The Global Research Trend in Electrochemical Microfluidic Technology: A Bibliometric Review
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Publication Language, Document Type and Growth Trend
3.2. Author and Co-Author’s Analysis and Network
3.3. Publication Distribution by Countries
3.4. Journals Contribution and Co-Citations Source Visualization
3.5. Keywords Analysis and Network
4. Applications of Electrochemical Microfluidic Technology
4.1. Biomedical
4.2. Food Analysis
4.3. Environmental Monitoring
5. Conclusions and Future Perspective
- Polymer materials remain the mainstream materials for microfluidic equipment substrate, but they have limitations in practical applications. Sometimes it is necessary to improve the surface modification and immobilization methods according to the requirements, which may affect their performance. Therefore, further research and exploration of new friendly and stable materials are required. Compared with traditional microfluidic chips based on glass and polymer, paper chips have the advantages of low cost, simple fabrication process, strong capillarity, and good biocompatibility. Progress has been made in some fields [56], and more attention can continue to be given to paper-based microfluidics in the future.
- For the electrode of electrochemical detection, the first step is to find suitable electrode with good stability, low price and high catalytic activity. At the same time, in order to further improve its detection sensitivity, the development of new composite electrode and particle electrode is also an important research direction. Laser-scribed graphene (LSG) electrodes are widely used in some miniaturized and lab-on-a-chip systems, and this miniaturized LSG electrode is also very interesting [57].
- Currently, most of the microfluidic analysis is developed for single target, however, high throughput analysis of multiple components is one of the most desirable features for electrochemical microfluidic analysis. The realization of multi-dimensional detection as well as real-time monitoring of multiple components calls for a highly sensitive and selective microfluidic detection system, meriting further research. A paper-based analytical device (PAD) coupled with a colorimetric method has been reported for the rapid and highly sensitive determination of four chemical food additives in food [58].
- Large scale integration is a significant advantage of microfluidic chips and there are still many deficiencies and challenges to overcome. How to integrate each operation unit into a multi-functional microfluidic platform on a large scale and realize automatic intelligent operation still needs further efforts and research. A paper-based hygrothermal mechanical microactuator triggered by microliter droplets of aqueous solution has been proposed, and the autonomously controlled microactuator is suitable for microfluidic applications [59]. At the same time, attention should also be paid to reducing complexity, making the system more stable and low-cost. A novel composite material of cellulose fibers with embedded zinc micoparticles has been developed to be used in microfluidic devices to reduce the complexity of the devices [60].
- Photolithography, injection molding, laser cutting, or the use of ink jet or wax printing are techniques that have been used to create microfluidic devices. With the rise of 3D printing technology and the requirement for more complex microfluidic chip configurations, 3D printing technology has shown potential for microfluidic systems and microelectronic devices. However, no single 3D printing method currently shows ideal characteristics for building microfluidic devices with fully integrated microelectronics. Accelerating the development of next-generation 3D printed microfluidic systems as well as developing new technologies for building microfluidic devices to achieve fully autonomous microelectronic integration is a future direction to work on. At the same time, future trends will focus on research to develop portable devices to perform point-of-care analysis of results in the field.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bougas, L.; Langenegger, L.D.; Mora, C.A.; Zeltner, M.; Stark, W.J.; Wickenbrock, A.; Blanchard, J.W.; Budker, D. Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids. Sci. Rep. 2018, 8, 3491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squires, T.M.; Quake, S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977–1026. [Google Scholar] [CrossRef] [Green Version]
- Boken, J.; Soni, S.K.; Kumar, D. Microfluidic synthesis of nanoparticles and their biosensing applications. Crit. Rev. Anal. Chem. 2016, 46, 538–561. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Shen, L.; Zhao, X.; Chen, H.; Xiao, Y.; Zhang, Y.; Yang, X.; Zhang, J.; Wei, J.; Hao, N. Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Appl. Mater. Today 2022, 26, 101356. [Google Scholar] [CrossRef]
- Noh, J.; Kim, H.C.; Chung, T.D. Biosensors in microfluidic chips. Top. Curr. Chem. 2011, 304, 117–152. [Google Scholar] [CrossRef]
- Illath, K.; Kar, S.; Gupta, P.; Shinde, A.; Wankhar, S.; Tseng, F.-G.; Lim, K.-T.; Nagai, M.; Santra, T.S. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2022, 280, 121247. [Google Scholar] [CrossRef]
- Ma, W.; Liu, L.; Xu, Y.; Wang, L.; Chen, L.; Yan, S.; Shui, L.; Wang, Z.; Li, S. A highly efficient preconcentration route for rapid and sensitive detection of endotoxin based on an electrochemical biosensor. Analyst 2020, 145, 4204–4211. [Google Scholar] [CrossRef]
- Kutluk, H.; Bruch, R.; Urban, G.A.; Dincer, C. Impact of assay format on miRNA sensing: Electrochemical microfluidic biosensor for miRNA-197 detection. Biosens. Bioelectron. 2020, 148, 111824. [Google Scholar] [CrossRef]
- Hu, X.; Dong, Y.; He, Q.; Chen, H.; Zhu, Z. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis. J. Chromatogr. B 2015, 990, 96–103. [Google Scholar] [CrossRef]
- Meng, J.; You, J.B.; Arends, G.F.; Hao, H.; Tan, X.; Zhang, X. Microfluidic device coupled with total internal reflection microscopy for in situ observation of precipitation. Eur. Phys. J. E 2021, 44, 57. [Google Scholar] [CrossRef]
- Charbaji, A.; Heidari-Bafroui, H.; Rahmani, N.; Anagnostopoulos, C.; Faghri, M. A 3D Printed Lightbox for Enhancing Nitrate Detection in the Field Using Microfluidic Paper-Based Devices. Present. Innov. Microfluid. 2022, 3, 1–27. [Google Scholar]
- Navratil, T. Application and Utilization of Electrochemistry in Organic Chemistry. Curr. Org. Chem. 2011, 15, 2921–2922. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, H.H.; Shafiee, S.A.; Abdalla, A.; Patel, B.A. 3D printable conductive materials for the fabrication of electrochemical sensors: A mini review. Electrochem. Commun. 2018, 96, 27–31. [Google Scholar] [CrossRef]
- Pursey, J.P.; Chen, Y.; Stulz, E.; Park, M.K.; Kongsuphol, P. Microfluidic electrochemical multiplex detection of bladder cancer DNA markers. Sens. Actuators B Chem. 2017, 251, 34–39. [Google Scholar] [CrossRef]
- Hong, S.A.; Kim, Y.J.; Kim, S.J.; Yang, S. Electrochemical detection of methylated DNA on a microfluidic chip with nanoelectrokinetic pre-concentration. Biosens. Bioelectron. 2018, 107, 103–110. [Google Scholar] [CrossRef]
- Irfan, M.; Liu, X.; Hussain, K.; Mushtaq, S.; Cabrera, J.; Zhang, P. The global research trend on cadmium in freshwater: A bibliometric review. Environ. Sci. Pollut. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, M.; Li, J.; Kang, N.; Ahmed, A.; Zong, Y.; Tu, J.; Chen, Y.; Zhang, P.; Liu, X. Graphene-Based Membranes for Water Desalination: A Literature Review and Content Analysis. Polymers 2022, 14, 4246. [Google Scholar] [CrossRef]
- Colares, G.S.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, Ê.L. Floating treatment wetlands: A review and bibliometric analysis. Sci. Total Environ. 2020, 714, 136776. [Google Scholar] [CrossRef]
- Jiao, S.; Li, Y.; Li, J.; Abrha, H.; Liu, M.; Cui, J.; Wang, J.; Dai, Y.; Liu, X. Graphene oxide as a versatile platform for emerging hydrovoltaic technology. J. Mater. Chem. A 2022, 10, 18451–18469. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, T.; Feng, H.; Chen, S. Greenhouse gas emissions from landfills: A review and bibliometric analysis. Sustainability 2019, 11, 2282. [Google Scholar] [CrossRef]
- Li, J.; Mao, Y.; Ouyang, J.; Zheng, S. A Review of Urban Microclimate Research Based on CiteSpace and VOSviewer Analysis. Int. J. Environ. Res. Public Health 2022, 19, 4741. [Google Scholar] [CrossRef]
- Maurya, R.; Gohil, N.; Bhattacharjee, G.; Khambhati, K.; Alzahrani, K.J.; Ramakrishna, S.; Chu, D.-T.; Singh, V. Advances in microfluidics devices and its applications in personalized medicines. Prog. Mol. Biol. Transl. Sci. 2022, 186, 191–201. [Google Scholar] [CrossRef]
- Swinney, D.C.; Anthony, J. How were new medicines discovered? Nat. Rev. Drug. Disc. 2011, 10, 507–519. [Google Scholar] [CrossRef]
- Herland, A.; Maoz, B.M.; Das, D.; Somayaji, M.R.; Prantil-Baun, R.; Novak, R.; Cronce, M.; Huffstater, T.; Jeanty, S.S.F.; Ingram, M.; et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat. Biomed. Eng. 2020, 4, 421–436. [Google Scholar] [CrossRef]
- Leist, M.; Hasiwa, N.; Rovida, C.; Daneshian, M.; Basketter, D.; Kimber, I.; Clewell, H.; Gocht, T.; Goldberg, A.; Busquet, F.; et al. Consensus report on the future of animal-free systemic toxicity testing. ALTEX 2014, 31, 341–356. [Google Scholar] [CrossRef] [Green Version]
- Mulholland, T.; McAllister, M.; Patek, S.; Flint, D.; Underwood, M.; Sim, A.; Edwards, J.; Zagnoni, M. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Sci. Rep. 2018, 8, 14672. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, S.; Hattori, K.; Kanamori, K. Microfluidic Serial Dilution Cell-Based Assay for Analyzing Drug Dose Response over a Wide Concentration Range. Anal. Chem. 2010, 82, 8278–8282. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, N.; Xie, L.; Shu, F.; Shi, Q.; Shaheen, N. A New 3D Cultured Liver Chip and Real-Time Monitoring System Based on Microfluidic Technology. Micromachines 2020, 11, 1118. [Google Scholar] [CrossRef]
- Dornhof, J.; Kieninger, J.; Muralidharan, H.; Maurer, J.; Urban, G.A.; Weltin, A. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. Lab Chip 2022, 22, 225–239. [Google Scholar] [CrossRef]
- Chen, Y.; Li, P.; Modica, J.A.; Drout, R.J.; Farha, O.K. Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. J. Am. Chem. Soc. 2018, 140, 5678–5681. [Google Scholar] [CrossRef]
- Cao, L.; Han, G.C.; Xiao, H.; Chen, Z.; Fang, C. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal. Chim. Acta 2020, 1096, 34–43. [Google Scholar] [CrossRef]
- Koklu, A.; Ohayon, D.; Wustoni, S.; Hama, A.; Chen, X.; McCulloch, I.; Inal, S. Microfluidics integrated n-type organic electrochemical transistor for metabolite sensing. Sens. Actuators B Chem. 2021, 329, 129251. [Google Scholar] [CrossRef]
- Bruch, R.; Johnston, M.; Kling, A.; Mattmüller, T.; Baaske, J.; Partel, S.; Madlener, S.; Weber, W.; Urban, G.A.; Dincer, C. CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics. Biosens. Bioelectron. 2021, 177, 112887. [Google Scholar] [CrossRef]
- Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171. [Google Scholar] [CrossRef]
- Zheng, Q.; Lee, J.H.; Shen, X.; Chen, X.; Kim, J.-K. Graphene-based wearable piezoresistive physical sensors. Mater. Today 2020, 36, 158–179. [Google Scholar] [CrossRef]
- De la Paz, E.; Barfidokht, A.; Rios, S.; Brown, C.; Chao, E.; Wang, J. Extended Noninvasive Glucose Monitoring in the Interstitial Fluid Using an Epidermal Biosensing Patch. Anal. Chem. 2021, 93, 12767–12775. [Google Scholar] [CrossRef]
- Xing, X.; Pérez-Ràfols, C.; Chen, C.; Cuartero, M.; Crespo, G.A. Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sens. 2021, 6, 2763–2771. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Drosinos, E.H.; Skandamis, P.N. Food recalls and warnings due to the presence of foodborne pathogens—A focus on fresh fruits, vegetables, dairy and eggs. Curr. Opin. Food Sci. 2017, 18, 71–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Wu, D.; Li, X.; Yu, Y.; Luo, P.; Chen, J.; Dai, C.; Wu, Y. Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. Trends Anal. Chem. 2019, 121, 115669. [Google Scholar] [CrossRef]
- Guo, L.; Feng, J.; Fang, Z.; Xu, J.; Lu, X. Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci. Technol. 2015, 46, 252–263. [Google Scholar] [CrossRef]
- Silva, N.F.D.; Almeida, C.M.R.; Magalhães, J.M.C.S.; Gonçalves, M.P.; Freire, C.; Delerue-Matos, C. Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. Biosens. Bioelectron. 2019, 141, 111317. [Google Scholar] [CrossRef]
- Agustini, D.; Fedalto, L.; Bergamini, M.F.; Marcolino-Junior, L.H. Microfluidic thread based electroanalytical system for green chromatographic separations. Lab Chip 2018, 18, 670–678. [Google Scholar] [CrossRef]
- Kabariya, R.B.; Ramani, V.M. Study of thread properties for their possible use in fabrication of diagnostic microfluidic device. Man-Made Text. India 2018, 46, 226–230. [Google Scholar]
- Jiang, H.; Sun, Z.; Guo, Q.; Weng, X. Microfluidic thread-based electrochemical aptasensor for rapid detection of Vibrio parahaemolyticus. Biosens. Bioelectron. 2021, 182, 113191. [Google Scholar] [CrossRef]
- Xu, G.; Song, P.; Xia, L. Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy. Nanophotonics 2021, 10, 4419–4445. [Google Scholar] [CrossRef]
- Gupta, A.K.; Khanna, M.; Roy, S.; Pankaj; Nagabooshanam, S.; Kumar, R.; Wadhwa, S.; Mathur, A. Design and development of a portable resistive sensor based on α-MnO2/GQD nanocomposites for trace quantification of Pb (II) in water. IET Nanobiotechnol. 2021, 15, 505–511. [Google Scholar] [CrossRef]
- Shaik, S.; Saminathan, A.; Sharma, D.; Krishnaswamy, J.A.; Mahapatra, D.R. Monitoring microbial growth on a microfluidic lab-on-chip with electrochemical impedance spectroscopic technique. Biomed. Microdevices 2021, 23, 26. [Google Scholar] [CrossRef]
- Amoatey, P.; Baawain, M.S. Effects of pollution on freshwater aquatic organisms. Water Environ. Res. 2019, 91, 1272–1287. [Google Scholar] [CrossRef] [Green Version]
- Altintas, Z.; Akgun, M.; Kokturk, G.; Uludag, Y. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens. Bioelectron. 2018, 100, 541–548. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Cao, H.H.; Nguyen, D.T.; Nguyen, V.A. Sodium Dodecyl Sulfate Doped Polyaniline for Enhancing the Electrochemical Sensitivity of Mercury Ions. Electroanal. 2017, 29, 595–601. [Google Scholar] [CrossRef]
- Silva, R.; Ahamed, A.; Cheong, Y.H.; Zhao, K.; Ding, R.; Lisak, G. Non-equilibrium potentiometric sensors integrated with metal modified paper-based microfluidic solution sampling substrates for determination of heavy metals in complex environmental samples. Anal. Chim. Acta 2022, 1197, 339495. [Google Scholar] [CrossRef]
- Richardson, J.R.; Fitsanakis, V.; Westerink, R.H.S.; Kanthasamy, A.G. Neurotoxicity of pesticides. Acta Neuropathol. 2019, 138, 343–362. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019, 126, 346–354. [Google Scholar] [CrossRef]
- Jemmeli, D.; Marcoccio, E.; Moscone, D.; Dridi, C.; Arduini, F. Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta 2020, 216, 120924. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Wang, H.; Wang, L. Application of Microfluidic Chips in the Detection of Airborne Microorganisms. Micromachines 2022, 13, 1576. [Google Scholar] [CrossRef]
- Rao, L.T.; Dubey, S.K.; Javed, A.; Goel, S. Paper-based optimized chemical fuel cell with laser-scribed graphene electrodes for energy harvesting. Microfluid. Nanofluidics 2021, 25, 1–13. [Google Scholar] [CrossRef]
- Ratnarathorn, N.; Dungchai, W. Paper-based Analytical Device (PAD) for the Determination of Borax, Salicylic Acid, Nitrite, and Nitrate by Colorimetric Methods. J. Anal. Chem. 2020, 75, 487–494. [Google Scholar] [CrossRef]
- Ireta-Muñoz, L.A.; Cueva-Perez, I.; Saucedo-Dorantes, J.J.; Pérez-Cruz, A. A Paper-Based Cantilever Beam Mini Actuator Using Hygro-Thermal Response. Actuators 2022, 11, 94. [Google Scholar] [CrossRef]
- Charbaji, A.; Smith, W.; Anagnostopoulos, C.; Faghri, M. Zinculose: A new fibrous material with embedded zinc particles. Eng. Sci. Technol. Int. J. 2021, 24, 571–578. [Google Scholar] [CrossRef]
Rank | Journal of Sources | Publisher | Documents | N% |
---|---|---|---|---|
1 | Biosensors & Bioelectronics | Elsevier | 43 | 9.41 |
2 | Sensors | MDPI | 28 | 6.13 |
3 | Lab on A Chip | Royal Society of Chemistry | 23 | 5.03 |
4 | TrAC-Trends in Analytical Chemistry | Elsevier | 20 | 4.37 |
5 | Analytical chemistry | American Chemical Society | 15 | 3.28 |
Rank | Journal of Sources | Publisher | Co-Citations | Total Link Strength |
---|---|---|---|---|
1 | Analytical Chemistry | American Chemical Society | 3136 | 236,413 |
2 | Biosensors & Bioelectronics | Elsevier | 2852 | 217,886 |
3 | Lab on A Chip | Royal Society of Chemistry | 2787 | 211,965 |
4 | Sensors and Actuators B-Chemical | Elsevier | 1614 | 132,727 |
5 | Analytica Chimica Acta | Elsevier | 810 | 72,123 |
6 | Analyst | Royal Society of Chemistry | 722 | 62,666 |
7 | Talanta | Elsevier | 614 | 56,043 |
8 | Scientific Reports | Springer Nature | 493 | 45,130 |
9 | Analytical and Bioanalytical Chemistry | Springer Nature | 486 | 42,771 |
10 | Electrophoresis | Wiley | 479 | 37,952 |
11 | Angewandte Chemie-International Edition | Wiley | 458 | 42,961 |
12 | Advanced Materials | Wiley | 442 | 42,275 |
13 | Biosensors-Basel | MDPI | 428 | 36,431 |
14 | Nature | Springer Nature | 423 | 38,168 |
15 | ACS Applied Materials & Interfaces | American Chemical Society | 411 | 442 |
Rank | Keywords | Occurrences |
---|---|---|
1 | microfluidic | 136 |
2 | Electrochemical detection | 102 |
3 | biosensor | 96 |
4 | Microfluidic device | 75 |
5 | sensor | 60 |
6 | technology | 55 |
7 | electrode | 48 |
8 | fabrication | 47 |
9 | device | 44 |
10 | system | 43 |
11 | Low-cost | 36 |
12 | platform | 35 |
13 | On-a-chip | 34 |
14 | Electrochemical biosensor | 33 |
15 | Sensitive detection | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, Y.; Guo, W.; Jiao, S.; Liu, X. The Global Research Trend in Electrochemical Microfluidic Technology: A Bibliometric Review. Chemosensors 2023, 11, 14. https://doi.org/10.3390/chemosensors11010014
Zhang X, Zhang Y, Guo W, Jiao S, Liu X. The Global Research Trend in Electrochemical Microfluidic Technology: A Bibliometric Review. Chemosensors. 2023; 11(1):14. https://doi.org/10.3390/chemosensors11010014
Chicago/Turabian StyleZhang, Xu, Yihao Zhang, Wei Guo, Shipu Jiao, and Xianhua Liu. 2023. "The Global Research Trend in Electrochemical Microfluidic Technology: A Bibliometric Review" Chemosensors 11, no. 1: 14. https://doi.org/10.3390/chemosensors11010014
APA StyleZhang, X., Zhang, Y., Guo, W., Jiao, S., & Liu, X. (2023). The Global Research Trend in Electrochemical Microfluidic Technology: A Bibliometric Review. Chemosensors, 11(1), 14. https://doi.org/10.3390/chemosensors11010014