A Plankton Detection Method Based on Neural Networks and Digital Holographic Imaging
Abstract
:1. Introduction
2. Works Related to Data Acquisition
2.1. Microplankton Species
2.2. The Optical System of DHM
2.3. Image Process
Reconstruction
3. Proposed Method for Plankton Detection
3.1. Image Fusion
3.2. Object Detection
4. Results and Discussion
4.1. Image Fusion Method
Comparison of Different Image Fusion Methods
4.2. Object Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartley, T.; Mccann, K.S.; Bieg, C.; Cazelles, K.; Mcmeans, B.C. Food web rewiring in a changing world. Nat. Ecol. Evol. 2019, 3, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, P. Ocean Science: The power of plankton. Nature 2012, 483, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.L.; Tao, S.; Dawson, R.W.; Li, P.G.; Cao, J. Lake Ecosystem Health Assessment: Indicators and Methods. Water Res. 2001, 35, 3157–3167. [Google Scholar] [CrossRef]
- Hansen, P.J.; Moldrup, M.; Tarangkoon, W.; Garcia-Cuetos, L.; Moestrup, Ø. Direct evidence for symbiont sequestration in the marine red tide ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 2012, 66, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Onitsuka, G.; Yamaguchi, M.; Sakamoto, S.; Shikata, T.; Yamashita, H. Interannual variations in abundance and distribution of Chattonella cysts, and the relationship to population dynamics of vegetative cells in the Yatsushiro Sea, Japan. Harmful Algae 2020, 96, 101833. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Han, S.; Wang, X.; Liu, Z. Lagoon water quality monitoring based on digital image analysis and machine learning estimators. Water Res. 2020, 172, 115471. [Google Scholar] [CrossRef]
- Merz, E.; Kozakiewicz, T.; Reyes, M.; Ebi, C.; Isles, P.; Baity-Jesi, M.; Roberts, P.; Jaffe, J.S.; Dennis, S.; Hardeman, T. Underwater dual-magnification imaging for automated lake plankton monitoring. Water Res. 2021, 203, 117524. [Google Scholar] [CrossRef]
- Mes, A.; Ne, A.; Neg, B.; Mfa, C.; Ks, C.; Ba, D. Convolutional neural network—Support vector machine based approach for classification of cyanobacteria and chlorophyta microalgae groups. Algal Res. 2022, 61, 102568. [Google Scholar]
- Alvarez, E. Application of FlowCAM for phytoplankton enumeration, identification and estimation of chlorophyll content per cell. In Proceedings of the British Phycological Society 64th Annual Meeting, Bournemouth, UK, 23 June 2016. [Google Scholar]
- Kydd, J.; Rajakaruna, H.; Briski, E.; Bailey, S. Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size. J. Sea Res. 2017, 133, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Otalora, P.; Guzman, J.L.; Acien, F.G.; Berenguel, M.; Reul, A. Microalgae classification based on machine learning techniques. Algal Res. 2021, 55, 102256. [Google Scholar] [CrossRef]
- Lefevre, F.; Chalifour, A.; Yu, L.; Chodavarapu, V.; Juneau, P.; Izquierdo, R. Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection. Lab Chip 2012, 12, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Sperling, E.V.; Moreira, R.M. Chlorophyll—A Determination via continuous measurement of plankton fluorescence: Methodology Development. Water Res. 2001, 35, 3977–3981. [Google Scholar] [CrossRef]
- Pfitsch, D.W.; Malkiel, E.; Ronzhes, Y.; King, S.R.; Katz, J. Development of a free-drifting submersible digital holographic imaging system. In Proceedings of the Oceans, Washington, DC, USA, 17–23 September 2005. [Google Scholar]
- Monaldi, A.C.; Romero, G.G.; Alanís, E.; Cabrera, C.M. Digital holographic microscopy for microalgae biovolume assessment. Opt. Commun. 2015, 336, 255–261. [Google Scholar] [CrossRef]
- Talapatra, S.; Hong, J.; Mcfarland, M.; Nayak, A.R.; Zhang, C.; Katz, J.; Sullivan, J.; Twardowski, M.; Rines, J.; Donaghay, P. Characterization of biophysical interactions in the water column using in situ digital holography. Mar. Ecol. Prog. Ser. 2013, 473, 9–51. [Google Scholar] [CrossRef] [Green Version]
- Amolins, K.; Yun, Z.; Dare, P. Wavelet based image fusion techniques—An introduction, review and comparison. Isprs J. Photogramm. Remote Sens. 2007, 62, 249–263. [Google Scholar] [CrossRef]
- Pei, Y.; Zhou, H.; Jiang, Y.; Cai, G. The improved wavelet transform based image fusion algorithm and the quality assessment. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010. [Google Scholar]
- Pradnya, P.M.; Sachin, D.R. Wavelet based image fusion techniques. In Proceedings of the 2013 International Conference on Intelligent Systems & Signal Processing, Vallabh Vidyanagar, India, 1–2 March 2013; pp. 77–81. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Nicola, S.D.; Finizio, A.; Pierattini, G.; Ferraro, P.; Alfieri, D. Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes. Opt. Express 2005, 13, 9935–9940. [Google Scholar] [CrossRef]
- Weng, J.; Zhong, J.; Hu, C. Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy. Opt. Express 2008, 16, 21971–21981. [Google Scholar] [CrossRef]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The Global K-Means Clustering Algorithm. Pattern Recognit. 2002, 36, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhu, X.F. A new image fusion algorithm based on wavelet packet analysis and PCNN. In Proceedings of the International Conference on Machine Learning & Cybernetics, Guangzhou, China, 18–21 August 2005. [Google Scholar]
- Wu, J.P.; Yang, Z.X.; Su, Y.T.; Chen, Y.; Wang, Z.M. Wavelet transform and fuzzy reasoning based image fusion algorithm. In Proceedings of the International Conference on Wavelet Analysis & Pattern Recognition, Beijing, China, 2–4 November 2007. [Google Scholar]
- Qu, X.; Hu, C.; Yan, J. Image fusion algorithm based on orientation information motivated Pulse Coupled Neural Networks. In Proceedings of the World Congress on Intelligent Control & Automation, Chongqing, China, 25–27 June 2008. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European conference on computer vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Jia, D.; Wei, D.; Socher, R.; Li, L.J.; Kai, L.; Li, F.F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Wang, C.Y.; Liao, H.; Wu, Y.H.; Chen, P.Y.; Yeh, I.H. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
Model | Size of the Parameter |
---|---|
FCN | 35,796,996 |
DHM-FCN | 434,537 |
Input | Layer | Stride | Output |
---|---|---|---|
512 × 512 × 2 | Conv 3 × 3, 8 | 1 | C1, 512 × 512 × 8 |
C1 | Maxpool 2 × 2 | 2 | P1, 256 × 256 × 8 |
P1 | Conv 3 × 3, 16 | 1 | C2, 256 × 256 × 16 |
C2 | Maxpool 2 × 2 | 2 | P2, 128 × 128 × 16 |
P2 | Conv 3 × 3, 32 | 1 | C3, 128 × 128 × 32 |
C3 | Maxpool 2 × 2 | 2 | P3, 64 × 64 × 32 |
P3 | Conv 3 × 3, 64 | 1 | C4, 64 × 64 × 64 |
C4 | Maxpool 2 × 2 | 2 | P4, 32 × 32 × 64 |
P4 | Conv 3 × 3, 128 | 1 | C5, 32 × 32 × 128 |
C5 | Maxpool 2 × 2 | 2 | P5, 16 × 16 × 128 |
P5 | Conv 1 × 1, 256 | 1 | C6, 16 × 16 × 256 |
C6 | DeConv 4 × 4, 64 | 2 | D1, 32 × 32 × 64 |
D1 & P4 | Skip | - | K1, 32 × 32 × 64 |
K1 | DeConv 4 × 4, 32 | 2 | D2, 64 × 64 × 32 |
D2 & P3 | Skip | - | K2, 64 × 64 × 32 |
K2 | DeConv 16 × 16, 1 | 8 | D3, 512 × 512 × 1 |
Method | Operation Time (s) | SSIM | Cor | PSNR |
---|---|---|---|---|
PCNN | 0.1786 | 0.5726 | 0.7998 | 71.7134 |
RW | 0.7877 | 0.6387 | 0.8151 | 71.7115 |
PW | 0.7334 | 0.6391 | 0.8153 | 71.7112 |
DHM-FCN | 0.03395 | 0.7067 | 0.8782 | 74.2479 |
Species | Abbreviation | AP | Recall | F1 Score |
---|---|---|---|---|
Alexandrium tamarense | ATEC | 91.41 | 81.25 | 78 |
Chattonella marina | CMSH | 100 | 100 | 98 |
Mesodinium rubrum | JAMR | 98.91 | 97.78 | 92 |
Scrippsiella trochoidea | STNJ | 99.25 | 100 | 97 |
Prorocentrum lima | PLGD | 98.89 | 95.83 | 94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, K.; Cai, H.; Wang, X. A Plankton Detection Method Based on Neural Networks and Digital Holographic Imaging. Chemosensors 2022, 10, 217. https://doi.org/10.3390/chemosensors10060217
Lang K, Cai H, Wang X. A Plankton Detection Method Based on Neural Networks and Digital Holographic Imaging. Chemosensors. 2022; 10(6):217. https://doi.org/10.3390/chemosensors10060217
Chicago/Turabian StyleLang, Kaiqi, Hui Cai, and Xiaoping Wang. 2022. "A Plankton Detection Method Based on Neural Networks and Digital Holographic Imaging" Chemosensors 10, no. 6: 217. https://doi.org/10.3390/chemosensors10060217
APA StyleLang, K., Cai, H., & Wang, X. (2022). A Plankton Detection Method Based on Neural Networks and Digital Holographic Imaging. Chemosensors, 10(6), 217. https://doi.org/10.3390/chemosensors10060217