An Enzyme-Free Photoelectrochemical Sensor Platform for Ascorbic Acid Detection in Human Urine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Materials
2.2. Apparatuses
2.3. Synthesis of Dy6-SCN
2.4. Fabrication of Dy-OSCN/FTO PEC Sensor
2.5. Detection of AA
2.6. Conditions’ Optimization
3. Results
3.1. Surface Morphology Analysis for As-Prepared Photocatalysts
3.2. Characterization of the Synthesized Materials
3.3. Conditional Optimization
3.4. Analytical Performance of the PEC Sensor
3.5. Mechanism Analysis of AA Detection by Dy-OSCN/FTO PEC Sensor
3.6. Practical Application of the PEC Sensor in Real Human Urine Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Hieu, T.V.; Guntoro, B.; Qui, N.H.; Quyen, N.T.K.; Al Hafiz, F.A. The application of ascorbic acid as a therapeutic feed additive to boost immunity and antioxidant activity of poultry in heat stress environment. Vet. World 2022, 15, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegel, H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [Green Version]
- Smirnoff, N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic. Biol. Med. 2018, 122, 116–129. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Tveden-Nyborg, P. The pharmacokinetics of vitamin C. Nutrients 2019, 11, 2412. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Yadav, R.N.; Banik, B.K. Ascorbic acid-mediated reactions in organic synthesis. Curr. Organocatal. 2020, 7, 212–241. [Google Scholar] [CrossRef]
- Kashiouris, M.G.; L’Heureux, M.; Cable, C.A.; Fisher, B.J.; Leichtle, S.; Fowler, A.A. The emerging role of vitamin C as a treatment for sepsis. Nutrients 2020, 12, 292. [Google Scholar] [CrossRef] [Green Version]
- Fowler, A.A.; Syed, A.A.; Knowlson, S.; Sculthorpe, R.; Farthing, D.; DeWilde, C.; Farthing, C.A.; Larus, T.L.; Martin, E.; Brophy, D.F.; et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J. Transl. Med. 2014, 12, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravetti, S.; Clemente, C.; Brignone, S.; Hergert, L.; Allemandi, D.; Palma, S. Ascorbic acid in skin health. Cosmetics 2019, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Lee, H.; Yang, J.; Wu, C. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 2011, 26, 3450–3455. [Google Scholar] [CrossRef] [PubMed]
- Siddeeg, S.M.; Alsaiari, N.S.; Tahoon, M.A.; Ben Rebah, F. The application of nanomaterials as electrode modifiers for the electrochemical detection of ascorbic acid: Review. Int. J. Electrochem. Sci. 2020, 15, 3327–3346. [Google Scholar] [CrossRef]
- Attia, T.Z. Simultaneous determination of rutin and ascorbic acid mixture in their pure forms and combined dosage form. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2016, 169, 82–86. [Google Scholar] [CrossRef]
- Ribeiro, M.; Prado, A.; Batista, A.; Munoz, R.A.A.; Richter, E.M. Rapid method for simultaneous determination of ascorbic acid and zinc in effervescent tablets by capillary zone electrophoresis with contactless conductivity detection. J. Sep. Sci. 2019, 42, 754–759. [Google Scholar] [CrossRef]
- Costa, B.M.C.; Prado, A.A.; Oliveira, T.C.; Bressan, L.P.; Munoz, R.A.A.; Batista, A.D.; da Silva, J.A.F.; Richter, E.M. Fast methods for simultaneous determination of arginine, ascorbic acid and aspartic acid by capillary electrophoresis. Talanta 2019, 204, 353–358. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, Y.; Zhang, L.; He, M.M.; Lin, W.F.; Sun, H.T.; Liu, Z.W.; Hu, J.; Wang, L.G. Biocompatible platinum nanoclusters prepared using bitter gourd polysaccharide for colorimetric detection of ascorbic acid. Biomolecules 2021, 11, 647. [Google Scholar] [CrossRef]
- Iranmanesh, T.; Foroughi, M.M.; Jahani, S.; Zandi, M.S.; Nadiki, H.H. Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta 2020, 207, 120318. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Ma, L. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B-Chem. 2016, 227, 488–496. [Google Scholar] [CrossRef]
- Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A voltammetric sensor for simultaneous determination of vitamin C and vitamin B-6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods 2015, 8, 549–557. [Google Scholar] [CrossRef]
- Wang, X.; Long, C.; Jiang, Z.; Qing, T.; Zhang, K.; Zhang, P.; Feng, B. In situ synthesis of fluorescent copper nanoclusters for rapid detection of ascorbic acid in biological samples. Anal. Methods 2019, 11, 4580–4585. [Google Scholar] [CrossRef]
- Wang, X.; Watanabe, H.; Uchiyama, S. Amperometri L-ascorbic acid biosensors equipped with enzyme micelle membrane. Talanta 2008, 74, 1681–1685. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Peng, Z.; Jiang, J.; Zhang, X.; Shen, G.; Yu, R. An electrochemical amplification immunoassay using biocatalytic metal deposition coupled with anodic stripping voltammetric detection. Sens. Actuators B-Chem. 2008, 129, 146–151. [Google Scholar] [CrossRef]
- Yang, H. Enzyme-based ultrasensitive electrochemical biosensors. Curr. Opin. Chem. Biol. 2012, 16, 422–428. [Google Scholar] [CrossRef]
- Li, R.; Liu, Q.; Jin, Y.; Li, B. Fluorescent enzyme-linked immunoassay strategy based on enzyme-triggered in-situ synthesis of fluorescent copper nanoclusters. Sens. Actuators B-Chem. 2019, 281, 28–33. [Google Scholar] [CrossRef]
- Cao, J.; Wang, M.; Yu, H.; She, Y.X.; Cao, Z.; Ye, J.M.; Abd El-Aty, A.M.; Hacimuftuoglu, A.; Wang, J.; Lao, S.B. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides. J. Agric. Food Chem. 2020, 68, 7298–7315. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, S.; Ogata, H. Facile low-temperature growth of carbon nanosheets toward simultaneous determination of dopamine, ascorbic acid and uric acid. Analyst 2011, 136, 4903–4905. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, G.; Tian, K.; Xu, C. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens. Bioelectron. 2016, 82, 119–126. [Google Scholar] [CrossRef]
- Peng, J.; Ling, J.; Zhang, X.; Zhang, L.; Cao, Q.; Ding, Z. A rapid, sensitive and selective colorimetric method for detection of ascorbic acid. Sens. Actuators B-Chem. 2015, 221, 708–716. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, Z.; Qin, L.; Feng, X.; Wang, P. Application of cuprous oxide nanowires in an electrochemical sensor for ascorbic acid. Chem. Lett. 2014, 43, 814–816. [Google Scholar] [CrossRef]
- Kim, S.J.; Cho, Y.K.; Lee, C.; Kim, M.H.; Lee, Y. Real-time direct electrochemical sensing of ascorbic acid over rat liver tissues using RuO2 nanowires on electrospun TiO2 nanofibers. Biosens. Bioelectron. 2016, 77, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Malinauskas, A.; Garjonyte, R.; Mazeikiene, R.; Jureviciute, I. Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: A review. Talanta 2004, 64, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lai, G.; Yu, A.; Zhang, H. A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid. Microchim. Acta 2013, 180, 437–443. [Google Scholar] [CrossRef]
- Raj, C.R.; Tokuda, K.; Ohsaka, T. Electroanalytical applications of cationic self-assembled monolayers, square-wave voltammetric determination of dopamine and ascorbate. Bioelectrochemistry 2001, 53, 183–191. [Google Scholar] [CrossRef]
- Dong, X.; Liu, D.; Meng, X.; You, T. Research progress on photoelectrochemical sensors for contamination analysis in agricultural fields. Anal. Sci. 2022, 38, 459–481. [Google Scholar] [CrossRef]
- Raizada, M.; Shahid, M.; Hussain, S.; Ashafaq, M.; Siddiqi, Z.A. A new antiferromagnetic Dy6 oxido-material as a multifunctional aqueous phase sensor for picric acid as well as Fe3+ ions. Mater. Adv. 2020, 1, 3518–3531. [Google Scholar] [CrossRef]
- Wu, L.; Yang, H.; Zeng, S.; Li, D.; Dou, J. A family of hexanuclear lanthanide complexes with slow magnetic relaxation for Dy6 cluster. Polyhedron 2017, 129, 77–81. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Chen, D.; Wang, C.; Wu, J.F.; Tang, J.; Shi, W.; Cheng, P. Planar Dy3+Dy3 clusters: Design, structure and axial ligand perturbed magnetic dynamics. Dalton Trans. 2015, 44, 20316–20320. [Google Scholar] [CrossRef]
- Munirathnam, K.; Nagajyothi, P.C.; Prakashbabu, D.; Deva Prasad Raju, B.; Shim, J. X-ray photoelectron spectroscopy and optical analysis of pure white light emitting Dy3+ and Mn2+ codoped Na3Y(PO4)2 phosphors for solid-state lighting. Ceram. Int. 2019, 45, 686–694. [Google Scholar] [CrossRef]
- Zalfani, M.; Van der Schueren, B.; Hu, Z.; Rooke, J.C.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B. Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity. J. Mater. Chem. A 2015, 3, 21244–21256. [Google Scholar] [CrossRef]
- Jiang, J.; Yu, J.; Cao, S. Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light. J. Colloid Interface Sci. 2016, 461, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Le, S.; Jiang, T.; Zhao, Q.; Liu, X.; Li, Y.; Fang, B.; Gong, M. Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis. RSC Adv. 2016, 6, 38811–38819. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Zhang, J.; Zhu, G.; Zheng, H.; Cong, R. Novel self-assembled microstructures made from Dy doped AlN nanosheets: Formation mechanism, photoluminescence and magnetic properties. Appl. Surf. Sci. 2020, 527, 146825. [Google Scholar] [CrossRef]
- Zikriya, M.; Nadaf, Y.F.; Bharathy, P.V.; Renuka, C.G. Luminescent characterization of rare earth Dy3+ ion doped TiO2 prepared by simple chemical co-precipitation method. J. Rare Earths 2019, 37, 24–31. [Google Scholar] [CrossRef]
- Myrick, M.L.; Simcock, M.N.; Baranowski, M.; Brooke, H.; Morgan, S.L.; McCutcheon, J.N. The Kubelka-Munk diffuse reflectance formula revisited. Appl. Spectrosc. Rev. 2011, 46, 140–165. [Google Scholar] [CrossRef]
- Wu, J.; Demeshko, S.; Dechert, S.; Meyer, F. Macrocycle based dinuclear dysprosium(III) single molecule magnets with local D5h coordination geometry. Dalton Trans. 2021, 50, 17573–17582. [Google Scholar] [CrossRef]
- Lin, S.Y.; Wang, C.; Zhao, L.; Tang, J. Enantioselective self-assembly of triangular Dy3 clusters with single-molecule magnet behavior. Chem. Asian J. 2014, 9, 3558–3564. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, Y.L.; Yu, A.; Lee, J.; Lee, S.C.; Lee, C.; Kim, M.H.; Lee, Y. Electrospun iridium oxide nanofibers for direct selective electrochemical detection of ascorbic acid. Sens. Actuators B-Chem. 2014, 196, 480–488. [Google Scholar] [CrossRef]
- You, Q.; Liu, T.; Pang, J.; Jiang, D.; Chu, Z.; Jin, W. In situ fabrication of CuO nanowire film for high-sensitive ascorbic acid recognition. Sens. Actuators B-Chem. 2019, 296, 126617. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, J.; Qiu, M.; Sun, P.; Han, D.; Niu, L.; Cui, G. Hierarchical bi-continuous Pt decorated nanoporous Au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing. Biosens. Bioelectron. 2019, 124, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Jothi, L.; Neogi, S.; Jaganathan, S.K.; Nageswaran, G. Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons. Biosens. Bioelectron. 2018, 105, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Atacan, K.; Guy, N.; Ozacar, M. Preparation of gold decorated MoS2/NiO nanocomposite in the production of a new electrochemical sensor for ascorbic acid detection. Korean J. Chem. Eng. 2022, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, X.; Hu, X.; Huang, L.; Li, T.; Yang, M. Molecularly imprinted electrochemical sensor for ascorbic acid determination based on MXene modified electrode. Mater. Lett. 2021, 285, 129158. [Google Scholar] [CrossRef]
- Qu, C.; Li, H.; Zhou, S.; Li, G.; Wang, C.; Snyders, R.; Bittencourt, C.; Li, W. Bi2S3/rGO Composite Based Electrochemical Sensor for Ascorbic Acid Detection. Chemosensors 2021, 9, 190. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Wang, L. An electrochemical sensor based on the modification of platinum nanoparticles and ZIF-8 membrane for the detection of ascorbic acid. Talanta 2021, 226, 122105. [Google Scholar] [CrossRef]
Modified Materials | Linear Range (μM) | LOD (μM) | References |
---|---|---|---|
Iridium Oxide | 1–1000 | <0.4 | [49] |
CuO | 20–100 | 0.05 | [50] |
Pt(Au-Sn) alloy | 200–2000 | 13.4 | [51] |
N2/Ar/RFGraphene | 100–1400 | 5.3 × 10−3 | [52] |
Au-MoS2/NiO | 2–50 | 0.13 | [53] |
MIPs/MXene/GCE | 0.5–10 | 0.27 | [54] |
Bi2S3/rGO | 5–1200 | 2.9 | [55] |
ZIF-8/Pt NPs/GCE | 10–2500 | 5.2 | [56] |
Dy-SCN/FTO | 7.94–11,130 | 3.35 | This work |
Sample | Spiked (mM) | Found (mM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Urine | 0.82569 | 0.828 ± 0.00879 | 100.28 | 0.506141 |
1.07143 | 1.0927 ± 0.06531 | 101.99 | 0.670382 | |
1.37931 | 1.4076 ± 0.09329 | 102.05 | 0.996175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Han, D.; Xiao, R.; Wang, T.; Liang, Z.; Wu, Z.; Han, F.; Han, D.; Ma, Y.; Niu, L. An Enzyme-Free Photoelectrochemical Sensor Platform for Ascorbic Acid Detection in Human Urine. Chemosensors 2022, 10, 268. https://doi.org/10.3390/chemosensors10070268
Zhao Z, Han D, Xiao R, Wang T, Liang Z, Wu Z, Han F, Han D, Ma Y, Niu L. An Enzyme-Free Photoelectrochemical Sensor Platform for Ascorbic Acid Detection in Human Urine. Chemosensors. 2022; 10(7):268. https://doi.org/10.3390/chemosensors10070268
Chicago/Turabian StyleZhao, Zhengzheng, Dongfang Han, Ren Xiao, Tianqi Wang, Zhishan Liang, Zhifang Wu, Fangjie Han, Dongxue Han, Yingming Ma, and Li Niu. 2022. "An Enzyme-Free Photoelectrochemical Sensor Platform for Ascorbic Acid Detection in Human Urine" Chemosensors 10, no. 7: 268. https://doi.org/10.3390/chemosensors10070268
APA StyleZhao, Z., Han, D., Xiao, R., Wang, T., Liang, Z., Wu, Z., Han, F., Han, D., Ma, Y., & Niu, L. (2022). An Enzyme-Free Photoelectrochemical Sensor Platform for Ascorbic Acid Detection in Human Urine. Chemosensors, 10(7), 268. https://doi.org/10.3390/chemosensors10070268