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Abstract: Electrochemical microfluidic technology has been extensively studied in many fields due
to its significant advantages. Despite the increasing number of publications on the subject, there are
no studies based on bibliometric analysis in this area. In this study, we performed a bibliometric
analysis of 457 publications related to electrochemical microfluidic technology during 2012–2021
through the Web of Science core database. Results show that the hot topics include the development
of label-free immunosensors, biosensors, microfluidic device performance, and low cost of equipment,
and the major contributors to these publications are from China, USA, Spain, India, and Germany. In
addition, applications of electrochemical microfluidics in biomedicine, food safety, and environmental
monitoring are summarized and analyzed. Finally, the future challenges as well as strategies for
future research are discussed. This bibliometric review will be useful for researchers in gaining new
insights into the electrochemical microfluidic technology.
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1. Introduction

In recent years, microfluidic technology has attracted the attention of academia and
industry with the shift of the macroscopic world to the microscopic realm in people’s
exploration. Microfluidics refers to the science and technology involved in systems that
use microchannels to process micro fluids. It is a cross discipline involving chemistry, fluid
physics, microelectronics, new materials, and biomedical engineering. It is focused on
creating microfluidic channel systems to perform numerous complex microfluidic manipu-
lation functions, including the control, manipulation, and detection of fluids at microscopic
sizes [1]. Microfluidic devices are often known as microfluidic chips, lab on a chip, or
micro-total analytical system. There are many outstanding advantages of microfluidic
systems such as small volume of sample analysis, easy automation, fast response, effective
selection of separation, device portability, and simplicity of operation [2]. Microfluidics had
a revolutionary impact in the fields of biosensing [3], catalysis [4], medicine [5], chemistry,
and materials synthesis [6] due to its unique advantages. In addition, a wide variety of
detection methods can be used in conjunction with microfluidics, ranging from electro-
chemical or biosensors integrated on a chip [7,8] to various external detectors, such as mass
spectrometry [9], fluorescence microscopy [10], portable lightbox, and cellphone technol-
ogy [11]. Combined with most of the currently popular rapid assays, it can provide more
accurate results by concentrating sample pretreatment, reagent reaction, and separation
detection operations on a single chip.

Electrochemistry has been recognized commonly as a useful analytical method devel-
oped over a century [12]. In electrochemical detection, it is characterized by high sensitivity
and inherent miniaturization, in which the electrodes and the entire detection device can
be infinitely miniaturized. The microfluidic technique can manipulate liquid volumes
of less than µL [13] and it sometimes requires the integration of a micro detector in this
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device. The feature of scaling down electrochemical detectors without loss of performance
is exactly what microfluidic devices need. In general, the approach combining electro-
chemical detection and microfluidics can be achieved by immobilizing sensitive electrodes
with bioactive molecules on a microfluidic substrate. The sensitive electrode converts the
biochemical signals generated between the substance and the immobilized biomolecule
into electrical signals such as current, potential and impedance for qualitative or quantita-
tive detection. The combination of microfluidic micrometer channels and electrochemical
techniques is currently of interest because of its high throughput, sensitivity, specificity,
and low detection limits [14–16].

For the past few years, the number of publications on electrochemical microfluidic
technology has continued to grow, but few reports examined its development dynamics
from the perspective of bibliometric analysis. The current bibliometric analysis not only
focuses on annual publication volume, literature type, publication language, keyword fre-
quency, journals, and subject categories, but also allows for systematic network construction
and visualization based on the relationships among key indicators such as authors, research
institutions, countries, journals, and keywords [17,18]. Through bibliometric analysis, it is
possible to summarize the current status of research in a certain field and predict the future
development trend of scientific research on this basis to provide a reference for researchers.

In this paper, we analyze the literature related to electrochemical microfluidic technol-
ogy in the last decade and systematically analyze the current research results and research
hotspots. The current problems and challenges are discussed, and the future development
trends of electrochemical microfluidics are also prospected.

2. Methodology

The literature in this study was retrieved from the Web of Science core database on
20 August 2022, using the subject keywords TS = (“electrochemical” AND “microfluidic
technology”) and the time frame was set by literature published years from 2012 to 2021.
Further re-screening was performed in terms of language (English) and document type
(articles and reviews). All the data were gathered in “txt” files that include complete records
and cited references. A total of 457 related publications were collected.

CiteSpace and VOSviewer are two commonly used bibliometric software, both of
which visualize research domain information through metric modeling and mapping of
relevant literature [19–21]. Specifically, CiteSpace focuses on research frontier identification
and hotspot evolution trend analysis, while VOSviewer focuses on the presentation of
informatics mapping [22]. CiteSpace 5.8 R3 and VOSviewer 1.1.16 were used to analyze
authors, countries, institutions, journals, co-citations and key words to study different
research fields. The analysis was conducted to study the hotspots and trends in the field
at different time periods. The related data were organized and calculated using Microsoft
Excel 2019 software.

3. Results
3.1. Publication Language, Document Type and Growth Trend

The annual distribution analysis considering the literature quantitatively indicates
the attention received by the field, as well as reflects the different developmental histories
of research on the topic. The annual articles published from 2012 to 2021 were counted,
and the increasing trend is shown in Figure 1a. The trend is divided into two stages. The
first is the initial stage of electrochemical microfluidic technology from 2012 to 2015 and
the average number of published articles per year is nearly 26. The second is the growth
and development stage from 2015 to 2021 with a rapid increase in the number of published
articles per year. In 2021, the number of published articles was 89, which is 3.2 times more
than published in 2015. It is evident that the research in this field is expanding.
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during 2012–2021 in this field.

As microfluidic technology spread worldwide, many research institutions have in-
creased their research efforts. This is mainly due to more and more companies at home
and abroad being committed to the development of microfluidic technology. It has a large
share of annual publications in China, one of the reasons is the Ministry of Science and
Technology released the “13th Five Year” Special Plan for Biotechnology Innovation in
2017, which clearly brings microfluidic chips into the category of new generation biological
detection technology. Meanwhile, it is expected that the number of relevant research papers
will continue to grow in the future with the advancement of the new national science and
technology strategy and become a new focus of attention.

3.2. Author and Co-Author’s Analysis and Network

It is possible to understand the representative scholars and core research strengths of
the research field by analyzing the collaborative network characteristics of the authors. A
total of 2127 authors were involved in this research area from 2012 to 2021. The network
visualization of co-authorship authors is shown in Figure 2, where 225 authors who have
published more than two cooperative articles were counted. Henry, C.S. published the
most articles and Wang, J. received the highest number of citations in this field.

In terms of collaboration and coordination, the number of clusters is 56, and nine of
them include more than six co-authors. Meanwhile, there are many isolated nodes and
weak cooperation among authors, a situation that is not conducive to the development of
electrochemical microfluidics in the long run. It should be emphasized that the statistical
results are based on a maximum of 25 co-authors per article. One of the articles is called
“Multisensor-integrated organs-on-chips platform for automated and continual in situ
monitoring of organizational behaviors”, which has more than 25 co-authors.

3.3. Publication Distribution by Countries

In order to understand which countries are making the most significant contributions
to the field of electrochemical microfluidics, the volume of publications from 53 countries
were analyzed in this paper. The top nine countries with the highest number of publications
is shown in Figure 1b. The top five countries in terms of number of publications are China
(129), USA (125), Spain (29), India (27), and Germany (25). Among them, China and the USA
were the two countries with the highest number of publication articles. China accounted
for around 28% of the total articles located in the first place, followed by the USA with
only four fewer publications than China. Other than that, the number of papers from other
countries is less than 30. Figure 3 shows the country’s collaboration network map, where
a larger circle node represents more published documents, the thicker line represents a
stronger association between the two countries, and the color of the node represents the
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different clusters. It is indicated that China and the USA work most closely together, the
distribution of publications in this field is very uneven, and the top effect is significant with
most of the papers being authored by scholars from a few countries.
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3.4. Journals Contribution and Co-Citations Source Visualization

A total of 457 articles related to electrochemical microfluidics were published in
178 journals since 2012–2021. Table 1 shows the top five journals in terms of number of
publications. “Biosensors & Bioelectronics” is the top ranked journal, and it has published
262 papers, accounting for 2.85% of the total. The journal “sensors” was the second ranked
journal with 252 publications. Table 2 lists the top 15 journals with the highest number of
co-citations between the 457 articles collected. Among them, “Analytical Chemistry” is
ranked first with 3136 citations, followed by “Biosens bioelectron”.

Table 1. Top 5 journals with most of publications.

Rank Journal of Sources Publisher Documents N%

1 Biosensors & Bioelectronics Elsevier 43 9.41
2 Sensors MDPI 28 6.13
3 Lab on A Chip Royal Society of Chemistry 23 5.03
4 TrAC-Trends in Analytical Chemistry Elsevier 20 4.37
5 Analytical chemistry American Chemical Society 15 3.28

Table 2. Top 15 journals with most co-citations of publications.

Rank Journal of Sources Publisher Co-Citations Total Link
Strength

1 Analytical Chemistry American Chemical Society 3136 236,413
2 Biosensors & Bioelectronics Elsevier 2852 217,886
3 Lab on A Chip Royal Society of Chemistry 2787 211,965
4 Sensors and Actuators B-Chemical Elsevier 1614 132,727
5 Analytica Chimica Acta Elsevier 810 72,123
6 Analyst Royal Society of Chemistry 722 62,666
7 Talanta Elsevier 614 56,043
8 Scientific Reports Springer Nature 493 45,130
9 Analytical and Bioanalytical Chemistry Springer Nature 486 42,771
10 Electrophoresis Wiley 479 37,952

11 Angewandte Chemie-International
Edition Wiley 458 42,961

12 Advanced Materials Wiley 442 42,275
13 Biosensors-Basel MDPI 428 36,431
14 Nature Springer Nature 423 38,168
15 ACS Applied Materials & Interfaces American Chemical Society 411 442

Figures 4 and 5 show the visualization and density of the co-citation source network
between the 457 articles collected. The collaboration amid of journals is denoted by the
connecting line among nodes. The co-citation is determined by the number and thickness
of the lines, and the size of the nodes is connected to the total link strength. The larger
nodes represent greater total connection strength. It can be seen that close collaborative rela-
tionships arise between Analytical Chemistry, Biosensors & Bioelectronics, Lab on A Chip,
Sensors and Actuators B-Chemical, and Analytica Chimica Acta, which indicates the great
interest and potential in the field of analytical chemistry and electrochemical microfluidics.

3.5. Keywords Analysis and Network

Keywords indicate the author’s high concentration and summary of the whole article,
which can largely reflect the research hotspots in the field. Keywords analysis is helpful to
grasp the core topics of the article and help us understand the research trends.
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A total of 2127 keywords in collected data are retrieved from 2012 to 2021. The
keywords occurring more than 25 times were selected for network visualization analysis.
As shown in Figure 6, each circle represents a keyword. The size of the circle reflects the
frequency of keyword co-occurrence, and the larger the circle, the higher the frequency of
keyword co-occurrence.
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The distance and thickness of the lines indicate the degree of correlation between
them, and the same color circle means that they belong to a cluster. The co-occurrence
keywords visualization is divided into three clusters by VOSviewer software. The green
cluster represents the design and manufacture of equipment related to electrochemical
microfluidics; red cluster indicates the application of electrochemical microfluidics in
biological detection; and the blue cluster includes detection methods and means related
to electrochemical microfluidic. The top 15 high-frequency keywords were extracted and
arranged in descending order of word frequency, as shown in Table 3. Among them, the
keyword microfluidic appeared the most 136 times, followed by electric detection with
102 times and biosensor with 96 times, which demonstrates the close attention currently
paid to electrochemical detection and biosensors in microfluidics. It can be seen from the
top 15 keywords that the hottest topics include microfluidic electrochemical detection,
biosensors, fabrication of microfluidic devices, and the development of low-cost detection
platforms on chips.

CiteSpace comes with a keyword analysis clustering function, which facilitates the
identification of key research areas in a particular science over time by clustering and
grouping words with distinctive features in that field. It performs clustering analysis by
using the LLR algorithm on top of keyword co-occurrence mapping, with keywords as
the basis for clustering. The LLR algorithm is the logarithmic likelihood ratio and one
of the commonly used algorithms for extracting clustering label words. As shown in
Figure 7, six core clusters were generated, namely systems, label free, electrochemistry,
performance, low cost, and biosensor. This indicates that the hot research issues in this
area include the development of label-free immunosensors, biosensors, microfluidic device
performance, and low cost of equipment, which is generally consistent with the clustering
results of VOSviewer.



Chemosensors 2023, 11, 14 8 of 18

Table 3. Top 15 keywords with the the highest frequency of co-occurrence.

Rank Keywords Occurrences

1 microfluidic 136
2 Electrochemical detection 102
3 biosensor 96
4 Microfluidic device 75
5 sensor 60
6 technology 55
7 electrode 48
8 fabrication 47
9 device 44
10 system 43
11 Low-cost 36
12 platform 35
13 On-a-chip 34
14 Electrochemical biosensor 33
15 Sensitive detection 31
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4. Applications of Electrochemical Microfluidic Technology

Electrochemical microfluidics has become an emerging technology with rapid devel-
opment and application in several fields. In this paper, three applications in biomedicine,
food safety, and environmental monitoring are collated and presented.

4.1. Biomedical

In recent years, there have been many studies on the application of electrochemical
microfluidics in the medical field. It is undeniable that microfluidics has brought disruptive
breakthroughs in disease treatment, drug screening, human toxicity testing and disease
diagnosis. It will promote the development of modern science and technology at a high
speed under the fourth industrial revolution with artificial intelligence as the core [23].
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Although animals are often used for in vitro studies, animal model tests are usually
not effective in simulating the mechanism of action of toxic cells in humans due to biological
differences [24,25]. Instead, it is more ethical to use human organelles, cells, organs, or
tissues as subjects for in vitro studies [26]. Among them, cells are the most widely used
to construct in vitro models, drug sensitivity analysis, and biomedical research because of
their simple structure, short duration, and low cost [27].

In some anticancer drug development and disease treatment processes, analyses
involving activity, efficiency or toxicity often have requirements for drug concentration
gradients. Traditional experimental platforms are difficult to achieve high-throughput
screening due to the shortage of cost, reliability, and reaction time [28]. In contrast, mi-
crofluidic technology can achieve complex solution processing by setting up a network
of microchannels, which can be used for pharmacological analysis. At the same time, the
electrochemical analysis method can be more sensitive and faster for real-time detection.

Zhang et al. [29] proposed a 3D cultured liver chip based on microfluidic chip tech-
nology and it could be monitored in real time. The in vitro liver models are fabricated
using PMMA chips and porous plates with integrated microporous arrays embedded in
specific ducts. The chip is also continually injected with media and monitored in real
time by measuring impedance and spectral values at different time points. Meanwhile,
integrated sensors for the real-time monitoring of culture conditions and cell metabolism
in cancer research are expected to further study complex in vitro models. Johannes Dorn-
hof et al. [30] developed an organ platform on microfluidic chip based on heterogeneous
3D culture of matrix, which has a totally integrated electrochemical and biosensor array
for energy metabolites oxygen, lactate, and glucose (as shown in Figure 8). The advanced
microstructure allows the direct integration of cellular matrices with standard lab equip-
ment, compartments, and microfluidic access. It enables quantitative and real-time access
to responses to changes in culture conditions and cancer drug exposure. The utility and
superiority of this platform were demonstrated with a single triple-negative breast cancer
stem cell study subject from a patient.
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tograph of the assembly device filled with colored hydrogel and with PMMA cover; (c) Schematic
of the sensor cross-section, including the materials and techniques used; (d) SEM micrograph of
the patterned SU-8 structure that constitutes the fluidic structure. Reprinted with permission from
ref. [30]. Copyright 2022 Royal Society of Chemistry.
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Microfluidic analysis as the core of disease diagnosis technology can measure samples
from different individuals in parallel. The diversification of samples and miniaturization of
analytical instruments are gradually replacing the current clinical diagnostic equipment,
and some achievements have been made in the diagnosis of some diseases.

Diabetes has become a commonly globalized metabolic disease, which is not taken
seriously because of its small harm to human body at the beginning. However, if not
detected and treated in time, long-term high blood sugar will cause damage to the body’s
organs and lead to a series of complications [31]. Therefore, real-time monitoring of
blood glucose levels is important for the prevention, diagnosis, and treatment of diabetes.
Cao et al. [32] constructed a novel 3D paper-based microfluidic electrochemical biosensor
for glucose determination by photolithography and screen-printing techniques. A kind
of rGO-TEPA/PB nanocomposite was prepared as a modification of the paper working
electrode. The prepared nanocomposites performed good electrocatalytic reduction activity
for H2O2, an enzyme-catalyzed reaction product. Under optimal conditions, the sensor
can achieve a wide linear range and low detection limit and has been used successfully to
determine the amount of glucose in human blood and sweat. The results from experiments
are in good agreement with the values measured by blood glucose meter. In addition to
sensors that rely on H2O2 catalysis for the indirect detection of glucose were investigated,
Koklu et al. [33] have developed a sensor that can detect glucose directly without the help of
an external medium (as shown in Figure 9). This was the first to integrate an n-type organic
electrochemical transistor (OECT) with a microfluidic channel for real-time glucose testing.
The electrical signal stability characteristics conferred by microfluidics are exploited, while
transistor circuits are used to enhance the signal-to-noise ratio (SNR) and minimize the
detection limit to the nM-range.
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With the increasing demands on disease detectors, it becomes necessary to evaluate
them against the background conditions of other factors. Bruch et al. [34] presented a
multiplexable electrochemical microfluidic biosensor that divides a single channel into
multiple subparts. Four new chip designs were created that can be used to analyze up
to eight different miRNAs. The greatest advantage offered by the sensor in terms of
multiplexing capability is the flexibility to target those RNAs of interest from a single
clinical sample using only one effector protein without the need to change the sensor or
measurement device.

Recently, wearable sensors have attracted extensive research in health management [35]
and sports monitoring [36] due to their small size, portability, functional integration, and
other advantages. Paz et al. [37] described a wearable electrochemical device for glucose
monitoring. The proposed device allows for long-term non-invasive monitoring of changes
in human blood glucose levels. Lactate sensors for sweat analysis also gain attention in
sports and medical fields. Xing et al. [38] developed a wearable device to monitor sweat
lactate on the human body, and the biosensor also maintains a response to changes in pH
and temperature.

4.2. Food Analysis

With the increasing variety of foods and demand for food, the use of some chemicals
in agriculture and industry has risen rapidly. Hundreds of foodborne disease outbreaks
and food recalls were reported worldwide every year [39], especially in some developing
countries. This has led to a growing concern with regard to food safety issues, along with
the need to develop food safety testing technologies.

Food safety is the proper protection of food from contamination during the stages of
preparation, handling, storage and disposal [40]. High performance liquid chromatography,
gas chromatography and other traditional analytical methods have been used to detect
pollutants and toxicity in agricultural products and food [41]. Although these techniques
have achieved some results, they have high initial costs and are very unportable. Compared
with some traditional analytical methods, microfluidics combined with electrochemical
technology has the advantages of being more portable, low-cost, and sensitive. It has been
well used in food detection, e.g., in detecting microorganisms, pesticides, and heavy metals
contained in food products.

Silva et al. [42] designed a paper-based label-free potential immunosensor based on
the surface barrier principle for the detection of Salmonella typhimurium. The paper-based
ion selective electrode was incorporated with a filter paper pad that can hold the internally
filled solution, and the design provided a platform for antibody immobilization. It was
also a simple and economical way to control the ion flux through the polymer membrane.
Optimized conditions achieved a detection limit of 5 cells mL−1 in phosphate buffer. The
sensor was applied to the quantitative analysis of Salmonella in apple juice and showed a
good performance.

In recent years, compared to conventional microfluidic chips and paper-based mi-
crofluidic chips that have emerged, the manufacturing of threaded microfluidic chips has
become simpler and less demanding, offering low cost, Simple operation, high availability,
and ease of portability [43,44]. Jiang et al. [45] used label-free aptamer immunosensing
technology to design a thread-based microfluidic electrochemical aptamer sensor for the
speedy and sensitive detection of Vibrio parahaemolyticus in marine products (as shown
in Figure 10). The designed sensor eliminated the limitations of many conventional mi-
crofluidic devices using external pumps, and molybdenum disulfide (MoS2) fixed on the
electrode surface can enhance electrochemical sensitivity. The proposed sensor has a detec-
tion limit of 5.74 CFU mL−1, with higher detection sensitivity and shorter detection time
(30 min).

In addition to detecting biological contaminants in spoiled food, it can also detect
some heavy metal ions from the food chain, such as lead and arsenic ions in water. These
heavy metal ions are very harmful to humans and may lead to multi-organ failure in
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humans [46]. Gupta et al. [47] combined microfluidics with α-MnO2/GQD nanocomposites
to develop a small portable resistive device for the detection of lead ions, which exhibits
great potential for integration with conventional water purification devices to indicate the
safety index of drinking water (as shown in Figure 11). The Au microelectrodes modified
by α-MnO2/GQD nanocomposites showed good complexation and high electron transfer
kinetic ability for Pb(II). The proposed portable sensor was evaluated at low sample
volumes (200 µL) and in the concentration range from 0.001 nM to 1 uM, while being
available for approximately 45 days.
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4.3. Environmental Monitoring

With the increasing industrial wastewater, agricultural products, and residual waste
from human activities, it is most obvious that the water quality of surface and drinking
water has become deteriorated [48]. The pollutants that cause water quality deterioration
are pesticides, bacteria, heavy metals, and some new pollutants. Once these pollutants
enter the human body, they will bring a series of serious diseases to the human body [49].
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Microfluidic technology combined with electrochemical technology has been applied in the
field of environmental monitoring.

The spread of waterborne diseases associated with bacteria is one of the major prob-
lems affecting human health. Some common bacteria in water are Escherichia coli, Salmonella,
and Shigella [48]. Altintas et al. [50] designed a fully automated microfluidic electrochem-
ical biosensor for the specific detection of Escherichia coli. The quantitative detection of
Escherichia coli in water samples was performed using a nanomaterial amplification im-
munoassay with a detection limit of 50 cfu mL−1. In addition, the sensor surface can be
regenerated multiple times, further reducing the cost of detection. It is proven for the first
time that the designed biosensor device can monitor and detect bacterial pathogens with
the developed detection protocol.

Over the years, some heavy metal contaminants have been widely present in water
and soil, accumulating through the food chain and entering the human body. Mercury
ions can cause respiratory failure and neurological disorders in humans. Nguyen et al. [51]
designed an electrochemical sensor based on PDMS to detect mercury ions by forming a
conductive (Pani-SDS) film with good selectivity. Lead ions can damage the brain, causing
memory loss, and may also cause anemia and osteoporosis. Lead ions will not only damage
the brain and cause memory loss, but also cause anemia and osteoporosis in the human
body. Silva et al. [52] designed a potential sensor based on metal modified paper to detect
lead ions in complex environmental samples. Using different metal-thin modified paper
substrates in combination with lead ion selective electrodes, it was found that the paper
substrate coated with a 38-nm gold layer resulted in the best performance of the ISE, while
the service life of the modified sensor was extended.

Pesticides were used worldwide to improve vegetable, fruit, and food production.
Although the use of some persistent and toxic pesticides has been banned, those less
persistent pesticides can also cause serious harm to humans [53]. Therefore, the detection
of low concentrations of pesticides in water was necessary to protect the environment and
human health. Arduini et al. [54] presented an integrated electrochemical biosensor based
on three-dimensional origami for the first time. The sensor detects multiple pesticides by
loading different enzymes and enzyme substrates using an integrated device consisting of
office paper, screen-printed electrodes, and multiple filter paper pads. Enzyme activity in
the absence and presence of pesticides was monitored using a portable constant potential
meter to assess the degree of inhibition associated with the amount of pesticide. The
electrodes were modified accordingly to improve their sensitivity. The proposed device
would not require sample processing, and satisfactory results have been obtained by
collecting and analyzing actual river water samples (as shown in Figure 12).

An increasing number of novel pollutants in the environment have attracted widespread
attention. Jemmeli et al. [55] designed a paper-based electrochemical sensor for rapid detec-
tion of BPA in rivers and drinking water. Carbon black nanomaterials were used as working
electrodes combined with filter paper and quantified using square wave voltammetry. The
effectiveness of the carbon black and paper-based sensor for drinking water analysis and
environmental monitoring was demonstrated for the first time (as shown in Figure 13).



Chemosensors 2023, 11, 14 14 of 18

Chemosensors 2023, 11, 14 14 of 19 
 

 

[51] designed an electrochemical sensor based on PDMS to detect mercury ions by form-
ing a conductive (Pani-SDS) film with good selectivity. Lead ions can damage the brain, 
causing memory loss, and may also cause anemia and osteoporosis. Lead ions will not 
only damage the brain and cause memory loss, but also cause anemia and osteoporosis in 
the human body. Silva et al. [52] designed a potential sensor based on metal modified 
paper to detect lead ions in complex environmental samples. Using different metal-thin 
modified paper substrates in combination with lead ion selective electrodes, it was found 
that the paper substrate coated with a 38-nm gold layer resulted in the best performance 
of the ISE, while the service life of the modified sensor was extended. 

Pesticides were used worldwide to improve vegetable, fruit, and food production. 
Although the use of some persistent and toxic pesticides has been banned, those less per-
sistent pesticides can also cause serious harm to humans [53]. Therefore, the detection of 
low concentrations of pesticides in water was necessary to protect the environment and 
human health. Arduini et al. [54] presented an integrated electrochemical biosensor based 
on three-dimensional origami for the first time. The sensor detects multiple pesticides by 
loading different enzymes and enzyme substrates using an integrated device consisting 
of office paper, screen-printed electrodes, and multiple filter paper pads. Enzyme activity 
in the absence and presence of pesticides was monitored using a portable constant poten-
tial meter to assess the degree of inhibition associated with the amount of pesticide. The 
electrodes were modified accordingly to improve their sensitivity. The proposed device 
would not require sample processing, and satisfactory results have been obtained by col-
lecting and analyzing actual river water samples (as shown in Figure 12). 

An increasing number of novel pollutants in the environment have attracted wide-
spread attention. Jemmeli et al. [55] designed a paper-based electrochemical sensor for 
rapid detection of BPA in rivers and drinking water. Carbon black nanomaterials were 
used as working electrodes combined with filter paper and quantified using square wave 
voltammetry. The effectiveness of the carbon black and paper-based sensor for drinking 
water analysis and environmental monitoring was demonstrated for the first time (as 
shown in Figure 13). 

 
Figure 12. Schematic representation and photographs of the configuration of the paper-based plat-
form and measurement procedure. Reprinted with permission from ref. [54]. Copyright 2019 Else-
vier. 

Figure 12. Schematic representation and photographs of the configuration of the paper-based plat-
form and measurement procedure. Reprinted with permission from ref. [54]. Copyright 2019 Elsevier.

Chemosensors 2023, 11, 14 15 of 19 
 

 

 
Figure 13. Schematic representation of the configuration of paper-based sensor and measurement 
procedure. Reprinted with permission from ref. [55]. Copyright 2020 Elsevier. 

5. Conclusions and Future Perspective 
In this paper, the overall research trends in the field of electrochemical microfluidics 

from 2012–2021 were clarified by searching and analyzing the core databases on the Web 
of Science. Statistical analysis using bibliometric methods shows that the number of pub-
lications on electrochemical microfluidics research is increasing year by year, and the col-
laboration among authors in this field is relatively weak. China and the United States are 
the two countries with the highest number of publications in the statistical time frame. 
Biosensors & bioelectronics is ahead of other academic journals and has the highest num-
ber of publications on this topic. The analysis of keywords reveals that the research 
hotspots include microfluidic electrochemical detection, biosensors, fabrication of micro-
fluidic devices, and the design of low-cost microchip detection platforms. 

Based on the results of the analysis, possible research directions in the coming years 
should focus on the following areas: 
1. Polymer materials remain the mainstream materials for microfluidic equipment sub-

strate, but they have limitations in practical applications. Sometimes it is necessary 
to improve the surface modification and immobilization methods according to the 
requirements, which may affect their performance. Therefore, further research and 
exploration of new friendly and stable materials are required. Compared with tradi-
tional microfluidic chips based on glass and polymer, paper chips have the ad-
vantages of low cost, simple fabrication process, strong capillarity, and good biocom-
patibility. Progress has been made in some fields [56], and more attention can con-
tinue to be given to paper-based microfluidics in the future. 

2. For the electrode of electrochemical detection, the first step is to find suitable elec-
trode with good stability, low price and high catalytic activity. At the same time, in 
order to further improve its detection sensitivity, the development of new composite 
electrode and particle electrode is also an important research direction. Laser-scribed 
graphene (LSG) electrodes are widely used in some miniaturized and lab-on-a-chip 
systems, and this miniaturized LSG electrode is also very interesting [57]. 

3. Currently, most of the microfluidic analysis is developed for single target, however, 
high throughput analysis of multiple components is one of the most desirable fea-
tures for electrochemical microfluidic analysis. The realization of multi-dimensional 
detection as well as real-time monitoring of multiple components calls for a highly 
sensitive and selective microfluidic detection system, meriting further research. A 
paper-based analytical device (PAD) coupled with a colorimetric method has been 
reported for the rapid and highly sensitive determination of four chemical food ad-
ditives in food [58]. 

Figure 13. Schematic representation of the configuration of paper-based sensor and measurement
procedure. Reprinted with permission from ref. [55]. Copyright 2020 Elsevier.

5. Conclusions and Future Perspective

In this paper, the overall research trends in the field of electrochemical microfluidics
from 2012–2021 were clarified by searching and analyzing the core databases on the Web
of Science. Statistical analysis using bibliometric methods shows that the number of
publications on electrochemical microfluidics research is increasing year by year, and
the collaboration among authors in this field is relatively weak. China and the United
States are the two countries with the highest number of publications in the statistical
time frame. Biosensors & bioelectronics is ahead of other academic journals and has the
highest number of publications on this topic. The analysis of keywords reveals that the
research hotspots include microfluidic electrochemical detection, biosensors, fabrication of
microfluidic devices, and the design of low-cost microchip detection platforms.

Based on the results of the analysis, possible research directions in the coming years
should focus on the following areas:
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1. Polymer materials remain the mainstream materials for microfluidic equipment sub-
strate, but they have limitations in practical applications. Sometimes it is necessary
to improve the surface modification and immobilization methods according to the
requirements, which may affect their performance. Therefore, further research and
exploration of new friendly and stable materials are required. Compared with tradi-
tional microfluidic chips based on glass and polymer, paper chips have the advantages
of low cost, simple fabrication process, strong capillarity, and good biocompatibility.
Progress has been made in some fields [56], and more attention can continue to be
given to paper-based microfluidics in the future.

2. For the electrode of electrochemical detection, the first step is to find suitable electrode
with good stability, low price and high catalytic activity. At the same time, in order to
further improve its detection sensitivity, the development of new composite electrode
and particle electrode is also an important research direction. Laser-scribed graphene
(LSG) electrodes are widely used in some miniaturized and lab-on-a-chip systems,
and this miniaturized LSG electrode is also very interesting [57].

3. Currently, most of the microfluidic analysis is developed for single target, however,
high throughput analysis of multiple components is one of the most desirable features
for electrochemical microfluidic analysis. The realization of multi-dimensional detec-
tion as well as real-time monitoring of multiple components calls for a highly sensitive
and selective microfluidic detection system, meriting further research. A paper-based
analytical device (PAD) coupled with a colorimetric method has been reported for the
rapid and highly sensitive determination of four chemical food additives in food [58].

4. Large scale integration is a significant advantage of microfluidic chips and there are
still many deficiencies and challenges to overcome. How to integrate each operation
unit into a multi-functional microfluidic platform on a large scale and realize auto-
matic intelligent operation still needs further efforts and research. A paper-based
hygrothermal mechanical microactuator triggered by microliter droplets of aqueous
solution has been proposed, and the autonomously controlled microactuator is suit-
able for microfluidic applications [59]. At the same time, attention should also be paid
to reducing complexity, making the system more stable and low-cost. A novel compos-
ite material of cellulose fibers with embedded zinc micoparticles has been developed
to be used in microfluidic devices to reduce the complexity of the devices [60].

5. Photolithography, injection molding, laser cutting, or the use of ink jet or wax printing
are techniques that have been used to create microfluidic devices. With the rise of
3D printing technology and the requirement for more complex microfluidic chip
configurations, 3D printing technology has shown potential for microfluidic systems
and microelectronic devices. However, no single 3D printing method currently shows
ideal characteristics for building microfluidic devices with fully integrated microelec-
tronics. Accelerating the development of next-generation 3D printed microfluidic
systems as well as developing new technologies for building microfluidic devices to
achieve fully autonomous microelectronic integration is a future direction to work on.
At the same time, future trends will focus on research to develop portable devices to
perform point-of-care analysis of results in the field.
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