Signal-On and Highly Sensitive Electrochemiluminescence Biosensor for Hydrogen Sulfide in Joint Fluid Based on Silver-Ion-Mediated Base Pairs and Hybridization Chain Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Instruments
2.3. Working Electrode Preparation Protocol
2.4. ECL Detection
3. Results and Discussion
3.1. Principle of the Proposed ECL Biosensor for H2S Detection
3.2. Characterization of the ECL Biosensor
3.3. Optimization of Experimental Conditions
3.4. Analytical Performance of the Proposed ECL Biosensor
3.5. Application of the Proposed ECL Biosensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onuora, S. Osteoarthritis: Chondrocyte clock maintains cartilage tissue. Nat. Rev. Rheumatol. 2016, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, X.; Zhou, J.; Wei, L. The Age-Related Changes in Cartilage and Osteoarthritis. BioMed Res. Int. 2013, 2013, 12. [Google Scholar] [CrossRef] [PubMed]
- Poulet, B.; Staines, K.A. New developments in osteoarthritis and cartilage biology. Curr. Opin. Pharmacol. 2016, 28, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, B.; Schantz, J.T.; Haigh, R.; Wood, M.E.; Moore, P.K.; Viner, N.; Spencer, J.P.; Winyard, P.G.; Whiteman, M. Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: Is H2S a novel cytoprotective mediator in the inflamed joint? J. Cell. Mol. Med. 2012, 16, 896–910. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, M.; Haigh, R.; Tarr, J.M.; Gooding, K.M.; Shore, A.C.; Winyard, P.G. Detection of hydrogen sulfide in plasma and knee-joint synovial fluid from rheumatoid arthritis patients: Relation to clinical and laboratory measures of inflammation. Ann. N. Y. Acad. Sci. 2010, 1203, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Doeller, J.E.; Isbell, T.S.; Benavides, G.; Koenitzer, J.; Patel, H.; Patel, R.P.; Lancaster, J.R., Jr.; Darley-Usmar, V.M.; Kraus, D.W. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal. Biochem. 2005, 341, 40–51. [Google Scholar] [CrossRef]
- Richter, B.; Mace, Z.; Hays, M.E.; Adhikari, S.; Pham, H.Q.; Sclabassi, R.J.; Kolber, B.; Yerneni, S.S.; Campbell, P.; Cheng, B.; et al. Development and Characterization of Novel Conductive Sensing Fibers for In Vivo Nerve Stimulation. Sensors 2021, 21, 7581. [Google Scholar] [CrossRef]
- Tao, Y.; Lin, Y.; Luo, F.; Fu, C.; Lin, C.; He, Y.; Cai, Z.; Qiu, B.; Lin, Z. Convenient detection of H2S based on the photothermal effect of Au@Ag nanocubes using a handheld thermometer as readout. Anal. Chem. Acta 2021, 1149, 338211. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, C.; Huang, H.; Luo, F.; Guo, L.; Zhang, L.; Lin, Z.; Chen, G. Target-Induced Horseradish Peroxidase Deactivation for Multicolor Colorimetric Assay of Hydrogen Sulfide in Rat Brain Microdialysis. Anal. Chem. 2018, 90, 6222–6228. [Google Scholar] [CrossRef]
- Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Anal. Chem. 2018, 90, 533–555. [Google Scholar] [CrossRef]
- Yang, M.W.; Fan, J.L.; Du, J.J.; Peng, X.J. Small-molecule fluorescent probes for imaging gaseous signaling molecules: Current progress and future implications. Chem. Sci. 2020, 11, 5127–5141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, X.; Zhu, Z.; Zhang, M.; Ye, Z. Reaction-based turn-on electrochemiluminescent sensor with a ruthenium(II) complex for selective detection of extracellular hydrogen sulfide in rat brain. Anal. Chem. 2015, 87, 1839–1845. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, L.; Chen, L.; Qiu, B.; Hong, G.; Lin, Z. Sensing of Hydrogen Sulfide Gas in the Raman-Silent Region Based on Gold Nano-Bipyramids (Au NBPs) Encapsulated by Zeolitic Imidazolate Framework-8. ACS Sens. 2020, 5, 3964–3970. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.N.; Centelles, M.N.; Moore, K.P. Making and working with hydrogen sulfide: The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: A review. Free Radic. Biol. Med. 2009, 47, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wu, W.; Peng, Y.; Wang, M.X.; Chen, G.; Chen, Z.; Zhu, J.J. A Spectral Shift-Based Electrochemiluminescence Sensor for Hydrogen Sulfide. Anal. Chem. 2018, 90, 1334–1339. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Liu, F.; Su, M.; Liang, L.; Ge, S.; Yu, J. Real-time visual determination of the flux of hydrogen sulphide using a hollow-channel paper electrode. Chem. Commun. 2015, 51, 14030–14033. [Google Scholar] [CrossRef]
- Li, Y.; Qi, H.; Gao, Q.; Zhang, C. Label-free and sensitive electrogenerated chemiluminescence aptasensor for the determination of lysozyme. Biosens. Bioelectron. 2011, 26, 2733–2736. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Li, R.; Lin, C.; Guo, L.; Qiu, B.; Lin, Z.; Chen, G. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Biosens. Bioelectron. 2015, 70, 268–274. [Google Scholar] [CrossRef]
- Jin, G.; Wang, C.; Yang, L.; Li, X.; Guo, L.; Qiu, B.; Lin, Z.; Chen, G. Hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ultrasensitive detection of thrombin. Biosens. Bioelectron. 2015, 63, 166–171. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, L.; Yue, G.; Chen, L.; Qiu, B.; Guo, L.; Lin, Z.; Chen, G. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)32+. Anal. Bioanal. Chem. 2016, 408, 7105–7111. [Google Scholar] [CrossRef]
- Yang, L.; Tao, Y.; Yue, G.; Li, R.; Qiu, B.; Guo, L.; Lin, Z.; Yang, H.-H. Highly Selective and Sensitive Electrochemiluminescence Biosensor for p53 DNA Sequence Based on Nicking Endonuclease Assisted Target Recycling and Hyperbranched Rolling Circle Amplification. Anal. Chem. 2016, 88, 5097–5103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Qu, K.; Song, Y.; Xu, C.; Ren, J.; Qu, X. A Reusable DNA Single-Walled Carbon-Nanotube-Based Fluorescent Sensor for Highly Sensitive and Selective Detection of Ag+ and Cysteine in Aqueous Solutions. Chem. Eur. J. 2010, 16, 8147–8154. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.-Q.; Liu, G.; Zheng, W.; Liu, J.; Chen, T.; Li, D. A highly selective and sensitive on-off sensor for silver ions and cysteine by light scattering technique of DNA-functionalized gold nanoparticles. Chem. Commun. 2011, 47, 8557–8559. [Google Scholar] [CrossRef] [PubMed]
- Miao, P.; Ning, L.; Li, X. Gold Nanoparticles and Cleavage-Based Dual Signal Amplification for Ultrasensitive Detection of Silver Ions. Anal. Chem. 2013, 85, 7966–7970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Luo, F.; Wang, P.; Guo, L.; Qiu, B.; Lin, Z. Signal-on electrochemiluminescence aptasensor for bisphenol A based on hybridization chain reaction and electrically heated electrode. Biosens. Bioelectron. 2019, 129, 36–41. [Google Scholar] [CrossRef]
- Yue, G.; Huang, D.; Luo, F.; Guo, L.; Qiu, B.; Lin, Z.; Chen, G. Highly selective fluorescence sensor for hydrogen sulfide based on the Cu(II)-dependent DNAzyme. J. Lumin. 2019, 207, 369–373. [Google Scholar] [CrossRef]
- Fang, Z.; Yue, G.; Wang, J.; Luo, F.; Guo, L.; Qiu, B.; Lin, Z. Chemiluminescent sensor for hydrogen sulfide in rat brain microdialysis based on target-induced horseradish peroxidase deactivation. Anal. Methods 2019, 11, 3085–3089. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, A.; Wang, Z.; Ashraf, G.; Wang, J.; Luo, H.; Chen, X.; Xiao, F.; Liu, H. Hierarchical CNTs@CuMn Layered Double Hydroxide Nanohybrid with Enhanced Electrochemical Performance in H2S Detection from Live Cells. Anal. Chem. 2019, 91, 3912–3920. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhang, M. Reduction of Ammineruthenium(III) by Sulfide Enables In Vivo Electrochemical Monitoring of Free Endogenous Hydrogen Sulfide. Anal. Chem. 2017, 89, 5382–5388. [Google Scholar] [CrossRef]
- Hall, J.R.; Schoenfisch, M.H. Direct Electrochemical Sensing of Hydrogen Sulfide without Sulfur Poisoning. Anal. Chem. 2018, 90, 5194–5200. [Google Scholar] [CrossRef]
- Cao, J.; Fu, Y.; Fu, X.; Ren, S.; Liu, Y. Dual-wavelength electrochemiluminescence ratiometry for hydrogen sulfide detection based on Cd(2+)-doped g-C3N4 nanosheets. Analyst 2022, 147, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Oh, J.; Hong, J. Highly Selective Electrochemiluminescence Chemosensor for Sulfide Enabled by Hierarchical Reactivity. Anal. Chem. 2022, 94, 5091–5098. [Google Scholar] [CrossRef] [PubMed]
Methods | Linear Range | LOD | Reference |
---|---|---|---|
Electrochemistry | 0.08–2900 μM | 0.3 μM | [28] |
Electrochemistry | 0.5–10 μM | 0.17 μM | [29] |
Electrochemistry | 0.15–15 μM | 0.1 μM | [30] |
Electrochemiluminescent | 0.5–10 μM | 0.25 μM | [12] |
Electrochemiluminescent | 0.05–100.0 μM | 0.02 μM | [31] |
Electrochemiluminescent | 0–30 μM | 1.08 μM | [32] |
Electrochemiluminescent | 0.100–1500 nM | 0.0398 nM | This work |
Sample | Detected (nM) | Spiked (nM) | Total Found (nM) | Recovery (%) |
---|---|---|---|---|
1 | 855.4 ± 30.58 | 200.0 | 973.6 ± 22.85 | 92.3% |
2 | 749.2 ± 27.38 | 200.0 | 916.4 ± 21.81 | 96.5% |
3 | 536.6 ± 31.36 | 200.0 | 703.9 ± 19.52 | 95.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Chen, G.; Lin, W.; Li, J.; Fang, L.; Wang, X.; Zhang, Y.; Chen, Y.; Lin, Z. Signal-On and Highly Sensitive Electrochemiluminescence Biosensor for Hydrogen Sulfide in Joint Fluid Based on Silver-Ion-Mediated Base Pairs and Hybridization Chain Reaction. Chemosensors 2022, 10, 250. https://doi.org/10.3390/chemosensors10070250
Chen Z, Chen G, Lin W, Li J, Fang L, Wang X, Zhang Y, Chen Y, Lin Z. Signal-On and Highly Sensitive Electrochemiluminescence Biosensor for Hydrogen Sulfide in Joint Fluid Based on Silver-Ion-Mediated Base Pairs and Hybridization Chain Reaction. Chemosensors. 2022; 10(7):250. https://doi.org/10.3390/chemosensors10070250
Chicago/Turabian StyleChen, Zhonghui, Guoli Chen, Wei Lin, Jinqiu Li, Lishan Fang, Xinyang Wang, Ying Zhang, Yu Chen, and Zhenyu Lin. 2022. "Signal-On and Highly Sensitive Electrochemiluminescence Biosensor for Hydrogen Sulfide in Joint Fluid Based on Silver-Ion-Mediated Base Pairs and Hybridization Chain Reaction" Chemosensors 10, no. 7: 250. https://doi.org/10.3390/chemosensors10070250
APA StyleChen, Z., Chen, G., Lin, W., Li, J., Fang, L., Wang, X., Zhang, Y., Chen, Y., & Lin, Z. (2022). Signal-On and Highly Sensitive Electrochemiluminescence Biosensor for Hydrogen Sulfide in Joint Fluid Based on Silver-Ion-Mediated Base Pairs and Hybridization Chain Reaction. Chemosensors, 10(7), 250. https://doi.org/10.3390/chemosensors10070250