; Xu, S.P.; Xu, W.Q. Fe3O4@Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One. ACS Appl. Mater. Interfaces 2016, 8, 14160–14168. [Google Scholar] [CrossRef]
- Du, J.; Jing, C. Preparation of Thiol Modified Fe3O4@Ag Magnetic SERS Probe for PAHs Detection and Identification. J. Phys. Chem. C. 2011, 115, 17829–17835. [Google Scholar] [CrossRef]
- Li, X.D. Preparation of Graphene Oxide and Its Application as Substrates for SERS. J. Chem. 2018, 2018, 8050524. [Google Scholar] [CrossRef]
- Fan, W.; Lee, Y.H.; Pedireddy, S.; Zhang, Q.; Liu, T.X.; Ling, X.Y. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale 2014, 6, 4843–4851. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Moura, L.G.; Pimenta, M.A.; Zhang, J. Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering. J. Phys. Chem. C 2012, 116, 25112–25118. [Google Scholar] [CrossRef]
- Gao, S.S.; Shang, S.B.; Liu, X.Y.; Li, Z.; Sheng, Y.Q.; Zhang, C.; Yang, C.; Qiu, H.W.; Huo, Y.Y.; Jiang, S.Z. An optical fiber SERS sensor based on GO/AgNPs/rGO sandwich structure hybrid films. RSC Adv. 2016, 6, 81750–81756. [Google Scholar] [CrossRef]
- Li, C.N.; Liu, Y.Y.; Liang, A.H.; Jiang, Z.L. SERS quantitative analysis of trace ferritin based on immunoreaction regulation of graphene oxide catalytic nanogold reaction. Sens. Actuators B-Chem. 2018, 263, 183–189. [Google Scholar] [CrossRef]
- Qiu, X.J.; You, X.R.; Chen, X.; Chen, H.L.; Dhinakar, A.; Liu, S.H.; Guo, Z.Y.; Wu, J.; Liu, Z.M. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging. Int. J. Nanomed. 2017, 12, 4349–4360. [Google Scholar] [CrossRef] [Green Version]
- Kasztelan, M.; Sloniewska, A.; Gorzkowski, M.; Lewera, A.; Palys, B.; Zoladek, S. Ammonia modified graphene oxide—Gold nanoparticles composite as a substrate for surface enhanced Raman spectroscopy. Appl. Surf. Sci. 2021, 554, 149060. [Google Scholar] [CrossRef]
- Deng, H.; Li, X.L.; Peng, Q.; Wang, X.; Chen, J.P.; Li, Y.D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785. [Google Scholar] [CrossRef]
- Zheng, H.J.; Ni, D.J.; Yu, Z.; Liang, P. Preparation of SERS-active substrates based on graphene oxide/silver nanocomposites for rapid zdetection of L-Theanine. Food Chem. 2017, 217, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Chen, J.L.; Yang, X.B.; Zhang, D.; Zou, Y.Q.; Ni, D.J.; Ye, J.M.; Yu, Z.; Chen, Q.; Jin, S.Z.; et al. Fabrication of Fe3O4@Ag magnetic nanoparticles for highly active SERS enhancement and paraquat detection. Microchem. J. 2022, 173, 107019. [Google Scholar] [CrossRef]
- Deng, D.; Xiong, X. Free-standing paper-like heat spreading films based on graphene oxide-aromatic molecule composites. J. Mater. Sci. Mater. Electron. 2018, 29, 3050–3055. [Google Scholar] [CrossRef]
- Lai, Q.; Zhu, S.F.; Luo, X.P.; Zou, M.; Huang, S.H. Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2012, 2, 032146. [Google Scholar] [CrossRef]
- Yoneda, M.; Obata, S.; Niwa, M. Simulation of the Magnetic Hysteresis Loop in Ferrimagnetism. Mater. Trans. 2015, 56, 1488–1490. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiang, S.Z.; Huo, Y.Y.; Ning, T.Y.; Liu, A.H.; Zhang, C.; He, Y.; Wang, M.H.; Li, C.H.; Man, B.Y. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale 2018, 10, 5897–5905. [Google Scholar] [CrossRef]
- Yang, C.; Liang, P.; Tang, L.; Zhou, Y.; Cao, Y.; Wu, Y.; Zhang, D.; Dong, Q.; Huang, J.; He, P. Synergistic effects of semiconductor substrate and noble metal nanoparticles on SERS effect both theoretical and experimental aspects. Appl. Surf. Sci. 2018, 436, 367–372. [Google Scholar] [CrossRef]
- Liu, H.L.; Yang, Z.L.; Meng, L.Y.; Sun, Y.D.; Wang, J.; Yang, L.B.; Liu, J.H.; Tian, Z.Q. Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. J. Am. Chem. Soc. 2014, 136, 5332–5341. [Google Scholar] [CrossRef]
- Zhang, C.P.; Chen, S.; Jiang, Z.L.; Shi, Z.Y.; Wang, J.L.; Du, L.T. Highly Sensitive and Reproducible SERS Substrates Based on Ordered Micropyramid Array and Silver Nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 29222–29229. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Xiao, K.; Chen, Q.; Zhang, X.; Yu, Z.; Chen, W.; Zhang, X.; Zhang, D.; Ni, D.; Liang, P. Fabrication of GO/Fe3O4@Au MNPs for Magnetically Enriched and Adsorptive SERS Detection of Bifenthrin. Chemosensors 2023, 11, 73. https://doi.org/10.3390/chemosensors11020073
Song Y, Xiao K, Chen Q, Zhang X, Yu Z, Chen W, Zhang X, Zhang D, Ni D, Liang P. Fabrication of GO/Fe3O4@Au MNPs for Magnetically Enriched and Adsorptive SERS Detection of Bifenthrin. Chemosensors. 2023; 11(2):73. https://doi.org/10.3390/chemosensors11020073
Chicago/Turabian StyleSong, Ying, Kunyue Xiao, Qiang Chen, Xiaodong Zhang, Zhi Yu, Wenwen Chen, Xiubing Zhang, De Zhang, Dejiang Ni, and Pei Liang. 2023. "Fabrication of GO/Fe3O4@Au MNPs for Magnetically Enriched and Adsorptive SERS Detection of Bifenthrin" Chemosensors 11, no. 2: 73. https://doi.org/10.3390/chemosensors11020073
APA StyleSong, Y., Xiao, K., Chen, Q., Zhang, X., Yu, Z., Chen, W., Zhang, X., Zhang, D., Ni, D., & Liang, P. (2023). Fabrication of GO/Fe3O4@Au MNPs for Magnetically Enriched and Adsorptive SERS Detection of Bifenthrin. Chemosensors, 11(2), 73. https://doi.org/10.3390/chemosensors11020073