Luminescent Self-Assembled Monolayer on Gold Nanoparticles: Tuning of Emission According to the Surface Curvature
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Gold Nanorods
2.2. Synthesis of Gold Nanospheres
2.3. Synthesis of Gold Nanotriangles
2.4. Bpy-SH Covered Gold Plates
3. Results and Discussion
3.1. Uv-Vis Spectroscopy
3.2. Raman Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, F. Structure and Growth of Self-Assembling Monolayers. Prog. Surf. Sci. 2000, 65, 151–257. [Google Scholar] [CrossRef]
- Kühnle, A. Self-Assembly of Organic Molecules at Metal Surfaces. Curr. Opin. Colloid Interface Sci. 2009, 14, 157–168. [Google Scholar] [CrossRef]
- Chaki, N.K.; Vijayamohanan, K. Self-Assembled Monolayers as a Tunable Platform for Biosensor Applications. Biosens. Bioelectron. 2002, 17, 1–12. [Google Scholar] [CrossRef]
- Motealleh, A.; Dorri, P.; Kehr, N.S. Self-Assembled Monolayers of Chiral Periodic Mesoporous Organosilica as a Stimuli Responsive Local Drug Delivery System. J. Mater. Chem. B 2019, 7, 2362–2371. [Google Scholar] [CrossRef]
- Gankin, A.; Mervinetsky, E.; Alshanski, I.; Buchwald, J.; Dianat, A.; Gutierrez, R.; Cuniberti, G.; Sfez, R.; Yitzchaik, S. ITO Work Function Tunability by Polarizable Chromophore Monolayers. Langmuir 2019, 35, 2997–3004. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Laibinis, P.E.; Whitesides, G.M.; Allara, D.L.; Tao, Y.T.; Parikh, A.N.; Nuzzo, R.G. Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of n-Alkanethiols on the Coinage Metal Surfaces, Copper, Silver, and Gold. J. Am. Chem. Soc. 1991, 113, 7152–7167. [Google Scholar] [CrossRef]
- Heister, K.; Allara, D.L.; Bahnck, K.; Frey, S.; Zharnikov, M.; Grunze, M. Deviations from 1:1 Compositions in Self-Assembled Monolayers Formed from Adsorption of Asymmetric Dialkyl Disulfides on Gold. Langmuir 1999, 15, 5440–5443. [Google Scholar] [CrossRef]
- Hamoudi, H.; Esaulov, V.A. Selfassembly of α,ω-Dithiols on Surfaces and Metal Dithiol Heterostructures. Ann. Phys. 2016, 528, 242–263. [Google Scholar] [CrossRef]
- Hamoudi, H. Bottom-up Nanoarchitectonics of Two-Dimensional Freestanding Metal Doped Carbon Nanosheet. RSC Adv. 2014, 4, 22035–22041. [Google Scholar] [CrossRef]
- Hamoudi, H.; Prato, M.; Dablemont, C.; Cavalleri, O.; Canepa, M.; Esaulov, V.A. Self-Assembly of 1,4-Benzenedimethanethiol Self-Assembled Monolayers on Gold. Langmuir 2010, 26, 7242–7247. [Google Scholar] [CrossRef] [PubMed]
- Pethkar, S.; Aslam, M.; Mulla, I.S.; Ganeshan, P.; Vijayamohanan, K. Preparation and Characterisation of Silver Quantum Dot Superlattice Using Self-Assembled Monolayers of Pentanedithiol. J. Mater. Chem. 2001, 11, 1710–1714. [Google Scholar] [CrossRef]
- Sarathy, K.V.; Thomas, P.J.; Kulkarni, G.U.; Rao, C.N.R. Superlattices of Metal and Metal-Semiconductor Quantum Dots Obtained by Layer-by-Layer Deposition of Nanoparticle Arrays. J. Phys. Chem. B 1999, 103, 399–401. [Google Scholar] [CrossRef]
- Jackson, A.M.; Myerson, J.W.; Stellacci, F. Spontaneous Assembly of Subnanometre-Ordered Domains in the Ligand Shell of Monolayer-Protected Nanoparticles. Nat. Mater. 2004, 3, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Eustis, S.; El-Sayed, M.A. Why Gold Nanoparticles Are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chem. Soc. Rev. 2006, 35, 209–217. [Google Scholar] [CrossRef]
- Lu, W.; Suo, Z. Symmetry Breaking in Self-Assembled Monolayers on Solid Surfaces: Anisotropic Surface Stress. Phys. Rev. B 2002, 65, 085401. [Google Scholar] [CrossRef]
- Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443–455. [Google Scholar] [CrossRef]
- Liang, J.; Rosa, L.G.; Scoles, G. Nanostructuring, Imaging and Molecular Manipulation of Dithiol Monolayers on Au(111) Surfaces by Atomic Force Microscopy. J. Phys. Chem. C 2007, 111, 17275–17284. [Google Scholar] [CrossRef]
- Rieley, H.; Kendall, G.K.; Zemicael, F.W.; Smith, T.L.; Yang, S. X-ray Studies of Self-Assembled Monolayers on Coinage Metals. 1. Alignment and Photooxidation in 1,8-Octanedithiol and 1-Octanethiol on Au. Langmuir 1998, 14, 5147–5153. [Google Scholar] [CrossRef]
- De Luca, O.; Caruso, T.; Turano, M.; Ionescu, A.; Godbert, N.; Aiello, I.; Ghedini, M.; Formoso, V.; Agostino, R.G. Adsorption of Nile Red Self-Assembled Monolayers on Au (111). Langmuir 2019, 35, 14761–14768. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Scarpelli, F.; Ionescu, A.; Aiello, I.; La Deda, M.; Crispini, A.; Ghedini, M.; Brunelli, E.; Sesti, S.; Godbert, N. High Order in a Self-Assembled Iridium(III) Complex Gelator Towards Nanostructured IrO2 Thin Films. Chem.-Asian J. 2018, 12, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Lu, D.; Tian, W.; Zhang, R.; Yu, H.; Gorecka, E.; Pociecha, D.; Godbert, N.; Hao, J.; Li, H. Ordered structures of alkylated carbon dots and their applications in nonlinear optics. J. Mater. Chem. C 2020, 8, 8980–8991. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Wang, Y.; Quan, Y.; Chen, D.; Cheng, Y. Strong Aggregation-Induced CPL Response Promoted by Chiral Emissive Nematic Liquid Crystals (N*-LCs). Chem. Eur. J. 2018, 24, 12607–12612. [Google Scholar] [CrossRef]
- Galyametdinov, Y.G.; Knyazev, A.A.; Dzhabarov, V.I.; Cardinaels, T.; Driesen, K.; Görller-Walrand, C.; Binnemans, K. Polarized Luminescence from Aligned Samples of Nematogenic Lanthanide Complexes. Adv. Mater. 2008, 20, 252–257. [Google Scholar] [CrossRef]
- Agina, E.V.; Mannanov, A.A.; Sizov, A.S.; Vechter, O.; Borshchev, O.V.; Bakirov, A.V.; Shcherbina, M.A.; Chvalun, S.N.; Konstantinov, V.G.; Bruevich, V.V.; et al. Luminescent Organic Semiconducting Langmuir Monolayers. ACS Appl. Mater. Interfaces 2017, 9, 18078–18086. [Google Scholar] [CrossRef]
- Yokota, H.; Okazaki, K.; Shimura, K.; Nakayama, M.; Kim, D. Photoluminescence Properties of Self-Assembled Monolayers of CdSe and CdSe/ZnS Quantum Dots. J. Phys. Chem. C 2012, 116, 5456–5459. [Google Scholar] [CrossRef]
- Séro, L.; Sanguinet, L.; Derbré, S.; Boury, F.; Brotons, G.; Dabos-Seignon, S.; Richomme, P.; Séraphin, D. Fluorescent Self-Assembled Monolayers of Umbelliferone: A Relationship between Contact Angle and Fluorescence. Langmuir 2013, 29, 10423–10431. [Google Scholar] [CrossRef][Green Version]
- Sun, S.-S.; Lees, A.J. Photophysics and Evidence of Excimer Formation, Linear Bipyridines in Solution and Solid Films. J. Photochem. Photobiol. A 2001, 140, 157–161. [Google Scholar] [CrossRef]
- Scarabelli, L.; Grzelczak, M.; Liz-Marzán, L.M. Tuning Gold Nanorod Synthesis through Prereduction with Salicylic Acid. Chem. Mater. 2013, 25, 4232–4238. [Google Scholar] [CrossRef]
- Candreva, A.; Lewandowski, W.; La Deda, M. Thickness control of the silica shell: A way to tune the plasmonic properties of isolated and assembled gold nanorods. J. Nanopart. Res. 2021, 24, 19. [Google Scholar] [CrossRef]
- Liu, Q.; Yuan, Y.; Smalyukh, I.I. Electrically and Optically Tunable Plasmonic Guest–Host Liquid Crystals with Long-Range Ordered Nanoparticles. Nano Lett. 2014, 14, 4071–4077. [Google Scholar] [CrossRef] [PubMed]
- Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J.J.; Langer, J.; Liz-Marzán, L.M. Monodisperse Gold Nanotriangles: Size Control, Large-Scale Self-Assembly, and Performance in Surface-Enhanced Raman Scattering. ACS Nano 2014, 8, 5833–5842. [Google Scholar] [CrossRef] [PubMed]
- Sakotsubo, Y.; Ohgi, T.; Fujita, D.; Ootuka, Y. Tunneling Spectroscopy of Isolated Gold Clusters Grown on Thiol/Dithiol Mixed Self-Assembled Monolayers. Phys. E Low-Dimens. Syst. Nanostruct. 2005, 29, 601–605. [Google Scholar] [CrossRef]
- Bastús, N.G.; Comenge, J.; Puntes, V. Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 Nm: Size Focusing versus Ostwald Ripening. Langmuir 2011, 27, 11098–11105. [Google Scholar] [CrossRef]
- Gao, M.; Zheng, X.; Khan, I.; Cai, H.; Lan, J.; Liu, J.; Wang, J.; Wu, J.; Huang, S.; Li, S.; et al. Resonant Light Absorption and Plasmon Tunability of Lateral Triangular Au Nanoprisms Array. Phys. Lett. A 2019, 383, 125881. [Google Scholar] [CrossRef]
- Battistini, G.; Cozzi, P.G.; Jalkanen, J.-P.; Montalti, M.; Prodi, L.; Zaccheroni, N.; Zerbetto, F. The Erratic Emission of Pyrene on Gold Nanoparticles. ACS Nano 2008, 2, 77–84. [Google Scholar] [CrossRef]
- Dulkeith, E.; Morteani, A.C.; Niedereichholz, T.; Klar, T.A.; Feldmann, J.; Levi, S.A.; van Veggel, F.C.J.M.; Reinhoudt, D.N.; Möller, M.; Gittins, D.I. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys. Rev. Lett. 2002, 89, 203002. [Google Scholar] [CrossRef]
- Candreva, A.; Di Maio, G.; La Deda, M. A Quick One-Step Synthesis of Luminescent Gold Nanospheres. Soft Matt. 2020, 16, 10865–10868. [Google Scholar] [CrossRef]
- De Luca, A.; Ferrie, M.; Ravaine, S.; La Deda, M.; Infusino, M.; Rashed, A.R.; Veltri, A.; Aradian, A.; Scaramuzza, N.; Strangi, G. Gain Functionalized Core-Shell Nanoparticles: The Way to Selectively Compensate Absorptive Losses. J. Mater. Chem. 2012, 22, 8846–8852. [Google Scholar] [CrossRef]
- Scarpelli, F.; Ionescu, A.; Ricciardi, L.; Plastina, P.; Aiello, I.; la Deda, M.; Crispini, A.; Ghedini, M.; Godbert, N. A novel route towards water-soluble luminescent iridium(III) complexes via a hydroxy-bridged dinuclear precursor. Dalton Trans. 2016, 45, 17264–17273. [Google Scholar] [CrossRef] [PubMed]
- Liguori, P.F.; Ghedini, M.; la Deda, M.; Godbert, N.; Parisi, F.; Guzzi, R.; Ionescu, A.; Aiello, I. Electrochromic behaviour of Ir(III) bis-cyclometalated 1,2-dioxolene tetra-halo complexes: Fully reversible catecholate/semiquinone redox switches. Dalton Trans. 2020, 49, 2628–2635. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, A.; Caligiuri, R.; Godbert, N.; Candreva, A.; la Deda, M.; Furia, E.; Ghedini, M.; Aiello, I. New electropolymerizable Ir(III) complexes with β-ketoiminate ancillary ligands. Chem. Asian J. 2019, 14, 3025–3034. [Google Scholar] [CrossRef]
- Mutai, T.; Cheon, J.D.; Tsuchiya, G.; Araki, K. Tuning of fluorescence properties of aminopyridine*** fluorophores by N-substitution. J. Chem. Soc. Perkin Trans. 2 2002, 2, 862–865. [Google Scholar] [CrossRef]
- Poizat, O.; Buntinx, G.; Valat, P.; Wintgens, V.; Bridoux, M. Photochemistry of 4,4′-Bipyridine. Nanosecond Absorption and Raman Study of the Hydrogen Atom Abstraction from Methanol and 2-Propanol. J. Phys. Chem. 1993, 97, 5905–5910. [Google Scholar] [CrossRef]
- Gao, X. Reproducibility in Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. 1990, 94, 6858–6864. [Google Scholar] [CrossRef]
- Ducasse, L.; Dussauze, M.; Grondin, J.; Lassègues, J.C.; Naudin, C.; Servant, L. Spectroscopic study of poly(ethylene oxide)6: LiX complexes (X = PF6, AsF6, SbF6, ClO4). Phys. Chem. Chem. Phys. 2003, 5, 567–574. [Google Scholar] [CrossRef]
- Gupta, R.; Dyer, M.J.; Weimer, W.A. Preparation and characterization of surface plasmon resonance tunable gold and silver films. J. Appl. Phys. 2002, 92, 5264–5271. [Google Scholar] [CrossRef]
- Yang, T.; Long, H.; Malkoch, M.; Gamstedt, E.K.; Berglund, L.; Hult, A. Characterization of Well-Defined Poly(ethylene glycol) Hydrogels Prepared by Thiol-ene Chemistry. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 4044–4054. [Google Scholar] [CrossRef]
- Ould-Moussa, L.; Castella-Ventura, M.; Kassab, E.; Poizat, O.; Strommen, D.P.; Kincaid, J.R. Ab initio and density functional study of the geometrical, electronic and vibrational properties of 2,2′-bipyridine. J. Raman Spectrosc. 2000, 31, 377–390. [Google Scholar] [CrossRef]
- Kumar, J.; Thomas, R.; Swathi, R.S.; Thomas, K.G. Au nanorod quartets and Raman signal enhancement: Towards the design of plasmonic platforms. Nanoscale 2014, 6, 10454–10459. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.W.; Han, S.W.; Kim, K. Adsorption Characteristics of p-Xylene-r,r′-dithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering and Ellipsometry Study. J. Phys. Chem. B 1999, 103, 10831–10837. [Google Scholar] [CrossRef]
- Kumar, J.; Thomas, K.G. Surface-Enhanced Raman Spectroscopy: Investigations at the Nanorod Edges and Dimer Junctions. J. Phys. Chem. Lett. 2011, 2, 610–615. [Google Scholar] [CrossRef]
- Kertesz, M.; Choi, C.H.; Hong, S.Y. Conformational Information from Vibrational Spectra of Polyaniline. Synth. Met. 1997, 85, 1073–1076. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, M. Fast loading of PEG–SH on CTAB-protected gold nanorods. RSC Adv. 2014, 4, 17760–17767. [Google Scholar] [CrossRef]
- Serrano-Montes, A.B.; Jimenez de Aberasturi, D.; Langer, J.; Giner-Casares, J.J.; Scarabelli, L.; Herrero, A.; Liz-Marzán, L.M. A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers. Langmuir 2015, 31, 9205–9213. [Google Scholar] [CrossRef]
- Yüce, M.; Kurt, H. How to make nanobiosensors: Surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv. 2017, 7, 49386–49403. [Google Scholar] [CrossRef]
- Conde, J.; Dias, J.T.; Grazú, V.; Moros, M.; Baptista, P.V.; de la Fuente, J.M. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2014, 2, 48. [Google Scholar] [CrossRef]
- Whitney, A.V.; van Duyne, R.P.; Casadio, F. An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. J. Raman Spectrosc. 2006, 37, 993–1002. [Google Scholar] [CrossRef]
Sample | Abs, λ/nm (ε/M−1 cm−1) | Emission Max, λ/nm | Excitation Bands, λ/nm | Lifetime, τ/ns (α/%) | |
---|---|---|---|---|---|
at 352 nm | at 418 nm | ||||
Bpy-SH@AuNR a | 273, 300(sh),368, 390(sh), 530, 840 c | 435 | 320, 374, 395(sh) | 1.6 (94.3), 11.1 (5.7) | 0.7 (75.4), 5.2 (24.6) |
Bpy-SH@AuNS a | 291, 520 c | 350 | 265 | 1.5 (79.3), 7.6 (20.7) | |
Bpy-SH@AuNT a | 294, 350(sh), 653 c | 410 | 265, 382 | 0.7 (82.5), 2.4 (17.5) | |
“diluted” Bpy-SH solution (1.3 × 10−5 M) b | 254 (15145), 295 (29355), 310 (20300, sh), 330 (1470, sh) | 356 | 270 | 2.2 (40.2), 7.9 (59.8) | |
“concentrated” Bpy-SH solution (3.5 × 10−2 M) b | Too intense | 418 | 362 | 0.9 (81.5), 3.0 (18.5) | |
Solid Bpy-SH | Not available | 435 | 397 | 0.7 (86.0), 2.7 (14.0) | |
Bpy-SH@Au-plate | Not available | 435 | 280, 361 | 0.6 (5.5), 0.9 (94.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candreva, A.; Di Maio, G.; Parisi, F.; Scarpelli, F.; Crispini, A.; Godbert, N.; Ricciardi, L.; Nucera, A.; Rizzuto, C.; Barberi, R.C.; et al. Luminescent Self-Assembled Monolayer on Gold Nanoparticles: Tuning of Emission According to the Surface Curvature. Chemosensors 2022, 10, 176. https://doi.org/10.3390/chemosensors10050176
Candreva A, Di Maio G, Parisi F, Scarpelli F, Crispini A, Godbert N, Ricciardi L, Nucera A, Rizzuto C, Barberi RC, et al. Luminescent Self-Assembled Monolayer on Gold Nanoparticles: Tuning of Emission According to the Surface Curvature. Chemosensors. 2022; 10(5):176. https://doi.org/10.3390/chemosensors10050176
Chicago/Turabian StyleCandreva, Angela, Giuseppe Di Maio, Francesco Parisi, Francesca Scarpelli, Alessandra Crispini, Nicolas Godbert, Loredana Ricciardi, Antonello Nucera, Carmen Rizzuto, Riccardo C. Barberi, and et al. 2022. "Luminescent Self-Assembled Monolayer on Gold Nanoparticles: Tuning of Emission According to the Surface Curvature" Chemosensors 10, no. 5: 176. https://doi.org/10.3390/chemosensors10050176
APA StyleCandreva, A., Di Maio, G., Parisi, F., Scarpelli, F., Crispini, A., Godbert, N., Ricciardi, L., Nucera, A., Rizzuto, C., Barberi, R. C., Castriota, M., & La Deda, M. (2022). Luminescent Self-Assembled Monolayer on Gold Nanoparticles: Tuning of Emission According to the Surface Curvature. Chemosensors, 10(5), 176. https://doi.org/10.3390/chemosensors10050176