Theoretical Study on the Electrochemical Catalytic Activity of Au-Doped Pt Electrode for Nitrogen Monoxide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effects of Au Single-Atom Doping on Pt with Different Crystal Planes on NO Adsorption Energy
3.2. Effects of Au Single-Atom, Dimer, and Trimer Doping on Pt surface on NO Adsorption Energy
3.3. NO Dissociation Reaction on the Au/Pt(111) Surfaces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, J.; Yoon, B.Y.; Park, C.O.; Lee, W.J.; Lee, C.B. Sensing behavior and mechanism of mixed potential NOx sensors using NiO, NiO (+ YSZ) and CuO oxide electrodes. Sens. Actuators B Chem. 2009, 135, 516–523. [Google Scholar] [CrossRef]
- Guo, X. Zirconia Solid Electrolyte and Its Application in Oxygen Sensor; Huazhong University of Science and Technology: Wuhan, China, 1992. [Google Scholar]
- Cheng, C.; Wang, J.X.; Jian, J.W.; Zou, J. Research on the diffused hole of limiting current oxygen sensor fabricated by screen printing method. Transducer Microsyst. Technol. 2019, 38, 11–14. [Google Scholar]
- Gao, J.Y.; Zou, J.; Zhang, D.X.; Jian, J. Affection of Oxygen to the Sensing Behavior of NOx Sensor. Chin. J. Sens. Actuators 2010, 23, 1215–1219. [Google Scholar]
- Wang, G.W.; Li, H.P.; Xu, L.P.; Zhang, L.; Wang, R.P. Study of the Pt/YSZ electrode sintering technics. J. Funct. Mater. 2008, 39, 1997–2001+2004. [Google Scholar]
- Lv, S.; Zhang, Y.; Jiang, L.; Zhao, L.; Wang, J.; Liu, F.; Wang, C.; Yan, X.; Sun, P.; Wang, L.; et al. Mixed potential type YSZ-based NO2 sensors with efficient three-dimensional three-phase boundary processed by electrospinning. Sens. Actuators B Chem. 2022, 354, 131219. [Google Scholar] [CrossRef]
- Burch, R.; Daniells, S.T.; Hu, P. N2O and NO2 formation on Pt(111): A density functional theory study. J. Chem. Phys. 2002, 117, 2902–2908. [Google Scholar] [CrossRef]
- Santana, J.A.; Ishikawa, Y. DFT calculations of the electrochemical adsorption of sulfuric acid anions on the Pt(100) and Pt(100) surfaces. Electrocatalysis 2020, 11, 86–93. [Google Scholar] [CrossRef]
- Su, M.; Dong, J.C.; Le, J.-B.; Zhao, Y.; Yang, W.M.; Yang, Z.L.; Li, J.F.; Attard, G.; Liu, G.; Cheng, J.; et al. In Situ Raman Study of CO Electrooxidation on Pt (hkl) Single-Crystal Surfaces in Acidic Solution. Angew. Chem. Int. Ed. 2020, 59, 23554–23558. [Google Scholar] [CrossRef] [PubMed]
- Zinola, C.F. On the kinetics and mechanism of simultaneous CO and NO oxidations on polyoriented and Pt nanoparticles. Int. J. Hydrogen Energy 2020, 45, 1453–1465. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, Y.; Song, Y.; Guo, C.; Hu, P. Quantitative Studies of the Coverage Effects on Microkinetic Simulations for NO Oxidation on Pt(111). J. Phys. Chem. C 2019, 123, 27594–27602. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, K.G.; Darby, M.T.; Stamatakis, M. Adlayer structure and lattice size effects on catalytic rates predicted from KMC simulations: NO oxidation on Pt(111). J. Chem. Phys. 2018, 149, 184701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J. A computational study on the electrified Pt(100) surface by the cluster model. Phys. Chem. Chem. Phys. 2019, 21, 6112–6125. [Google Scholar] [CrossRef] [PubMed]
- Zorko, M.; Farinazzo Bergamo Dias Martins, P.; Connell, J.G.; Lopes, P.P.; Markovic, N.M.; Stamenkovic, V.R.; Strmcnik, D. Improved rate for the oxygen reduction reaction in a sulfuric acid electrolyte using a Pt(111) surface modified with melamine. ACS Appl. Mater. Interfaces 2021, 13, 3369–3376. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Liu, L.; Boronat, M.; Arenal, R.; Concepcion, P.; Corma, A. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 2019, 9, 11530–11541. [Google Scholar] [CrossRef] [Green Version]
- Souda, R.; Aizawa, T. Crystallization kinetics of thin water films on Pt(100): Effects of oxygen and carbon-monoxide adspecies. Phys. Chem. Chem. Phys. 2019, 21, 1123–1130. [Google Scholar] [CrossRef] [Green Version]
- Grasso, S.; Di Loreto, M.V.; Arienzo, A.; Gallo, V.; Sabatini, A.; Zompanti, A.; Pennazza, G.; De Gara, L.; Antonini, G.; Santonico, M. Microbiological Risk Assessment of Ready-to-Eat Leafy Green Salads via a Novel Electrochemical Sensor. Chemosensors 2022, 10, 134. [Google Scholar] [CrossRef]
- Clayborne, A.; Chun, H.J.; Rankin, R.-B.; Greeley, J. Elucidation of pathways for NO electroreduction on Pt(100) from first principles. Angew. Chem. 2015, 127, 8373–8376. [Google Scholar] [CrossRef]
- Zagalo, P.M.; Ribeiro, P.A.; Raposo, M. Effect of Applied Electrical Stimuli to Interdigitated Electrode Sensors While Detecting 17α-Ethinylestradiol in Water Samples. Chemosensors 2022, 10, 114. [Google Scholar] [CrossRef]
- Zheng, J.; Ivashenko, O.; Fjellvåg, H.; Groot, I.M.; Sjåstad, A.-O. Roadmap for Modeling RhPt/Pt(100) Catalytic Surfaces. J. Phys. Chem. C 2018, 122, 26430–26437. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, A.; Frey, K.; Schneider, W.F. Binary approach to ternary cluster expansions: NO–O–vacancy system on Pt(100). J. Phys. Chem. C 2017, 121, 7344–7354. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Chen, D.; Miao, J.; Zhi, X.; Deng, S.; Lin, S.; Jin, H.; Cui, D. Nitrogen Dioxide Gas Sensor Based on Ag-Doped Graphene: A First-Principle Study. Chemosensors 2021, 9, 227. [Google Scholar] [CrossRef]
- Xia, M.; Yue, R.; Chen, P.; Wang, M.; Jiao, T.; Zhang, L.; Li, L. Density functional theory investigation of the adsorption behaviors of SO2 and NO2 on a Pt(100) surface. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 266–270. [Google Scholar] [CrossRef]
- Tang, H.; Trout, B.L. NO chemisorption on Pt(100), Rh/Pt(100), and Pd/Pt(100). J. Phys. Chem. B 2005, 109, 17630–17634. [Google Scholar] [CrossRef] [PubMed]
- Zhanpeisov, N.U.; Fukumura, H. Theoretical DFT Study on the Interaction of NO and Br2 with the Pt(100) Surface. J. Chem. Theory Comput. 2006, 2, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Getman, R.B.; Schneider, W.F. DFT-based characterization of the multiple adsorption modes of nitrogen oxides on Pt(100). J. Phys. Chem. C 2007, 111, 389–397. [Google Scholar] [CrossRef]
- Huang, H.; Xie, G.; Wang, X.; Yin, L.; Peng, Z. Study of inactivated electrode paste used for zro_2-based no_x sensor. J. Wuhan Univ. Sci. Technol. 2012, 35, 41–43. [Google Scholar]
- Ovesson, S.; Lundqvist, B.I.; Schneider, W.F.; Bogicevic, A. NO oxidation properties of Pt(100) revealed by ab initio kinetic simulations. Phys. Rev. B 2005, 71, 115406. [Google Scholar] [CrossRef]
- Zhang, Q. Localization of Pt Catalysts with Different Configurations and their Adsorption Processes of CO and O2: A First-Principle Investigation; South China University of Technology: Guangzhou, China, 2020. [Google Scholar]
- Ge, Q.; King, D.A. Energetics, geometry and spin density of NO chemisorbed on Pt {111}. Chem. Phys. Lett. 1998, 285, 15–20. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G. Crystallography Open Database. Available online: http://crystallography.net/cod/ (accessed on 28 April 2022).
- Burns, A.-R.; Stechel, E.-B.; Jennison, D.-R. Rotational dynamics and electronic energy partitioning in the electron-stimulated desorption of NO from Pt(100). J. Vac. Sci. Technol. A Vac. Surf. Film. 1988, 6, 895–898. [Google Scholar] [CrossRef]
- Xue, M.; Jia, J.; Wu, H. Density functional theory study on the adsorption and decomposition of CO on Ni-and Pt-Au(1 1 1) bimetallic surfaces. Comput. Theor. Chem. 2021, 1205, 113439. [Google Scholar] [CrossRef]
- Hibino, T.; Inoue, T.; Sano, M. Electrochemical reduction of NO by alternating current electrolysis using yttria-stabilized zirconia as the solid electrolyte: Part I. Characterizations of alternating current electrolysis of NO. Solid State Ion. 2000, 130, 19–29. [Google Scholar] [CrossRef]
- Cao, L.J. The Structural Properties of Bimetallic Nanoparticles Au-Pt; Beijing University of Chemical Technology: Beijing, China, 2014. [Google Scholar]
Type | Site | Eads/eV |
---|---|---|
Pt(111) | top | −1.75 |
bridge | −2.23 | |
fcc | −2.43 | |
hcp | −2.31 | |
Pt(200) | top | −2.09 |
hcp | −1.92 | |
bridge | −2.08 | |
Pt(220) | top | −2.16 |
hcp | −1.13 | |
bridge | −3.00 |
Type | Site | Eads/eV |
---|---|---|
Pt(111) | T1 | −0.93 |
T2 | −1.65 | |
B1 | −1.48 | |
B2 | −2.14 | |
H1 | −1.86 | |
H2 | −2.30 | |
F1 | −1.99 | |
F2 | −2.41 | |
Pt(200) | B1 | −1.94 |
B2 | −2.40 | |
H1 | −1.23 | |
H2 | −1.40 | |
T1 | −0.26 | |
T2 | −1.95 | |
Pt(220) | B1 | −2.11 |
B2 | −2.60 | |
H1 | −1.75 | |
H2 | −1.82 | |
T1 | −0.34 | |
T2 | −2.17 |
Type | Site | Eads/eV |
---|---|---|
Audimer/Pt(111) | T1 | −0.33 |
T2 | −1.23 | |
B2 | −1.59 | |
B3 | −0.26 | |
H2 | −1.83 | |
F2 | −1.82 | |
Autrimer/Pt(111) | T1 | 0.30 |
T2 | −1.31 | |
B2 | −1.77 | |
B3 | −0.21 | |
H2 | −1.49 | |
H4 | −0.31 | |
F2 | −1.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hu, H.; Zhang, W.; Tian, Z.; Jiang, X.; Wang, Y.; Zhang, S.; Zhang, Q.; Jian, J.; Zou, J. Theoretical Study on the Electrochemical Catalytic Activity of Au-Doped Pt Electrode for Nitrogen Monoxide. Chemosensors 2022, 10, 178. https://doi.org/10.3390/chemosensors10050178
Li Y, Hu H, Zhang W, Tian Z, Jiang X, Wang Y, Zhang S, Zhang Q, Jian J, Zou J. Theoretical Study on the Electrochemical Catalytic Activity of Au-Doped Pt Electrode for Nitrogen Monoxide. Chemosensors. 2022; 10(5):178. https://doi.org/10.3390/chemosensors10050178
Chicago/Turabian StyleLi, Yumei, Huijia Hu, Weifeng Zhang, Ziqi Tian, Xiaoqing Jiang, Yuheng Wang, Shaolin Zhang, Qiuju Zhang, Jiawen Jian, and Jie Zou. 2022. "Theoretical Study on the Electrochemical Catalytic Activity of Au-Doped Pt Electrode for Nitrogen Monoxide" Chemosensors 10, no. 5: 178. https://doi.org/10.3390/chemosensors10050178
APA StyleLi, Y., Hu, H., Zhang, W., Tian, Z., Jiang, X., Wang, Y., Zhang, S., Zhang, Q., Jian, J., & Zou, J. (2022). Theoretical Study on the Electrochemical Catalytic Activity of Au-Doped Pt Electrode for Nitrogen Monoxide. Chemosensors, 10(5), 178. https://doi.org/10.3390/chemosensors10050178