Factors Affecting Physical and Mental Fatigue among Female Hospital Nurses: The Korea Nurses’ Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population, and Setting
2.2. Measurements
2.3. Data Analysis
2.4. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdul Rahman, H.A.; Abdul-Mumin, K.; Naing, L. Psychosocial work stressors, work fatigue, and musculoskeletal disorders: Comparison between emergency and critical care nurses in Brunei Public Hospitals. Asian Nurs. Res. 2017, 11, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Lin, H.; Hu, X.; Cai, Y.X.; Chen, K.; Cai, W.Z. High fatigue and its associations with health and work related factors among female medical personnel at 54 hospitals in Zhuhai, China. Psychol. Health Med. 2018, 23, 304–316. [Google Scholar] [CrossRef]
- Pasupathy, K.S.; Barker, L.M. Impact of fatigue on performance in registered nurses: Data mining and implications for practice. J. Healthc Qual. 2012, 34, 22–30. [Google Scholar] [CrossRef]
- European Working Conditions Survey. Available online: https://www.eurofound.europa.eu/sites/default/files/ef_publication/field_ef_document/ef1634en.pdf (accessed on 3 January 2021).
- Çelik, S.; Taşdemir, N.; Kurt, A.; İlgezdi, E.; Kubalas, Ö. Fatigue in intensive care nurses and related factors. Int. J. Occup. Environ. Med. 2017, 8, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finsterer, J.; Mahjoub, S.Z. Fatigue in healthy and diseased individuals. Am. J. Hosp. Palliat. Care 2014, 31, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Kang, S. Influence of fatigue, health perception, and happiness on health promoting behaviors among general hospital nurses. J. Korea Acad. Ind. Coop. Soc. 2018, 19, 456–465. [Google Scholar]
- Seol, M.J.; Lee, B.S.; Lee, S.K. Effects of labor intensity and fatigue on sleep quality of clinical nurses. J. Korean Acad. Nurs. Adm. 2018, 24, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Choi, U.E.; Kim, H.Y. The impact of safety climate and fatigue on safety performance of operating room nurses. J. Korean Acad. Nurs. Adm. 2016, 22, 471–479. [Google Scholar] [CrossRef]
- Jung, Y.J.; Kang, S.W. Differences in sleep, fatigue, and neurocognitive function between shift nurses and non-shift nurses. Korean J. Adult Nurs. 2017, 29, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Son, H. Fatigue-related factors for community-dwelling older adults with diabetes: A theory-guided multi-dimensional approach using the dynamic biopsychosocial model. Int. J. Environ. Res. Public Health 2019, 16, 4502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagherian, K.; Clinton, M.E.; Abu-Saad Huijer, H.A.S.; Geiger-Brown, J. Fatigue, work schedules, and perceived performance in bedside care nurses. Workplace Health Saf. 2017, 65, 304–312. [Google Scholar] [CrossRef]
- Ozvurmaz, S.; Mandiracioglu, A. Work-related fatigue and related factors among nurses working at the Adnan Menderes University Hospital. Med. Sci. Discov. 2018, 5, 229–234. [Google Scholar] [CrossRef]
- Kim, O.; Ahn, Y.; Lee, H.Y.; Jang, H.J.; Kim, S.; Eun Lee, J.; Jung, H.; Cho, E.; Lim, J.-Y.; Kim, M.-J.; et al. The Korea nurses’ health study: A prospective cohort study. J. Womens Health 2017, 26, 892–899. [Google Scholar] [CrossRef]
- Chalder, T.; Berelowitz, G.; Pawlikowska, T.; Watts, L.; Wessely, S.; Wright, D.; Wallace, E.P. Development of a fatigue scale. J. Psychosom. Res. 1993, 37, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.L.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.D.; Stanton, B.A.; Niemcryk, S.J.; Rose, R.M. A scale for the estimation of sleep problems in clinical research. J. Clin. Epidemiol. 1988, 41, 313–321. [Google Scholar] [CrossRef]
- Lee, E.Y.; Kim, J.S. Relationships among emotional labor, fatigue, and musculoskeletal pain in nurses. J. Korea Acad. Ind. Coop. Soc. 2017, 18, 351–359. [Google Scholar] [CrossRef]
- Abdulah, D.M.; Perot, K.A.; Holroyd, E. Fatigue as a primary and secondary factor in relation to shift-rotating and patient safety in nurses. J. Hosp. Adm. 2020, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Younan, L.; Clinton, M.; Fares, S.; Jardali, F.E.; Samaha, H. The relationship between work-related musculoskeletal disorders, chronic occupational fatigue, and work organization: A multi-hospital cross-sectional study. J. Adv. Nurs. 2019, 75, 1667–1677. [Google Scholar] [CrossRef]
- Chae, S.M.; Suh, E.Y.; Jung, H.M.; Lee, J.H. Physical activity and fatigue among pediatric nurses in a special care unit. Perspect. Nurs. Sci. 2018, 15, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Al-Abdallah, A.M.; Malak, M.Z. Factors correlating with prolonged fatigue among emergency department nurses. J. Res. Nurs. 2019, 24, 571–584. [Google Scholar] [CrossRef]
- Steege, L.M.; Drake, D.A.; Olivas, M.; Mazza, G. Evaluation of physically and mentally fatiguing tasks and sources of fatigue as reported by registered nurses. J. Nurs. Manag. 2015, 23, 179–189. [Google Scholar] [CrossRef]
- Syed, I.; Daly, T.; Armstrong, P.; Lowndes, R.; Chadoin, M.; Naidoo, V. How do work hierarchies and strict divisions of labor impact care workers’ experiences of health and safety? Case studies of long term care in Toronto. J. Nurs. Home Res. Sci. 2016, 2, 41–49. [Google Scholar]
- Han, K.; Trinkoff, A.M.; Geiger-Brown, J. Factors associated with work-related fatigue and recovery in hospital nurses working 12-hour shifts. Workplace Health Saf. 2014, 62, 409–414. [Google Scholar] [CrossRef]
- Min, A.; Min, H.; Hong, H.C. Work schedule characteristics and fatigue among rotating shift nurses in hospital setting: An integrative review. J. Nurs. Manag. 2019, 27, 884–895. [Google Scholar] [CrossRef]
- Lee, H.Y.; Kim, M.S.; Kim, O.; Lee, I.H.; Kim, H.K. Association between shift work and severity of depressive symptoms among female nurses: The Korea Nurses’ Health Study. J. Nurs. Manag. 2016, 24, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Nyer, M.; Mischoulon, D.; Alpert, J.E.; Holt, D.J.; Brill, C.D.; Yeung, A.; Prelli, P.; Baer, L.; Dording, C.; Huz, I.; et al. College students with depressive symptoms with and without fatigue: Differences in functioning, suicidality, anxiety, and depressive severity. Ann. Clin. Psychiatry 2015, 27, 100. [Google Scholar]
- Widyanto, E.; Soemarko, D.S.; Ratnawati, A. The effect of deep relax inspiration–pursed lip breathing on nurse fatigue in the emergency department. J. Phys. Conf. Ser. 2018, 1073. [Google Scholar] [CrossRef] [Green Version]
Variables | Mental Fatigue | Physical Fatigue | ||||
---|---|---|---|---|---|---|
N | % | M ± SD | t or F | M ± SD | t or F | |
(p) | (p) | |||||
Total | 14,839 | 100 | 5.79 ± 2.60 | 12.57 ± 4.04 | ||
Age | 4.479 (0.000) | 16.477 (0.000) | ||||
≤29 | 9334 | 62.9 | 5.86 ± 2.66 | 12.99 ± 3.98 | ||
≥30 | 5505 | 37.1 | 5.66 ± 2.50 | 11.86 ± 4.03 | ||
Level of Education | 0.417 (0.677) | 3.604 (0.000) | ||||
3-year college | 7095 | 49.3 | 5.80 ± 2.62 | 12.70 ± 4.04 | ||
4-year university or higher | 7744 | 50.7 | 5.78 ± 2.59 | 12.46 ± 4.03 | ||
Marital status | −5.806 (0.000) | −15.287 (0.000) | ||||
Married | 4420 | 29.8 | 5.60 ± 2.50 | 11.80 ± 4.01 | ||
Single or other status | 10,419 | 70.2 | 5.86 ± 2.64 | 12.90 ± 4.00 | ||
Annual income (USD) | 4.485 (0.011) | 40.900 (0.000) | ||||
≤$2999 | 6250 | 42.1 | 5.77 ± 2.70 | 12.69 ± 4.11 | ||
$3000–3999 | 5764 | 38.9 | 5.85 ± 2.53 | 12.75 ± 3.93 | ||
≥$4000 | 2824 | 19.0 | 5.68 ± 2.53 | 11.96 ± 4.04 | ||
Shift work | −11.933 (0.000) | −17.814 (0.000) | ||||
No | 3224 | 21.7 | 5.30 ± 2.57 | 11.42 ± 4.18 | ||
Yes | 11,614 | 78.3 | 5.92 ± 2.60 | 12.89 ± 3.94 | ||
BMI | 0.846 (0.429) | 78.190 (0.000) | ||||
Normal | 9707 | 65.7 | 5.77 ± 2.61 | 12.48 ± 4.05 | ||
Underweight | 2441 | 16.5 | 5.84 ± 2.65 | 13.44 ± 4.00 | ||
Overweight | 2631 | 17.8 | 5.80 ± 2.54 | 12.09 ± 3.92 | ||
Perceived health | 1009.34 (0.000) | 2266.00 (0.000) | ||||
Good | 6093 | 41.1 | 4.84 ± 2.50 | 10.49 ± 3.86 | ||
Fair | 6681 | 45.0 | 6.12 ± 2.34 | 13.38 ± 3.26 | ||
poor | 2065 | 13.9 | 7.48 ± 2.60 | 16.11 ± 3.34 | ||
Sleep problem | −43.162 (0.000) | −60.598 (0.000) | ||||
No | 9626 | 64.9 | 5.14 ± 2.44 | 11.28 ± 3.79 | ||
Yes | 5213 | 35.1 | 6.97 ± 2.48 | 14.95 ± 3.35 | ||
Level of Depression | 1517.243 (0.000) | 1848.911 (0.000) | ||||
Minimal | 4872 | 32.9 | 4.14 ± 2.25 | 9.72±3.73 | ||
Mild | 5540 | 37.4 | 5.86 ± 2.15 | 12.81 ± 3.08 | ||
Moderate | 2598 | 17.5 | 6.92 ± 2.13 | 14.59 ± 2.98 | ||
Moderate severe | 1266 | 8.5 | 7.94 ± 2.16 | 16.12 ± 3.06 | ||
Severe | 547 | 3.7 | 9.31 ± 2.39 | 17.68 ± 3.20 | ||
Stress level | 728.520 (0.000) | 620.881 (0.000) | ||||
1st quartile | 4582 | 30.9 | 4.62 ± 2.35 | 10.95 ± 3.79 | ||
2nd quartile | 4385 | 29.6 | 5.78 ± 2.24 | 12.65 ± 3.41 | ||
3rd quartile | 3416 | 23.0 | 6.21 ± 2.68 | 12.88 ± 4.38 | ||
4th quartile | 2456 | 16.5 | 7.37 ± 2.54 | 15.02 ± 3.65 | ||
Department | −3.227 (0.001) | −3.759 (0.000) | ||||
General | 9198 | 62.0 | 5.73 ± 2.62 | 12.47 ± 4.09 | ||
Special | 5641 | 38.0 | 5.87 ± 2.58 | 12.73 ± 3.95 |
Variables | Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|---|
β | t | β | t | β | t | ||
Age | −0.146 *** | −12.049 | −0.065 *** | −7.085 | −0.065 *** | −7.020 | |
Level of Education (4-year university or higher = 0) | |||||||
3-year college | −0.008 | −0.937 | −0.006 | −0.874 | −0.005 | −0.824 | |
Marital status (Single or others = 0) | |||||||
Married | −0.014 | −1.287 | 0.066 *** | 8.190 | 0.066 *** | 8.247 | |
Annual income (USD) (≥$4000 = 0) | |||||||
$3000–3999 | 0.003 | 0.242 | −0.003 | −0.359 | −0.003 | −0.321 | |
≤$2999 | −0.037 ** | −2.739 | −0.033 ** | −3.199 | −0.030 ** | −2.953 | |
Shift work (No = 0) | |||||||
Yes | 0.102 *** | 11.843 | 0.025 *** | 3.845 | 0.024 *** | 3.764 | |
BMI | −0.095 *** | −15.295 | −0.095 *** | −15.334 | |||
Perceived health (Good = 0) | |||||||
Fair | 0.226 *** | 33.546 | 0.225 *** | 33.496 | |||
Poor | 0.267 *** | 37.664 | 0.267 *** | 37.686 | |||
Sleep problem | 0.157 *** | 20.524 | 0.156 *** | 20.463 | |||
Level of Depression | 0.380 *** | 45.484 | 0.380 *** | 45.538 | |||
Stress level | 0.040 *** | 5.665 | 0.040 *** | 5.765 | |||
Department (General = 0) | |||||||
Special | 0.027 *** | 4.430 | |||||
R2 | 0.041 | 0.467 | 0.468 | ||||
Adjusted R2 | 0.040 | 0.466 | 0.467 | ||||
F | 104.760 *** | 1076.560 *** | 996.512 *** | ||||
ΔR2 | 0.426 | 0.001 |
Variables | Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|---|
β | t | β | t | β | t | ||
Age | −0.020 | −1.603 | 0.060 *** | 6.012 | 0.061 *** | 6.078 | |
Level of Education (4-year university or higher = 0) | |||||||
3-year college | −0.008 | −0.935 | −0.007 | −0.975 | −0.006 | −0.929 | |
Marital status (Single or others = 0) | |||||||
Married | −0.014 | −1.280 | 0.052 *** | 5.931 | 0.052 *** | 5.982 | |
Annual income (USD) (≥$4000 = 0) | |||||||
$3000–3999 | 0.009 | 0.725 | −0.002 | −0.216 | −0.002 | −0.181 | |
≤$2999 | −0.010 | −0.713 | −0.021 | −1.845 | −0.018 | −1.621 | |
Shift work (No = 0) | |||||||
Yes | 0.089 *** | 10.162 | 0.023 ** | 3.235 | 0.022 ** | 3.160 | |
BMI | −0.021 ** | −3.102 | −0.022 ** | −3.131 | |||
Perceived health (Good = 0) | |||||||
Fair | 0.099 *** | 13.519 | 0.099 *** | 13.463 | |||
Poor | 0.118 *** | 15.293 | 0.118 *** | 15.299 | |||
Sleep problem | 0.089 *** | 10.722 | 0.089 *** | 10.661 | |||
Level of Depression | 0.423 *** | 46.339 | 0.423 *** | 46.386 | |||
Stress level | 0.133 *** | 17.414 | 0.134 *** | 17.508 | |||
Department (General = 0) | |||||||
Special | 0.027 *** | 4.043 | |||||
R2 | 0.011 | 0.364 | 0.365 | ||||
Adjusted R2 | 0.010 | 0.364 | 0.364 | ||||
F | 26.282 *** | 704.042 *** | 651.819 *** | ||||
ΔR2 | 0.354 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.J.; Kim, O.; Kim, S.; Kim, M.S.; Choi, J.A.; Kim, B.; Dan, H.; Jung, H. Factors Affecting Physical and Mental Fatigue among Female Hospital Nurses: The Korea Nurses’ Health Study. Healthcare 2021, 9, 201. https://doi.org/10.3390/healthcare9020201
Jang HJ, Kim O, Kim S, Kim MS, Choi JA, Kim B, Dan H, Jung H. Factors Affecting Physical and Mental Fatigue among Female Hospital Nurses: The Korea Nurses’ Health Study. Healthcare. 2021; 9(2):201. https://doi.org/10.3390/healthcare9020201
Chicago/Turabian StyleJang, Hee Jung, Oksoo Kim, Sue Kim, Mi Sun Kim, Jung Ah Choi, Bohye Kim, Hyunju Dan, and Heeja Jung. 2021. "Factors Affecting Physical and Mental Fatigue among Female Hospital Nurses: The Korea Nurses’ Health Study" Healthcare 9, no. 2: 201. https://doi.org/10.3390/healthcare9020201
APA StyleJang, H. J., Kim, O., Kim, S., Kim, M. S., Choi, J. A., Kim, B., Dan, H., & Jung, H. (2021). Factors Affecting Physical and Mental Fatigue among Female Hospital Nurses: The Korea Nurses’ Health Study. Healthcare, 9(2), 201. https://doi.org/10.3390/healthcare9020201