An Improved Design for Chemomechanical Sensors: A Piezoresistive Pressure Sensor with a Mechanical Boss
Abstract
:1. Introduction
Hydrogel Backbone/Sensing Group | Hydrogel Thickness | pH Response Time | Reference |
---|---|---|---|
Hydroxypropyl Methacrylate/Dimethylaminoethyl Methacrylate | 50 μm | 15 min | 9–11 |
Polyvinyl Alcohol/Poly acrylic Acid | 50 μm | 6 min | 14 |
Acrylamide/Phenyl Boronic Acid | 400 μm | 16 | |
Hydroxypropyl Methacrylate/Dimethylaminoethyl Methacrylate | 400 μm | 135 min | 17–20 |
Polyvinyl Alcohol/Poly acrylic Acid | 50 μm | 30 min | 22 |
Polyvinyl Alcohol/Poly acrylic Acid | 40 μm | 78 min | 23 |
2. Experimental Methods
2.1. Materials
2.2. Hydrogel Monolith Synthesis
2.3. Han et al. Chemomechanical Sensor Design Specifications
2.4. Boss Chemomechanical Sensor-Design Specifications
2.5. Surface Preparation of Boss Sensor
2.6. In Situ Synthesis
2.7. Testing Procedures
2.7.1. Experiment 1: pH Response of 50 μm Hydrogel Using Boss Sensor Design
2.7.2. Experiment 2: pH Response of 400 μm Hydrogel Using Han Sensor Design
3. Results
3.1. Experiment 1: pH Response of 50 μm Hydrogel in Boss Sensor Design
3.2. Experiment 2: pH Response of 400 μm Hydrogel in Han Design Sensor
4. Discussion
Sensor Test | Response Time | Response Magnitude |
---|---|---|
Boss 50 μm | 0.34 h | 2.04 kPa |
Han 400 μm | 20 h | 1.63 kPa |
5. Conclusions
Conflict of Interest
References
- De, S.; Aluru, N.; Johnson, B.; Crone, W.; Beebe, D.; Moore, J. Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments and simulations. J. Microelectromechanical Syst. 2002, 11, 544–555. [Google Scholar] [CrossRef]
- Bienes, P.W.; Klosterkamp, I.; Menges, B.; Jonas, U.; Knoll, W. Responsive thin hydrogel layers from photo-cross-linkable poly (N-isopropylacrylamide) terpolymers. Langmuir 2007, 23, 2231–2238. [Google Scholar]
- Liu, M.; Guo, T. Preparation and swelling properties of crosslinked sodium polyacrylate. J. Appl. Polym. Sci. 2001, 82, 1515–1520. [Google Scholar] [CrossRef]
- Kuckling, D.; Hoffman, J.; Plotner, M.; Ferse, D.; Kretschmer, K.; Adler, H.; Arndt, K.; Reichelt, R. Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: Micro-fabricated temperature responsive hydrogels. Polymer 2003, 44, 4455–4462. [Google Scholar]
- Shin, J.; Braun, P.; Lee, W. Fast responsive photonic crystal pH sensor based on template photo-polymerized hydrogel inverse opal. Sens. Actuators B: Chem. 2010, 150, 183–190. [Google Scholar] [CrossRef]
- Iwata, T.; Suzuki, K.; Amaya, N.; Higuchi, H.; Masunaga, H.; Sasaki, S.; Kikuchi, H. Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases. Macromolecules 2009, 42, 2002–2008. [Google Scholar] [CrossRef]
- Galeav, I.; Mattiason, B. Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol. 1999, 17, 335–340. [Google Scholar] [CrossRef]
- Kurdikar, D.; Peppas, N. Method of determination of initiator efficiency: Application to UV polymerizations using 2,2-dimethoxy-2-phenylacetophenone. Macromolecules 1994, 27, 733–738. [Google Scholar]
- Herber, S.; Olthius, W.; Bergveld, P.; van den Berg, A. Exploitation of a pH-sensitive hydrogel disk for CO2 detection. Sens. Actuators B: Chem. 2004, 103, 284–289. [Google Scholar] [CrossRef]
- Herber, S.; Bomer, J.; Olthius, W.; Bergveld, P.; van den Berg, A. A miniaturized carbon dioxide gas sensor based on sensing of pH-sensitive hydrogel swelling with a pressure sensor. Biomed. Microdevices 2005, 7, 197–204. [Google Scholar] [CrossRef]
- Ter Steege, R.; Herber, S.; Olthius, W.; Bergveld, P.; van den Berg, A.; Kolkman, J. Assessment of a new prototype hydrogel CO2 sensor comparison with air tonometry. J. Clin. Monit. Comput. 2007, 21, 83–90. [Google Scholar]
- Lin, G.; Chang, S.; Kuo, C.; Magda, J.; Solzbacher, F. Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring. Sens. Actuators B: Chem. 2009, 136, 186–195. [Google Scholar] [CrossRef]
- Schulz, V.; Guenther, M.; Gerlach, G.; Magda, J.; Tathireddy, P.; Rieth, L.; Solzbacher, F. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolyte hydrogel using a piezoresistive microsensor. Smart Struct. Mater. Nondestruct. Eval. Health Monitor. Diagn. 2009, 7827, 1–16. [Google Scholar]
- Gerlach, G.; Guenther, M.; Sorber, J.; Suchanek, G. Chemical and pH sensors based on the swelling behavior of hydrogels. Sens. Actuators B: Chem. 2005, 111, 555–561. [Google Scholar]
- Horkay, F.; Tasaki, I.; Basser, P.J. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 2000, 1, 84–90. [Google Scholar]
- Han, I.S.; Han, M.; Kim, J.; Lew, S.; Lee, Y.J.; Horkay, F.; Magda, J.J. Constant-volume hydrogel osmometer: A new device concept for miniature biosensors. Biomacromolecules 2002, 3, 1271–1275. [Google Scholar]
- Orthner, M.P.; Buetefisch, S.; Magda, J.; Rieth, L.W.; Solzbacher, F. Development, fabrication, and characterization of hydrogel based piezoresistive pressure sensors with perforated diaphragms. Sens. Actuators A: Phys. 2010, 161, 29–38. [Google Scholar]
- Avula, M.; Busche, N.; Cho, S.H.; Tathireddy, P.; Rieth, L.W.; Magda, J.J.; Solzbacher, F. Effect of Temperature Changes on the Performance of Ionic Strength Biosensors Based on Hydrogels and Pressure Sensors. In Proceedings of the 33rd Annual International Conference of the IEEE EMBS, Boston, MA, USA, 3 August 2011; pp. 1855–1858.
- Lin, G.; Chang, S.; Hao, H.; Tathireddy, P.; Orthner, M.; Magda, J.; Solzbacher, F. Osmotic swelling pressure response of smart hydrogels suitable for chronically implantable glucose sensors. Sens. Actuators B: Chem. 2010, 144, 332–336. [Google Scholar]
- Tathireddy, P.; Avula, M.; Lin, G.; Cho, S.H.; Guenther, M.; Schulz, V.; Gerlach, G.; Magda, J.J.; Solzbacher, F. Smart Hydrogel Based Microsensing Platform for Continuous Glucose Monitoring. In Proceedings of the 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, 4 August 2010; pp. 677–679.
- Lei, M.; Baldi, A.; Nuxoll, E.; Siegel, R.A.; Ziaie, B. A hydrogel-based implantable micromachined transponder for wireless glucose measurement. Diab. Technol.Therap. 2006, 8, 112–122. [Google Scholar]
- Gerlach, G.; Guenther, M.; Suchaneck, G.; Sorber, J.; Arnt, K.; Richter, A. Application of sensitive hydrogels in chemical and pH sensors. Macromol. Symp. 2004, 210, 403–410. [Google Scholar] [CrossRef]
- Trinh, Q.T.; Gerlach, G.; Sorber, J.; Arndt, K. Hydrogel-based piezoresistive pH sensors, design, simulation and output characteristics. Sens. Actuators B: Chem. 2006, 117, 17–26. [Google Scholar]
- Tanaka, T.; Fillmore, D.J. The kinetics of swelling of gels. J. Chem. Phys. 1979, 70, 1214–1218. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bates, J.; Tathireddy, P.; Buetefisch, S.; Magda, J. An Improved Design for Chemomechanical Sensors: A Piezoresistive Pressure Sensor with a Mechanical Boss. Chemosensors 2013, 1, 33-42. https://doi.org/10.3390/chemosensors1030033
Bates J, Tathireddy P, Buetefisch S, Magda J. An Improved Design for Chemomechanical Sensors: A Piezoresistive Pressure Sensor with a Mechanical Boss. Chemosensors. 2013; 1(3):33-42. https://doi.org/10.3390/chemosensors1030033
Chicago/Turabian StyleBates, Jeffrey, Prashant Tathireddy, Sebastian Buetefisch, and Jules Magda. 2013. "An Improved Design for Chemomechanical Sensors: A Piezoresistive Pressure Sensor with a Mechanical Boss" Chemosensors 1, no. 3: 33-42. https://doi.org/10.3390/chemosensors1030033
APA StyleBates, J., Tathireddy, P., Buetefisch, S., & Magda, J. (2013). An Improved Design for Chemomechanical Sensors: A Piezoresistive Pressure Sensor with a Mechanical Boss. Chemosensors, 1(3), 33-42. https://doi.org/10.3390/chemosensors1030033