E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices
Abstract
:1. Introduction
2. Review Methodology
3. Food Technology—E-Senses to Measure Main Chemical/Physical Features of Food
3.1. E-Nose
3.2. E-Tongue
3.3. E-Eye
4. Sensory Science—Direct Interaction Human/Food and Explicit Methods to Measure Emotions during Tasting
4.1. Emotion Lexicon
4.2. Context
4.3. Taster Profile
4.4. The Specific Case of Trained Panelist
5. Bioengineering—Implicit Methods to Measure Emotions during Tasting
5.1. EEG Signal, Chemical Senses, and Related Emotions
5.2. ECG Signal and Chemosensory-Related Emotions
5.3. GSR and Chemical Sensory Stimuli Emotional Reactions
5.4. Other Methods
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of Electronic Nose, Electronic Tongue and Computer Vision for Animal Source Food Authentication and Quality Assessment—A Review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Appleton, K.M.; Hemingway, A.; Saulais, L.; Dinnella, C.; Monteleone, E.; Depezay, L.; Morizet, D.; Armando Perez-Cueto, F.J.; Bevan, A.; Hartwell, H. Increasing Vegetable Intakes: Rationale and Systematic Review of Published Interventions. Eur. J. Nutr. 2016, 55, 869–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication and Quality Assessment—A Review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Piana, M.; Oddo, L.P.; Bentabol, A.; Bruneau, E.; Bogdanov, S.; Declerck, C.G. Sensory Analysis Applied to Honey: State of the Art. Apidologie 2004, 35, S26–S37. [Google Scholar] [CrossRef] [Green Version]
- White, T.L.; Thomas-Danguin, T.; Olofsson, J.K.; Zucco, G.M.; Prescott, J. Thought for Food: Cognitive Influences on Chemosensory Perceptions and Preferences. Food Qual. Prefer. 2020, 79, 103766. [Google Scholar] [CrossRef]
- Grabenhorst, F.; Rolls, E.T. Value, Pleasure and Choice in the Ventral Prefrontal Cortex. Trends Cogn. Sci. 2011, 15, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Deco, G.; Rolls, E.T.; Albantakis, L.; Romo, R. Brain Mechanisms for Perceptual and Reward-Related Decision-Making. Prog. Neurobiol. 2013, 103, 194–213. [Google Scholar] [CrossRef]
- Plassmann, H.; Shiv, B.; Rangel, A. Marketing Actions Can Modulate Neural Representations of Experienced Pleasantness. Proc. Natl. Acad. Sci. USA 2008, 105, 1050–1054. [Google Scholar] [CrossRef] [Green Version]
- Pedroza, M.A.; Herrell, R. Exploring Emotions as a New Quality Parameter in Wine. Wine Bus. J. 2022, 5, 31663. [Google Scholar] [CrossRef]
- Charland, L.C. John Locke on Madness: Redressing the Intellectualist Bias. Hist. Psychiatry 2014, 25, 137–153. [Google Scholar] [CrossRef]
- Sander, D. Models of Emotion: The Affective Neuroscience Approach. In The Cambridge Handbook of Human Affective Neuroscience; Armony, J., Vuilleumier, P., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 5–53. [Google Scholar] [CrossRef]
- Lagast, S.; Gellynck, X.; Schouteten, J.J.; de Herdt, V.; de Steur, H. Consumers’ Emotions Elicited by Food: A Systematic Review of Explicit and Implicit Methods. Trends Food Sci. Technol. 2017, 69, 172–189. [Google Scholar] [CrossRef]
- Buratti, S.; Malegori, C.; Benedetti, S.; Oliveri, P.; Giovanelli, G. E-Nose, e-Tongue and e-Eye for Edible Olive Oil Characterization and Shelf Life Assessment: A Powerful Data Fusion Approach. Talanta 2018, 182, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Calvini, R.; Pigani, L. Toward the Development of Combined Artificial Sensing Systems for Food Quality Evaluation: A Review on the Application of Data Fusion of Electronic Noses, Electronic Tongues and Electronic Eyes. Sensors 2022, 22, 577. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez-Araque, R.; Rodríguez-Villacres, J.; Urresto-Villegas, J. Electronic Nose, Tongue and Eye: Their Usefulness for the Food Industry. Vitae 2020, 27, 1–13. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, M.; Adhikari, B. Advances of Electronic Nose and Its Application in Fresh Foods: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2700–2710. [Google Scholar] [CrossRef]
- Modesti, M.; Taglieri, I.; Bianchi, A.; Tonacci, A.; Sansone, F.; Bellincontro, A.; Venturi, F.; Sanmartin, C. E-Nose and Olfactory Assessment: Teamwork or a Challenge to the Last Data? The Case of Virgin Olive Oil Stability and Shelf Life. Appl. Sci. 2021, 11, 8453. [Google Scholar] [CrossRef]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Principles and Recent Advances in Electronic Nose for Quality Inspection of Agricultural and Food Products. Trends Food Sci. Technol. 2020, 99, 1–10. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S. Digital Assessment and Classification of Wine Faults Using a Low-Cost Electronic Nose, Near-Infrared Spectroscopy and Machine Learning Modelling. Sensors 2022, 22, 2303. [Google Scholar] [CrossRef]
- Fuentes, S.; Summerson, V.; Gonzalez Viejo, C.; Tongson, E.; Lipovetzky, N.; Wilkinson, K.L.; Szeto, C.; Unnithan, R.R. Assessment of Smoke Contamination in Grapevine Berries and Taint in Wines Due to Bushfires Using a Low-Cost E-Nose and an Artificial Intelligence Approach. Sensors 2020, 20, 5108. [Google Scholar] [CrossRef]
- Sanmartin, C.; Modesti, M.; Venturi, F.; Brizzolara, S.; Mencarelli, F.; Bellincontro, A. Postharvest Water Loss of Wine Grape: When, What and Why. Metabolites 2021, 11, 318. [Google Scholar] [CrossRef]
- Martínez Gila, D.M.; Sanmartin, C.; Navarro Soto, J.; Mencarelli, F.; Gómez Ortega, J.; Gámez García, J. Classification of Olive Fruits and Oils Based on Their Fatty Acid Ethyl Esters Content Using Electronic Nose Technology. J. Food Meas. Charact. 2021, 15, 5427–5438. [Google Scholar] [CrossRef]
- Jiarpinijnun, A.; Osako, K.; Siripatrawan, U. Visualization of Volatomic Profiles for Early Detection of Fungal Infection on Storage Jasmine Brown Rice Using Electronic Nose Coupled with Chemometrics. Measurement 2020, 157, 107561. [Google Scholar] [CrossRef]
- Huang, L.; Meng, L.; Zhu, N.; Wu, D. A Primary Study on Forecasting the Days before Decay of Peach Fruit Using Near-Infrared Spectroscopy and Electronic Nose Techniques. Postharvest Biol. Technol. 2017, 133, 104–112. [Google Scholar] [CrossRef]
- Ezhilan, M.; Nesakumar, N.; Jayanth Babu, K.; Srinandan, C.S.; Rayappan, J.B.B. An Electronic Nose for Royal Delicious Apple Quality Assessment—A Tri-Layer Approach. Food Res. Int. 2018, 109, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Zhao, D.; Liu, J.; Yang, Z. Detection of Fruits in Warehouse Using Electronic Nose. MATEC Web Conf. 2018, 232, 04035. [Google Scholar] [CrossRef]
- Rutolo, M.F.; Clarkson, J.P.; Covington, J.A. The Use of an Electronic Nose to Detect Early Signs of Soft-Rot Infection in Potatoes. Biosyst. Eng. 2018, 167, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, M.; Guo, Z. Discrimination of Fresh-Cut Broccoli Freshness by Volatiles Using Electronic Nose and Gas Chromatography-Mass Spectrometry. Postharvest Biol. Technol. 2019, 148, 168–175. [Google Scholar] [CrossRef]
- Wen, T.; Zheng, L.; Dong, S.; Gong, Z.; Sang, M.; Long, X.; Luo, M.; Peng, H. Rapid Detection and Classification of Citrus Fruits Infestation by Bactrocera Dorsalis (Hendel) Based on Electronic Nose. Postharvest Biol. Technol. 2019, 147, 156–165. [Google Scholar] [CrossRef]
- Chen, H.Z.; Zhang, M.; Bhandari, B.; Guo, Z. Evaluation of the Freshness of Fresh-Cut Green Bell Pepper (Capsicum Annuum Var. Grossum) Using Electronic Nose. LWT 2018, 87, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hu, Q.; Pei, F.; Mugambi, M.A.; Yang, W. Detection and Identification of Fungal Growth on Freeze-Dried Agaricus Bisporus Using Spectra and Olfactory Sensors. J. Sci. Food Agric. 2020, 100, 3136–3146. [Google Scholar] [CrossRef]
- Antolini, A.; Forniti, R.; Modesti, M.; Bellincontro, A.; Catelli, C.; Mencarelli, F. First Application of Ozone Postharvest Fumigation to Remove Smoke Taint from Grapes. Ozone Sci. Eng. 2021, 43, 254–262. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, S.; Liu, Y.; Song, H. Comparison of Flavour Fingerprint, Electronic Nose and Multivariate Analysis for Discrimination of Extra Virgin Olive Oils. R. Soc. Open Sci. 2019, 6, 190002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchal, P.C.; Sanmartin, C.; Martínez, S.S.; Ortega, J.G.; Mencarelli, F.; García, J.G. Prediction of Fruity Aroma Intensity and Defect Presence in Virgin Olive Oil Using an Electronic Nose. Sensors 2021, 21, 2298. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Shao, X.; Wei, Y.; Cheong, L.; Pan, L.; Tu, K. Rapid Detection of Adulterated Peony Seed Oil by Electronic Nose. J. Food Sci. Technol. 2018, 55, 2152–2159. [Google Scholar] [CrossRef] [PubMed]
- Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Application of the E-Nose Machine System to Detect Adulterations in Mixed Edible Oils Using Chemometrics Methods. J. Food Process. Preserv. 2020, 44, e14696. [Google Scholar] [CrossRef]
- Abbatangelo, M.; Núñez-Carmona, E.; Sberveglieri, V.; Zappa, D.; Comini, E.; Sberveglieri, G. Application of a Novel S3 Nanowire Gas Sensor Device in Parallel with GC-MS for the Identification of Rind Percentage of Grated Parmigiano Reggiano. Sensors 2018, 18, 1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayari, F.; Mirzaee-Ghaleh, E.; Rabbani, H.; Heidarbeigi, K. Using an E-Nose Machine for Detection the Adulteration of Margarine in Cow Ghee. J. Food Process. Eng. 2018, 41, e12806. [Google Scholar] [CrossRef]
- Semeano, A.T.S.; Maffei, D.F.; Palma, S.; Li, R.W.C.; Franco, B.D.G.M.; Roque, A.C.A.; Gruber, J. Tilapia Fish Microbial Spoilage Monitored by a Single Optical Gas Sensor. Food Control 2018, 89, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Benjakul, S.; Sanmartin, C.; Guidi, A.; Ying, X.; Ma, L.; Weng, X.; Yu, J.; Deng, S. Characterization of the Flavor Profile of Bigeye Tuna Slices Treated by Cold Plasma Using E-Nose and GC-IMS. Fishes 2022, 7, 13. [Google Scholar] [CrossRef]
- Jia, Z.; Shi, C.; Wang, Y.; Yang, X.; Zhang, J.; Ji, Z. Nondestructive Determination of Salmon Fillet Freshness during Storage at Different Temperatures by Electronic Nose System Combined with Radial Basis Function Neural Networks. Int. J. Food Sci. 2019, 55, 2080–2091. [Google Scholar] [CrossRef]
- Gu, D.C.; Liu, W.; Yan, Y.; Wei, W.; Gan, J.H.; Lu, Y.; Jiang, Z.L.; Wang, X.C.; Xu, C.H. A Novel Method for Rapid Quantitative Evaluating Formaldehyde in Squid Based on Electronic Nose. LWT 2019, 101, 382–388. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Mishra, P.; Ahmadpour-Samani, M.; Naderi-Boldaji, M.; Ghanbarian, D.; Tohidi, M.; Izadi, Z. Rapid Detection of Grape Syrup Adulteration with an Array of Metal Oxide Sensors and Chemometrics. Eng. Agric. Environ. Food 2019, 12, 351–359. [Google Scholar] [CrossRef]
- Mohammad-Razdari, A.; Ghasemi-Varnamkhasti, M.; Yoosefian, S.H.; Izadi, Z.; Siadat, M. Potential Application of Electronic Nose Coupled with Chemometric Tools for Authentication Assessment in Tomato Paste. J. Food Process. Eng. 2019, 42, e13119. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Y.; Zhou, K.; Zhou, H.; Li, X.; Li, C.; Wang, Z.; Xu, B. Effects of Different Thermal Temperatures on the Shelf Life and Microbial Diversity of Dezhou-Braised Chicken. Food Res. Int. 2020, 136, 109471. [Google Scholar] [CrossRef]
- Wu, X.-H.; Zhu, J.; Wu, B.; Huang, D.-P.; Sun, J.; Dai, C.-X. Classification of Chinese Vinegar Varieties Using Electronic Nose and Fuzzy Foley–Sammon Transformation. J. Food Sci. Technol. 2020, 57, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Różańska, A.; Dymerski, T.; Namieśnik, J. Novel analytical method for detection of orange juice adulteration based on ultra-fast gas chromatography. Mon. Chem. 2018, 149, 1615–1621. [Google Scholar] [CrossRef] [Green Version]
- Viejo, C.G.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a Low-Cost e-Nose to Assess Aroma Profiles: An Artificial Intelligence Application to Assess Beer Quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries. Sensors 2011, 11, 4744–4766. [Google Scholar] [CrossRef]
- Cetó, X.; González-Calabuig, A.; Capdevila, J.; Puig-Pujol, A.; del Valle, M. Instrumental Measurement of Wine Sensory Descriptors Using a Voltammetric Electronic Tongue. Sens. Actuators B Chem. 2015, 207, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Nery, E.W.; Kubota, L.T. Integrated, Paper-Based Potentiometric Electronic Tongue for the Analysis of Beer and Wine. Anal. Chim. Acta 2016, 918, 60–68. [Google Scholar] [CrossRef]
- Wu, X.; Miyake, K.; Tahara, Y.; Fujimoto, H.; Iwai, K.; Narita, Y.; Hanzawa, T.; Kobayashi, T.; Kakiuchi, M.; Ariki, S.; et al. Quantification of Bitterness of Coffee in the Presence of High-Potency Sweeteners Using Taste Sensors. Sens. Actuators B Chem. 2020, 309, 127784. [Google Scholar] [CrossRef]
- Németh, D.; Balázs, G.; Daood, H.G.; Kovács, Z.; Bodor, Z.; Zaukuu, J.-L.Z.; Szentpéteri, V.; Kókai, Z.; Kappel, N. Standard Analytical Methods, Sensory Evaluation, NIRS and Electronic Tongue for Sensing Taste Attributes of Different Melon Varieties. Sensors 2019, 19, 5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, H.; Das, R.; RoyChaudhuri, C. Optimized Nanocrystalline Silicon Oxide Impedance Immunosensor Electronic Tongue for Subfemtomolar Estimation of Multiple Food Toxins. IEEE Trans. Instrum. Meas. 2017, 66, 964–973. [Google Scholar] [CrossRef]
- Semenov, V.; Volkov, S.; Khaydukova, M.; Fedorov, A.; Lisitsyna, I.; Kirsanov, D.; Legin, A. Determination of Three Quality Parameters in Vegetable Oils Using Potentiometric E-Tongue. J. Food Compos. Anal. 2019, 75, 75–80. [Google Scholar] [CrossRef]
- Harzalli, U.; Rodrigues, N.; Veloso, A.C.A.; Dias, L.G.; Pereira, J.A.; Oueslati, S.; Peres, A.M. A Taste Sensor Device for Unmasking Admixing of Rancid or Winey-Vinegary Olive Oil to Extra Virgin Olive Oil. Comput. Electron. Agric. 2018, 144, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, P.; Mudhalwadkar, R. Stationary Wavelet Singular Entropy Based Electronic Tongue for Classification of Milk. Trans. Inst. Meas. Control 2020, 42, 870–879. [Google Scholar] [CrossRef]
- Schlossareck, C.; Ross, C.F. Electronic Tongue and Consumer Sensory Evaluation of Spicy Paneer Cheese. J. Food Sci. 2019, 84, 1563–1569. [Google Scholar] [CrossRef]
- Han, F.; Huang, X.; Teye, E. Novel Prediction of Heavy Metal Residues in Fish Using a Low-Cost Optical Electronic Tongue System Based on Colorimetric Sensors Array. J. Food Process. Eng. 2018, 42, e12983. [Google Scholar] [CrossRef]
- Tian, X.; Wang, J.; Ma, Z.; Li, M.; Wei, Z.; Díaz-Cruz, J.M. Combination of an E-Nose and an E-Tongue for Adulteration Detection of Minced Mutton Mixed with Pork. J. Food Qual. 2019, 2019, 4342509. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Yang, X.; Han, S.; Fan, B.; Zhao, Z.; Wu, X.; Qian, J. Nondestructive Prediction of Tilapia Fillet Freshness during Storage at Different Temperatures by Integrating an Electronic Nose and Tongue with Radial Basis Function Neural Networks. Food Bioprocess Technol. 2018, 11, 1840–1852. [Google Scholar] [CrossRef]
- Yang, W.; Shi, W.; Zhou, S.; Qu, Y.; Wang, Z. Research on the Changes of Water-Soluble Flavor Substances in Grass Carp during Steaming. J. Food Biochem. 2019, 43, e12993. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.M.; Diako, C.; Ross, C.F. Identification of a Salt Blend: Application of the Electronic Tongue, Consumer Evaluation, and Mixture Design Methodology. Food Sci. 2019, 84, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Gao, Q.; Wang, Y.; Gao, J.; Li, S.; Chen, Z.; Wang, X.; Yao, Y. Characterisation of Sugars as the Typical Taste Compounds in Soy Sauce by Silane Derivatisation Coupled with Gas Chromatography-Mass Spectrometry and Electronic Tongue. Int. J. Food Sci. 2020, 55, 2599–2607. [Google Scholar] [CrossRef]
- Pan, J.; Jia, H.; Shang, M.; Xu, C.; Lian, H.; Li, H.; Dong, X. Physiochemical Properties and Tastes of Gels from Japanese Spanish Mackerel (Scomberomorus Niphonius) Surimi by Different Washing Processes. J. Texture Stud. 2018, 49, 578–585. [Google Scholar] [CrossRef]
- Garcia-Hernandez, C.; Salvo-Comino, C.; Martin-Pedrosa, F.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L. Analysis of Red Wines Using an Electronic Tongue and Infrared Spectroscopy. Correlations with Phenolic Content and Color Parameters. LWT 2020, 118, 108785. [Google Scholar] [CrossRef]
- Zaukuu, J.-L.Z.; Soós, J.; Bodor, Z.; Felföldi, J.; Magyar, I.; Kovacs, Z. Authentication of Tokaj Wine (Hungaricum) with the Electronic Tongue and Near Infrared Spectroscopy. J. Food Sci. 2019, 84, 3437–3444. [Google Scholar] [CrossRef]
- Paup, V. The Sensory and Chemical Properties of Wines as Influenced by the Presence of Different Wine Bacteria and Yeasts. Washington State University, 2021. Available online: https://rex.libraries.wsu.edu/esploro/outputs/doctoral/The-Sensory-and-Chemical-Properties-of/99900592360201842#file-0 (accessed on 26 April 2022).
- Daikuzono, C.M.; Delaney, C.; Morrin, A.; Diamond, D.; Florea, L.; Oliveira, O.N. Paper Based Electronic Tongue—A Low-Cost Solution for the Distinction of Sugar Type and Apple Juice Brand. Analyst 2019, 144, 2827–2832. [Google Scholar] [CrossRef]
- Liu, J.; Zuo, M.; Low, S.S.; Xu, N.; Chen, Z.; Lv, C.; Cui, Y.; Shi, Y.; Men, H. Fuzzy Evaluation Output of Taste Information for Liquor Using Electronic Tongue Based on Cloud Model. Sensors 2020, 20, 686. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Wang, Y.; Ran, L.; Liu, R.; Sun, X.; Hu, L.; Xiao, Y.; Chen, F. Flavor Deterioration of Liquid Endosperm in Postharvest Tender Coconut Revealed by LC-MS-Based Metabolomics, GC-IMS and E-Tongue. Postharvest Biol. Technol. 2022, 187, 111866. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Llobera, A.; Vila-Planas, J.; Capdevila, F.; Demming, S.; Büttgenbach, S.; Mínguez, S.; Jiménez-Jorquera, C. Hybrid Electronic Tongue Based on Optical and Electrochemical Microsensors for Quality Control of Wine. Analyst 2010, 135, 1718–1725. [Google Scholar] [CrossRef]
- Śliwińska, M.; Wiśniewska, P.; Dymerski, T.; Namieśnik, J.; Wardencki, W. Food Analysis Using Artificial Senses. J. Agric. Food Chem. 2014, 62, 1423–1448. [Google Scholar] [CrossRef] [PubMed]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Fusion of Artificial Senses as a Robust Approach to Food Quality Assessment. J. Food Eng. 2016, 171, 230–239. [Google Scholar] [CrossRef]
- Yasui, Y.; Tanaka, J.; Kakudo, M.; Tanaka, M. Relationship between Preference and Gaze in Modified Food Using Eye Tracker. J. Prosthodont. Res. 2019, 63, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Luvisi, A. Electronic Identification Technology for Agriculture, Plant, and Food. A Review. Agron. Sustain. Dev. 2017, 36, 13. [Google Scholar] [CrossRef] [Green Version]
- Orlandi, G.; Calvini, R.; Pigani, L.; Foca, G.; Vasile Simone, G.; Antonelli, A.; Ulrici, A. Electronic Eye for the Prediction of Parameters Related to Grape Ripening. Talanta 2018, 186, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Sreeraj, M.; Joy, J.; Kuriakose, A.; Sujith, M.R.; Vishnu, P.K.; Unni, H. CLadron∗: AI Assisted Device for Identifying Artificially Ripened Climacteric Fruits. Procedia Comput. Sci. 2020, 171, 635–643. [Google Scholar] [CrossRef]
- Yongxia, C.; Ruixin, L.; Zhaozhou, L.; Pengju, C.; Lili, W.; Yanli, W.; Suiqing, C. Quality Evaluation Based on Color Grading: Quality Discrimination of the Chinese Medicine Corni Fructus by an e-Eye. Sci. Rep. 2019, 9, 17006. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, R.; Hu, D.; Chen, K. Quality Assessment of Tomato Fruit by Optical Absorption and Scattering Properties. Postharvest Biol. Technol. 2018, 143, 78–85. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Fabrication of Polylactic Acid/Carbon Nanotubes/Chitosan Composite Fibers by Electrospinning for Strawberry Preservation. Int. J. Biol. Macromol. 2019, 121, 1329–1336. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Tian, G.; Lu, C.; Li, C.; Bao, Y.; Tang, Z.; McClements, D.J.; Xiao, H.; Zheng, J. Characterization of Physical Properties and Electronic Sensory Analyses of Citrus Oil-Based Nanoemulsions. Food Res. Int. 2018, 109, 149–158. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Lv, R.; Dai, C.; Bonah, E.; Chang, X. Evaluation of Lipid Oxidation and Volatile Compounds of Traditional Dry-Cured Pork Belly: The Hyperspectral Imaging and Multi-Gas-Sensory Approaches. J. Food Process. Eng. 2020, 43, e12092. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, J.; Tian, G.; DiMarco-Crook, C.; Gao, W.; Zhao, C.; Li, G.; Lian, Y.; Xiao, H.; Zheng, J. Efficiency of Four Different Dietary Preparation Methods in Extracting Functional Compounds from Dried Tangerine Peel. Food Chem. 2019, 289, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Baire, M.; Melis, A.; Lodi, M.B.; Tuveri, P.; Dachena, C.; Simone, M.; Fanti, A.; Fumera, G.; Pisanu, T.; Mazzarella, G. A Wireless Sensors Network for Monitoring the Carasau Bread Manufacturing Process. Electronics 2019, 8, 1541. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wang, J.; Zhu, L. The Qualitative and Quantitative Assessment of Tea Quality Based on E-Nose, E-Tongue and E-Eye Combined with Chemometrics. Food Chem. 2019, 289, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Taglieri, I.; Sanmartin, C.; Venturi, F.; Macaluso, M.; Bianchi, A.; Sgherri, C.; Quartacci, M.F.; de Leo, M.; Pistelli, L.; Palla, F.; et al. Bread Fortified with Cooked Purple Potato Flour and Citrus Albedo: An Evaluation of Its Compositional and Sensorial Properties. Foods 2021, 10, 942. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Incrocci, L.; Pardossi, A.; Venturi, F.; Taglieri, I.; Ferroni, G.; Guidi, L. Comparison of Three Domestications and Wild-Harvested Plants for Nutraceutical Properties and Sensory Profiles in Five Wild Edible Herbs: Is Domestication Possible? Foods 2020, 9, 1065. [Google Scholar] [CrossRef]
- Taglieri, I.; Sanmartin, C.; Venturi, F.; Macaluso, M.; Zinnai, A.; Tavarini, S.; Serra, A.; Conte, G.; Flamini, G.; Angelini, L.G. Effect of the Leavening Agent on the Compositional and Sensorial Characteristics of Bread Fortified with Flaxseed Cake. Appl. Sci. 2020, 10, 5235. [Google Scholar] [CrossRef]
- Sanmartin, C.; Venturi, F.; Sgherri, C.; Nari, A.; Macaluso, M.; Flamini, G.; Frank Quartacci, M.; Taglieri, I.; Andrich, G.; Zinnai, A. The Effects of Packaging and Storage Temperature on the Shelf-Life of Extra Virgin Olive Oil. Heliyon 2018, 4, 888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanmartin, C.; Taglieri, I.; Venturi, F.; Macaluso, M.; Zinnai, A.; Tavarini, S.; Botto, A.; Serra, A.; Conte, G.; Flamini, G.; et al. Flaxseed Cake as a Tool for the Improvement of Nutraceutical and Sensorial Features of Sourdough Bread. Foods 2020, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Ploeger, A. Explaining Chinese Consumers’ Green Food Purchase Intentions during the COVID-19 Pandemic: An Extended Theory of Planned Behaviour. Foods 2021, 10, 1200. [Google Scholar] [CrossRef]
- Kaneko, D.; Toet, A.; Brouwer, A.M.; Kallen, V.; van Erp, J.B.F. Methods for Evaluating Emotions Evoked by Food Experiences: A Literature Review. Front. Psychol. 2018, 9, 911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prescott, J. Some Considerations in the Measurement of Emotions in Sensory and Consumer Research. Food Qual. Prefer. 2017, 62, 360–368. [Google Scholar] [CrossRef]
- Motoki, K.; Saito, T.; Onuma, T. Eye-Tracking Research on Sensory and Consumer Science: A Review, Pitfalls and Future Directions. Food Res. Int. 2021, 145, 110389. [Google Scholar] [CrossRef]
- Thomson, D.M.H.; Coates, T. Are Unconscious Emotions Important in Product Assessment? How Can We Access Them? Food Qual. Prefer. 2021, 92, 104123. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Chheang, S.L.; Roigard, C.M.; Cardello, A.V. Individual Differences in Food Neophobia and Private Body Consciousness Influence Product-Elicited Emotional Valence and Arousal. Food Qual. Prefer. 2022, 99, 104566. [Google Scholar] [CrossRef]
- Meiselman, H.L. A Review of the Current State of Emotion Research in Product Development. Food Res. Int. 2015, 76, 192–199. [Google Scholar] [CrossRef]
- Giacalone, D.; Duerlund, M.; Bøegh-Petersen, J.; Bredie, W.L.P.; Frøst, M.B. Stimulus Collative Properties and Consumers’ Flavor Preferences. Appetite 2014, 77, 20–30. [Google Scholar] [CrossRef]
- Croy, I.; Olgun, S.; Joraschky, P. Basic Emotions Elicited by Odors and Pictures. Emotion 2011, 11, 1331–1335. [Google Scholar] [CrossRef]
- Ferrarini, R.; Carbognin, C.; Casarotti, E.M.; Nicolis, E.; Nencini, A.; Meneghini, A.M. The Emotional Response to Wine Consumption. Food Qual. Prefer. 2010, 21, 720–725. [Google Scholar] [CrossRef]
- Calvo-Porral, C.; Ruiz-Vega, A.; Lévy-Mangin, J.P. How Consumer Involvement Influences Consumption-Elicited Emotions and Satisfaction. Int. J. Mark. Res. 2021, 63, 251–267. [Google Scholar] [CrossRef]
- Coppin, G.; Audrin, C.; Monseau, C.; Deneulin, P. Is Knowledge Emotion? The Subjective Emotional Responses to Wines Depend on Level of Self-Reported Expertise and Sensitivity to Key Information about the Wine. Food Res. Int. 2021, 142, 110192. [Google Scholar] [CrossRef] [PubMed]
- Danner, L.; Ristic, R.; Johnson, T.E.; Meiselman, H.L.; Hoek, A.C.; Jeffery, D.W.; Bastian, S.E.P. Context and Wine Quality Effects on Consumers’ Mood, Emotions, Liking and Willingness to Pay for Australian Shiraz Wines. Food Res. Int. 2016, 89, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.; Urdaneta, E.; Chaya, C. Emotional Response to Wine: Sensory Properties, Age and Gender as Drivers of Consumers’ Preferences. Food Qual. Prefer. 2018, 66, 19–28. [Google Scholar] [CrossRef]
- Calvo-Porral, C.; Ruiz-Vega, A.; Lévy-Mangin, J.P. Does Product Involvement Influence How Emotions Drive Satisfaction?: An Approach through the Theory of Hedonic Asymmetry. Eur. Res. Manag. Bus. Econ. 2018, 24, 130–136. [Google Scholar] [CrossRef]
- Ristic, R.; Danner, L.; Johnson, T.E.; Meiselman, H.L.; Hoek, A.C.; Jiranek, V.; Bastian, S.E.P. Wine-Related Aromas for Different Seasons and Occasions: Hedonic and Emotional Responses of Wine Consumers from Australia, UK and USA. Food Qual. Prefer. 2019, 71, 250–260. [Google Scholar] [CrossRef]
- Danner, L.; Johnson, T.E.; Ristic, R.; Meiselman, H.L.; Bastian, S.E.P. Consumption Context Effects on Fine Wine Consumer Segments’ Liking and Emotions. Foods 2020, 9, 1798. [Google Scholar] [CrossRef]
- Silva, A.P.; Jager, G.; van Bommel, R.; van Zyl, H.; Voss, H.P.; Hogg, T.; Pintado, M.; de Graaf, C. Functional or Emotional? How Dutch and Portuguese Conceptualise Beer, Wine and Non-Alcoholic Beer Consumption. Food Qual. Prefer. 2016, 49, 54–65. [Google Scholar] [CrossRef]
- Sinesio, F.; Moneta, E.; di Marzo, S.; Zoboli, G.P.; Abbà, S. Influence of Wine Traits and Context on Liking, Intention to Consume, Wine-Evoked Emotions and Perceived Sensory Sensations. Food Qual. Prefer. 2021, 93, 104268. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Lee, P.Y.; Ares, G. Product Involvement and Consumer Food-Elicited Emotional Associations: Insights from Emoji Questionnaires. Food Res. Int. 2018, 106, 999–1011. [Google Scholar] [CrossRef]
- Ferdenzi, C.; Delplanque, S.; Barbosa, P.; Court, K.; Guinard, J.X.; Guo, T.; Craig Roberts, S.; Schirmer, A.; Porcherot, C.; Cayeux, I.; et al. Affective Semantic Space of Scents. Towards a Universal Scale to Measure Self-Reported Odor-Related Feelings. Food Qual. Prefer. 2013, 30, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Tonacci, A.; Billeci, L.; di Mambro, I.; Marangoni, R.; Sanmartin, C.; Venturi, F. Wearable Sensors for Assessing the Role of Olfactory Training on the Autonomic Response to Olfactory Stimulation. Sensors 2021, 21, 770. [Google Scholar] [CrossRef] [PubMed]
- Dobrushina, O.R.; Arina, G.A.; Dobrynina, L.A.; Novikova, E.S.; Gubanova, M.V.; Belopasova, A.V.; Vorobeva, V.P.; Suslina, A.D.; Pechenkova, E.V.; Perepelkina, O.S.; et al. Sensory Integration in Interoception: Interplay between Top-down and Bottom-up Processing. Cortex 2021, 144, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Malfeito-Ferreira, M. Fine Wine Flavour Perception and Appreciation: Blending Neuronal Processes, Tasting Methods and Expertise. Trends Food Sci. Technol. 2021, 115, 332–346. [Google Scholar] [CrossRef]
- Loureiro, V.; Brasil, R.; Malfeito-Ferreira, M. A New Wine Tasting Approach Based on Emotional Responses to Rapidly Recognize Classic European Wine Styles. Beverages 2016, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Ariely, D.; Berns, G.S. Neuromarketing: The Hope and Hype of Neuroimaging in Business. Nat. Rev. Neurosci. 2010, 11, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Davidson, R.J. What Does the Prefrontal Cortex “Do” in Affect: Perspectives on Frontal EEG Asymmetry Research. Biol. Psychol. 2004, 67, 219–234. [Google Scholar] [CrossRef]
- Briesemeister, B.B.; Tamm, S.; Heine, A.; Jacobs, A.M. Approach the Good, Withdraw from the Bad—A Review on Frontal Alpha Asymmetry Measures in Applied Psychological Research. Psychology 2013, 04, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Mignani, C.; Matteo, V.; Bailetti, L.I.; Bonfini, M.; Cavicchi, A. Emotion in the Glass: An Innovative Study to Understand Unconscious Reactions in Wine Tasting. In Case Studies in the Wine Industry; Santini, C., Cavicchi, A., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 101–114. [Google Scholar] [CrossRef]
- Alvino, L.; van der Lubbe, R.; Joosten, R.A.M.; Constantinides, E. Which Wine Do You Prefer? An Analysis on Consumer Behaviour and Brain Activity during a Wine Tasting Experience. Asia Pac. J. Mark. Logist. 2020, 32, 1149–1170. [Google Scholar] [CrossRef]
- Hinojosa-Aguayo, I.; Garcia-Burgos, D.; Catena, A.; González, F. Implicit and Explicit Measures of the Sensory and Hedonic Analysis of Beer: The Role of Tasting Expertise. Food Res. Int. 2022, 152, 110873. [Google Scholar] [CrossRef]
- Lagast, S.; de Steur, H.; Gadeyne, S.; Hödl, S.; Staljanssens, W.; Vonck, K.; Boon, P.; Gellynck, X.; de Herdt, V. Heart Rate, Electrodermal Responses and Frontal Alpha Asymmetry to Accepted and Non-Accepted Solutions and Drinks. Food Qual. Prefer. 2020, 82, 103893. [Google Scholar] [CrossRef]
- di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Maglione, A.G.; Rossi, D.; Modica, E.; Trettel, A.; Babiloni, F.; Colosimo, A.; et al. EEG-Based Approach-Withdrawal Index for the Pleasantness Evaluation during Taste Experience in Realistic Settings. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 3228–3231. [Google Scholar]
- Phothisuwan, S.; Koomhin, P.; Matan, N.; Matan, N. Quality Maintenance of Salacca Fruit with a Carnauba Wax Coating Containing Orange Oil and Detection of Sensory Perception Improvement with Electroencephalography to Appraise Brain Responses. LWT 2021, 147, 111628. [Google Scholar] [CrossRef]
- Brouwer, A.M.; Hogervorst, M.A.; Grootjen, M.; van Erp, J.B.F.; Zandstra, E.H. Neurophysiological Responses during Cooking Food Associated with Different Emotions. Food Qual. Prefer. 2017, 62, 307–316. [Google Scholar] [CrossRef]
- Maeda, S.; Yoshimura, H. Enhancement of Electroencephalogram Activity in the Theta-Band Range during Unmatched Olfactory-Taste Stimulation. J. Physiol. Sci. 2019, 69, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Beyts, C.; Chaya, C.; Dehrmann, F.; James, S.; Smart, K.; Hort, J. A Comparison of Self-Reported Emotional and Implicit Responses to Aromas in Beer. Food Qual. Prefer. 2017, 59, 68–80. [Google Scholar] [CrossRef]
- Álvarez-Pato, V.M.; Sánchez, C.N.; Domínguez-Soberanes, J.; Méndoza-Pérez, D.E.; Velázquez, R. A Multisensor Data Fusion Approach for Predicting Consumer Acceptance of Food Products. Foods 2020, 9, 774. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Levy, A.C.; Moneta, E.; Rossi, D.; Trettel, A.; Peparaio, M.; Saggia Civitelli, E.; di Flumeri, G.; Cherubino, P.; Babiloni, F.; Sinesio, F. Taste Responses to Chocolate Pudding with Different Sucrose Concentrations through Physiological and Explicit Self-Reported Measures. Foods 2021, 10, 1527. [Google Scholar] [CrossRef]
- Finch, L.E.; Cummings, J.R.; Tomiyama, A.J. Cookie or Clementine? Psychophysiological Stress Reactivity and Recovery after Eating Healthy and Unhealthy Comfort Foods. Psychoneuroendocrinology 2019, 107, 26–36. [Google Scholar] [CrossRef]
- Verastegui-Tena, L.; van Trijp, H.; Piqueras-Fiszman, B. Heart Rate and Skin Conductance Responses to Taste, Taste Novelty, and the (Dis)Confirmation of Expectations. Food Qual. Prefer. 2018, 65, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Seet, M.S.; Amin, M.R.; Abbasi, N.I.; Hamano, J.; Chaudhury, A.; Bezerianos, A.; Faghih, R.T.; Thakor, N.V.; Dragomir, A. Olfactory-Induced Positive Affect and Autonomic Response as a Function of Hedonic and Intensity Attributes of Fragrances. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3170–3173. [Google Scholar]
- Tonacci, A.; di Monte, J.; Meucci, M.B.; Sansone, F.; Pala, A.P.; Billeci, L.; Conte, R. Wearable Sensors to Characterize the Autonomic Nervous System Correlates of Food-Like Odors Perception: A Pilot Study. Electronics 2019, 8, 1481. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y.; Hasebe, T.; Sugiura, M.; Nibe, A.; Oura, Y.; Kitani, S. Psychophysiological Preference Monitoring by Cerebral Hemoglobin Measurement during Chewing an Apple Piece. Int. J. Psychol. Behav. Sci. 2017, 7, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Sipos, L.; Nyitrai, L.; Hitka, G.; Friedrich, F.L.; Kókai, Z. Sensory Panel Performance Evaluation—Comprehensive Review of Practical Approaches. Appl. Sci. 2021, 11, 11977. [Google Scholar] [CrossRef]
Food Category | Sample | Application | Sensor | Chemometric Approach | Reference |
---|---|---|---|---|---|
Agri food | Rice | Detection of fungal infection during storage | MOS | PCA, LDA, and PLS | [23] |
Peach | Fruit decay | MOS | PLS and SVM | [24] | |
Apple | Detection of pathogen contamination | MOS | PCA and HCA | [25] | |
Dragon fruit, pear, kiwi fruit, apple | Fruit deterioration | MOS | PCA | [26] | |
Potato | Soft-rot infection | MOS | LDA, MARS, CT | [27] | |
Broccoli | Freshness evaluation | MOS | PCA, HCA, CDA | [28] | |
Citrus | Early detection of Bactrocera dorsalis infection | MOS | PCA and LDA | [29] | |
Bell pepper | Freshness | MOS | PCA and PLS | [30] | |
Mushrooms | Early detection of contamination | MOS | PCA and PLS | [31] | |
Apple | Detection of pathogens (Salmonella, Erwinia, Streptococcus, and Staphylococcus) contamination | MOS | PCA and HCA | [25] | |
Grapes | Identification of smoke-related volatiles | MOS | PCA | [32] | |
Oils and Dairy products | Olive oil | Evaluation of rancidity and oxidation | MOS | PCA and LDA | [33] |
Olive oil | Presence of defects | MOS | PCA | [34] | |
Peony seed oil | Adulteration | MOS | PCA and LDA | [35] | |
Edible oils | Adulteration | MOS | HCA, PCA, PCR, LDA, and ANN | [36] | |
Parmigiano Reggiano cheese | Adulteration | MOS | PLS and ANN | [37] | |
Butter | Adulteration | MOS | PCA and ANN | [38] | |
Meat and fish | Fish | Spoilage monitoring | MOS | - | [39] |
Tuna | Process development | MOS | PCA | [40] | |
Salmon | Freshness evaluation during storage | MOS | RBFNNs and PCA | [41] | |
Squid | Formaldehyde identification | MOS | PLS | [42] | |
Processed food | Grape syrup | Adulteration | MOS | PCA, HCA, SVM, and LDA | [43] |
Tomato paste | Adulteration | MOS | PCA, PLS, SVM, and LDA | [44] | |
Chicken | Evaluation of roasted chicken deterioration | MOS | PCA | [45] | |
Beverages | Vinegar | Classification | MOS | PCA, SNV, and LDA | [46] |
Orange juice | Adulteration | MOS | HCA, ANN, and CT | [47] | |
Beer | Off-flavor identification | MOS | ANN | [48] | |
Wine | Smoke taint evaluation | MOS | ANN | [20] |
Food Category | Sample | Application | Sensor | Chemometric Approach | Reference |
---|---|---|---|---|---|
Agri food | Coffee beans | Evaluation of bitterness | Potentiometric | RA | [52] |
Melon | Evaluation of storage condition | Potentiometric | PLS and LDA | [53] | |
Corn seeds | Aflatoxin detection | Potentiometric | PLS | [54] | |
Oils and Dairy products | Vegetable oil | Adulteration with low-grade oils | Solid-state electrodes | RA | [55] |
Olive oil | Rancidity evaluation | Potentiometric | LDA | [56] | |
Milk | Discrimination based on storage days | Voltammetric | ANN | [57] | |
Paneer cheese | Evaluation of capsaicin content | Potentiometric | PCA | [58] | |
Meat and fish | Fish | Presence of heavy metals | Colorimetric | PLS and ELM | [59] |
Mutton | Adulteration with pork or chicken meat | Potentiometric | PCA, LDA, CDA, and BAD | [60] | |
Fish | Freshness evaluation during storage | Potentiometric | PCA-RBFNNs | [61] | |
Carp | Evaluation of flavor changes during steam cooking | Potentiometric | PCA | [62] | |
Processed products | Tomato soup | Comparison of consumer perception and e-tongue of different salts | Potentiometric | PCA | [63] |
Soy sauce | Identification of rare sugars | Potentiometric | PCA | [64] | |
Surimi | Flavor after different processing methods | Potentiometric | PCA | [65] | |
Beverages | Wine | Evaluation of phenols content | Voltammetric | PLS | [66] |
Wine | Adulteration of tokaj | Potentiometric | PCA, LDA, and PLS | [67] | |
Wine | Off-flavor identification | Potentiometric | PCA | [68] | |
Apple juice | Evaluation of sweetness | Impedance spectroscopy | PCA | [69] | |
Liquor | Comparison of human perception and e-tongue in differentiating liquors | Potentiometric | PCA | [70] | |
Coconut water | Taste deterioration during time | Potentiometric | PCA | [71] |
Food Category | Sample | Application | Sensor | Chemometric Approach | Reference |
---|---|---|---|---|---|
Agri food | Wine grapes | Color changes during ripening | Colorimetric | PLS and PCA | [77] |
Climacteric fruits | Identification of artificially ripened fruits | Colorimetric | CNN | [78] | |
Corni Fructus | Discrimination based on color graduation | Colorimetric | DA, PCA, PLS, SVM, and DA | [79] | |
Tomato | Quality monitoring during storage | CCD camera | PLS | [80] | |
Strawberries | Evaluation of Fungal Contamination | Vis–NIR hyperspectral imaging system | - | [81] | |
Oils and Dairy products | Citrus oil | Measure the color difference | Colorimetric | DFA | [82] |
Olive oil | Characterization | Colorimetric | PCA | [13] | |
Meat and fish | Meat | Freshness evaluation | Vis–NIR hyperspectral imaging system | PLS | [83] |
Processed products | Dried tangerine peel | Quality evaluation after different processing methods | Colorimetric | DFA | [84] |
Carasau Bread | Monitoring manufacturing process | Colorimetric | ANN | [85] | |
Beverages | Tea | Quality evaluation | CMOS camera | PLS, SVM, and RF | [86] |
Method | Main Field of Applicability | Potential | Limits | Bias Sources | Tools for Bias Reduction |
---|---|---|---|---|---|
Panel test | Food quality assessment Sensory shelf life New products/new processes development | Overall characterization of food’s features given by the integration of the stimuli from all the five senses | Time-consuming and expensive | Individual differences Physiological bias Psychological bias | Panel selection and training Taster profiling Official method for assessing Statistical analysis of results |
Consumer test | Food quality assessment Acceptability test | Overall characterization of food’s features aimed at evaluation of consumer’s acceptability and marketing studies. | Time-consuming and expensive Very high number of consumers to be recruited | Context Consumer profile Past experiences Socio-cultural background | Taster profiling Statistical analysis of results |
E-senses (i.e., e-nose, e-tongue, and e-eye) | New products/new processes development Food quality/safety Assessment during storage Food origin/certification/ adulteration | Precise and immediate quantification of specific substances inside a product | No match with the final perception given by the human senses Calibration and algorithm development time consuming | Matrix effect Operating conditions adopted Sampling method | Statistical analysis Chemometric approach Calibration and algorithm improvement |
Method | Main Field of Applicability | Potential | Limits | Bias Sources |
---|---|---|---|---|
EEG | Study of the emotional reactions elicited at cortical level | Direct evaluation of the emotional, cognitive processes | Complexity of the instrumentation, artifacts characterizing the signal, cost | Electrodes placement, discomfort for the subject tested |
ECG | Study of the ANS activation in response to emotional stimuli | Assessment of the indirect effects of sensory stimulation in an easy, understandable, cost-affordable manner | Indirect method, not suitable to directly study cortical effects of stimuli | Model between central and peripheral response not always available |
Skin Conductance | Study of the ANS activation in response to emotional stimuli, mainly related to sympathetic activation | Assessment of the indirect effects of sensory stimulation in an easy, cost-affordable manner | Indirect method, not suitable to directly study cortical effects of stimuli | Model between central and peripheral response not always available |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modesti, M.; Tonacci, A.; Sansone, F.; Billeci, L.; Bellincontro, A.; Cacopardo, G.; Sanmartin, C.; Taglieri, I.; Venturi, F. E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. Chemosensors 2022, 10, 244. https://doi.org/10.3390/chemosensors10070244
Modesti M, Tonacci A, Sansone F, Billeci L, Bellincontro A, Cacopardo G, Sanmartin C, Taglieri I, Venturi F. E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. Chemosensors. 2022; 10(7):244. https://doi.org/10.3390/chemosensors10070244
Chicago/Turabian StyleModesti, Margherita, Alessandro Tonacci, Francesco Sansone, Lucia Billeci, Andrea Bellincontro, Gloria Cacopardo, Chiara Sanmartin, Isabella Taglieri, and Francesca Venturi. 2022. "E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices" Chemosensors 10, no. 7: 244. https://doi.org/10.3390/chemosensors10070244
APA StyleModesti, M., Tonacci, A., Sansone, F., Billeci, L., Bellincontro, A., Cacopardo, G., Sanmartin, C., Taglieri, I., & Venturi, F. (2022). E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. Chemosensors, 10(7), 244. https://doi.org/10.3390/chemosensors10070244