The Association between Mental Motor Imagery and Real Movement in Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design
2.3. Data Analysis
2.4. Participants
- People over 18 years old;
- Participants who have suffered an ischemic or hemorrhagic stroke, with no time limit since the injury;
- Medically stable participants who can attend therapy;
- Participants who are able to give informed consent.
- Participants with previous pathology in their upper extremity, traumatic, neurological, or any other type of pathology that may affect the results of the assessment;
- Participants who have reported some neurological alteration before the stroke;
- Severe aphasia, memory disorders, attention disorders, visual and communication disorders, or other neural symptoms, which may interfere with this study.
2.5. Measures
2.5.1. Upper Extremity Evaluations
2.5.2. Motor Imagery Ability
2.5.3. Cognitive Evaluations
2.5.4. Independence of Basic and Instrumental Activities of Daily Living
3. Results
3.1. Comparison among Groups regarding Their Capacity to Visualize MI
3.2. Correlations between Mental Imagery and Motor Function Measures
3.3. Correlations Cognitive Function Measures
3.4. Time since Injury and Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coupland, A.P.; Thapar, A.; Qureshi, M.I.; Jenkins, H.; Davies, A.H. The definition of stroke. J. R. Soc. Med. 2017, 110, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, E.; Wilson, L.; Wickramasinghe, K.; Bhatnagar, P.; Leal, J.; Luengo-Fernandez, R.; Burns, R.; Townsend, N.; Rayner, M. European Cardiovascular Disease Statistics 2017; European Heart Network: Brussels, Belgium, 2017. [Google Scholar]
- Lee, S.; Bae, S.; Jeon, D.; Kim, K.Y. The effects of cognitive exercise therapy on chronic stroke patients’ upper limb functions, activities of daily living and quality of life. J. Phys. Ther. Sci. 2015, 27, 2787–2791. [Google Scholar] [CrossRef] [Green Version]
- Beebe, J.; Lang, C. Active Range of Motion Predicts Upper Extremity Function 3 Months After Stroke. Stroke 2009, 40, 1772–1779. [Google Scholar] [CrossRef]
- Dur Mata, M.J.; Molleda Marzo, M.; García Almazán, C.; Mallol Badellino, J.; Calderon Padilla, V. Factores pronósticos en el ictus. De la fase aguda a los tres años. Rehabilitacion 2011, 45, 18–23. [Google Scholar] [CrossRef]
- Classen, J.; Liepert, J.; Wise, S.P.; Hallett, M.; Cohen, L.G. Rapid Plasticity of Human Cortical Movement Representation Induced by Practice. J. Neurophysiol. 1998, 79, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Bütefisch, C.M.; Davis, B.C.; Wise, S.P.; Sawaki, L.; Kopylev, L.; Classen, J.; Cohen, L.G. Mechanisms of use-dependent plasticity in the human motor cortex. Proc. Natl. Acad. Sci. USA 2000, 97, 3661–3665. [Google Scholar] [CrossRef]
- Koganemaru, S.; Mima, T.; Thabit, M.N.; Ikkaku, T.; Shimada, K.; Kanematsu, M.; Takahashi, K.; Fawi, G.; Takahashi, R.; Fukuyama, H.; et al. Recovery of upper-limb function due to enhanced use-dependent plasticity in chronic stroke patients. Brain 2010, 133, 3373–3384. [Google Scholar] [CrossRef] [Green Version]
- Decety, J. The neurophysiological basis of motor imagery. Behav. Brain Res. 1996, 77, 45–52. [Google Scholar] [CrossRef]
- Schieber, M.H. Dissociating motor cortex from the motor. J. Physiol. 2011, 589, 5613–5624. [Google Scholar] [CrossRef]
- Loporto, M.; McAllister, C.; Williams, J.; Hardwick, R.; Holmes, P. Investigating central mechanisms underlying the effects of action observation and imagery through transcranial magnetic stimulation. J. Mot. Behav. 2011, 43, 361–373. [Google Scholar] [CrossRef]
- Jacobson, E. Electrical measures of neuromuscular states during mental activities: VI. A note on mental a ctivities concerning an amputated limb. Am. J. Physiol. 1931, 96, 122–125. [Google Scholar] [CrossRef]
- Lotze, M.; Montoya, P.; Erb, M.; Hülsmann, E.; Flor, H.; Klose, U.; Birbaumer, N.; Grodd, W. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. J. Cogn. Neurosci. 1999, 11, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.J.; Page, S.J. Mental Practice With Motor Imagery: Evidence for Motor Recovery and Cortical Reorganization After Stroke. Arch. Phys. Med. Rehabil. 2006, 87 (Suppl. 12), 2–11. [Google Scholar] [CrossRef] [Green Version]
- Morioka, S.; Osumi, M.; Nishi, Y.; Ishigaki, T.; Ishibashi, R.; Sakauchi, T.; Takamura, Y.; Nobusako, S. Motor-imagery ability and function of hemiplegic upper limb in stroke patients. Ann. Clin. Transl. Neurol. 2019, 6, 596–604. [Google Scholar] [CrossRef]
- López, N.D.; Monge Pereira, E.; Centeno, E.J.; Miangolarra Page, J.C. Motor imagery as a complementary technique for functional recovery after stroke: A systematic review. Top. Stroke Rehabil. 2019, 26, 576–587. [Google Scholar] [CrossRef]
- Fernandez-Gomez, E.; Sanchez-Cabeza, A. Motor imagery: A systematic review of its effectiveness in the rehabilitation of the upper limb following a stroke. Rev. Neurol. 2018, 66, 137–146. [Google Scholar]
- Machado, T.C.; Carregosa, A.A.; Santos, M.S.; Ribeiro NM da, S.; Melo, A. Efficacy of motor imagery additional to motor-based therapy in the recovery of motor function of the upper limb in post-stroke individuals: A systematic review. Top. Stroke Rehabil. 2019, 26, 548–553. [Google Scholar] [CrossRef]
- Gowda, A.S.; Memon, A.N.; Bidika, E.; Salib, M.; Rallabhandi, B.; Fayyaz, H. Investigating the Viability of Motor Imagery as a Physical Rehabilitation Treatment for Patients With Stroke-Induced Motor Cortical Damage. Cureus 2021, 13, e14001. [Google Scholar] [CrossRef]
- Szameitat, A.J.; Shen, S.; Conforto, A.; Sterr, A. Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients. Neuroimage 2012, 62, 266–280. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, T.; Li, B.J.; Zhang, W.; Zhao, J.; Song, L.P. Motor imagery training induces changes in brain neural networks in stroke patients. Neural. Regen. Res. 2018, 13, 1771–1781. [Google Scholar]
- Wang, X.; Wang, H.; Xiong, X.; Sun, C.; Zhu, B.; Xu, Y.; Fan, M.; Tong, S.; Sun, L.; Guo, X. Motor Imagery Training After Stroke Increases Slow-5 Oscillations and Functional Connectivity in the Ipsilesional Inferior Parietal Lobule. Neurorehabil. Neural Repair 2020, 34, 321–332. [Google Scholar] [CrossRef]
- Hardwick, R.; Caspers, S.; Eickhoff, S.; Swinnen, S. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci. Biobehav. Rev. 2017, 94, 31–44. [Google Scholar] [CrossRef]
- Höller, Y.; Bergmann, J.; Kronbichler, M.; Crone, J.S.; Schmid, E.V.; Thomschewski, A.; Butz, K.; Schütze, V.; Höller, P.; Trinka, E. Real movement vs. motor imagery in healthy subjects. Int. J. Psychophysiol. 2013, 87, 35–41. [Google Scholar] [CrossRef]
- Guillot, A.; Hoyek, N.; Louis, M.; Collet, C. Understanding the timing of motor imagery: Recent findings and future directions. Int. Rev. Sport Exerc. Psychol. 2012, 5, 3–22. [Google Scholar] [CrossRef]
- Zisa, N.S.; Rubio, C.; Gómez, M. Reliability and validity of the mental evocation of images, movements and activities questionnaire: A pilot study. Rehabilitacion 2020, 55, 258–265. [Google Scholar] [CrossRef]
- Malouin, F.; Richards, C.L.; Jackson, P.L.; Lafleur, M.F.; Durand, A.; Doyon, J. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: A reliability and construct validity study. J. Neurol. Phys. Ther. 2007, 31, 20–29. [Google Scholar] [CrossRef]
- Kilteni, K.; Andersson, B.J.; Houborg, C.; Ehrsson, H.H. Motor imagery involves predicting the sensory consequences of the imagined movement. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ruggirello, S.; Campioni, L.; Piermanni, S.; Sebastiani, L.; Santarcangelo, E.L. Does hypnotic assessment predict the functional equivalence between motor imagery and action? Brain Cogn. 2019, 136, 103598. [Google Scholar] [CrossRef]
- Williams, S.E.; Cumming, J.; Edwards, M.G. The functional equivalence between movement imagery, observation, and execution influences imagery ability. Res. Q. Exerc. Sport 2011, 82, 555–564. [Google Scholar] [CrossRef]
- Sirigu, A.; Cohen, L.; Duhamel, J.; Pillon, B.; Dubois, B.; Agid, Y.; Pierrot-Deseilligny, C. Congruent unilateral impairments for real and imagined hand movements. Neuroreport 1995, 6, 997–1001. [Google Scholar] [CrossRef]
- Sirigu, A.; Duhumel, J.-R.; Cohen, L.; Pillon, B.; Dubois, B.; Agid, Y. The Mental Representation of Hand Movements After Parietal Cortex Damage. Science 1996, 273, 1564–1568. [Google Scholar] [CrossRef]
- Olsson, C.J.; Nyberg, L. Motor imagery: If you can’t do it, you won’t think it. Scand. J. Med. Sci. Sports 2010, 20, 711–715. [Google Scholar] [CrossRef]
- Aglioti, S.M.; Cesari, P.; Romani, M.; Urgesi, C. Action anticipation and motor resonance in elite basketball players. Nat. Neurosci. 2008, 11, 1109–1116. [Google Scholar] [CrossRef]
- Beilock, S.L.; Gonso, S. Putting in the mind versus putting on the green: Expertise, performance time, and the linking of imagery and action. Q. J. Exp. Psychol. 2008, 61, 920–932. [Google Scholar] [CrossRef]
- Ferrer González, B.M.; Echevarría Ruiz de Vargas, C.; Zarco Periñán, M.J.; Docobo Durántez, F. Adaptacion y Validación al Español de la Escala Fugl-Meyer en el Manejo de la Rehabilitación de Pacientes con ictus; Universidad de Sevilla: Sevilla, Spain, 2016. [Google Scholar]
- Wang, T.N.; Lin, K.C.; Wu, C.Y.; Chung, C.Y.; Pei, Y.C.; Teng, Y.K. Validity, responsiveness, and clinically important difference of the abilhand questionnaire in patients with stroke. Arch. Phys. Med. Rehabil. 2011, 92, 1086–1091. [Google Scholar] [CrossRef]
- Lin, K.C.; Chuang, L.L.; Wu, C.Y.; Hsieh, Y.W.; Chang, W.Y. Responsiveness and validity of three dexterous function measures in stroke rehabilitation. J. Rehabil. Res. Dev. 2010, 47, 563–572. [Google Scholar] [CrossRef]
- Jebsen, R.; Taylor, N.; Trieschmann, R.B.; Trotter, M.; Howard, L. An objective and standardized test of hand function. Arch. Phys. Med. Rehabil. 1969, 50, 311–319. [Google Scholar]
- Bohannon, R.W. Internal Consistency of Dynamometer Measurements in Healthy Subjects and Stroke Patients. Percept. Mot. Ski. 1995, 81, 1113–1114. [Google Scholar] [CrossRef]
- Hall, C.R.; Rodgers, W.M.; Barr, K.A. The Use of Imagery by Athletes in Selected Sports. Sport Psychol. 2016, 4, 1–10. [Google Scholar] [CrossRef]
- Hall, C.; Pongrac, J.; Buckholz, E. The measure of Imagery ability. Hum. Mov. Sci. 1985, 4, 107–118. [Google Scholar] [CrossRef]
- Gregg, M.; Hall, C.; Butler, A. The MIQ-RS: A suitable Option for examining movement imagery ability. Evid. Based Complement Altern. Med. 2010, 7, 249–257. [Google Scholar] [CrossRef]
- Isaac, A.; Marks, D.; Russell, D.G. An instrument for assessing imagery of movement: The Vividness of Movement Imagery Questionnaire (VMIQ). J. Ment. Imag. 1986, 10, 23–30. [Google Scholar]
- Climie, E.A.; Rostad, K. Test Review. Wechsler Adult Intelligence Scale. J. Psychoeduc. Assess. 2011, 29, 581–586. [Google Scholar] [CrossRef]
- Mayes, S.D.; Calhoun, S.L. Wechsler Intelligence Scale for Children-Third and -Fourth Edition predictors of academic achievement in children with attention-deficit/hyperactivity disorder. Sch. Psychol. Q. 2007, 22, 234–249. [Google Scholar] [CrossRef]
- Torres, Y.M.V.; Cárdenas, S.J.; Ramírez, A.R. Adaptation of the behavioral activation for depression scale (BADS) in cancer patients. Psicooncologia 2020, 17, 25–39. [Google Scholar]
- Baztan, J.J.; Perez del Molino, J.; Alarcon, T.; San Cristobal, E.; Izquierdo, G.; Manzarbeitia, J. Indice de Barthel: Instrumento válido para la valoración functional de pacientes con enfermedad cerebrovascular. Rev. Esp. Geriatr. Gerontol. 1993, 28, 32–40. [Google Scholar]
- Vergara, I.; Bilbao, A.; Orive, M.; Garcia-Gutierrez, S.; Navarro, G.; Quintana, J.M. Validation of the Spanish version of the Lawton IADL Scale for its application in elderly people. Health Q. Life Outcomes 2012, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Crammond, D.J. Motor imagery: Never in your wildest dream. Trends Neurosci. 1997, 20, 54–57. [Google Scholar] [CrossRef]
- Bakker, F.; Boschker, M.; Chung, T. Changes in muscular activity while imagining weight lifting using stimulus or response propositions. J. Sport Exerc. Psychol. 1998, 20, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Pomeroy, V.M.; Baron, J.-C. Motor Imagery. A Backdoor to the Motor System After Stroke? Stroke 2006, 37, 1941–1952. [Google Scholar] [CrossRef] [Green Version]
- De Vries, S.; Tepper, M.; Otten, B.; Mulder, T. Recovery of Motor Imagery Ability in Stroke Patients. Rehabil. Res. Pract. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Nemr, A.; Abdelazeim, F. Relationship of cognitive functions and gross motor abilities in children with spastic diplegic cerebral palsy. Appl. Neuropsychol. Child. 2018, 7, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Liang, X.; Lu, S.; Wang, Z. Infant motor and cognitive abilities and subsequent executive function. Infant Behav. Dev. 2017, 49, 204–213. [Google Scholar] [CrossRef]
- Cohen, J.A.; Verghese, J.; Zwerling, J.L. Cognition and gait in older people. Maturitas 2016, 93, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Morales-Osorio, M.A.; Mejía Mejia, J. Imaginería motora graduada en el síndrome de miembro fantasma con dolor. Rev. Soc. Esp. Dolor 2012, 19, 209–216. [Google Scholar]
- Wolf, T.J.; Polatajko, H.; Baum, C.; Rios, J.; Cirone, D.; Doherty, M.; McEwen, S. Combined Cognitive-Strategy and Task-Specific Training Affects Cognition and Upper-Extremity Function in Subacute Stroke: An Exploratory Randomized Controlled Trial. Am. J. Occup. Ther. 2016, 70, 7002290010p1–7002290010p10. [Google Scholar] [CrossRef] [Green Version]
- Belda-Lois, J.M.; Mena-Del Horno, S.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabil. 2011, 8, 66. [Google Scholar] [CrossRef] [Green Version]
Evaluations | Group 1 Poor Ability to Visualize Group | Group 2 Better Ability to Visualize Group | Sig ** | ||
---|---|---|---|---|---|
Variables | Average (SD *) | CI 95% | Average (SD *) | CI 95% | |
Age | 62.21 (7.73) | 58.48–65.94 | 69.90 (10.41) | 65.02–74.78 | 0.13 t |
Months since injury | 9.11 (10.94) | 3.83–14.38 | 6.00 (7.26) | 3.30–10.10 | 0.412 Z |
CEMIMA | 31.73 (11.66) | 26.11–37.36 | 60.20 (7.17) | 56.84–63.55 | 0.000 t |
BI | 53.16 (35.28) | 36.15–70.16 | 82.00 (30.49) | 67.73–96.27 | 0.005 Z |
IADL | 3.16 (2.98) | 1.72–4.60 | 4.40 (2.60) | 3.18–5.62 | 0.125 Z |
ABILHAND | 36.95 (59.07) | 8.48–65.42 | 139.55 (43.71) | 119.09–160.01 | 0.000 Z |
FMA-UE | 26.42 (20.55) | 16.51–36.33 | 55.70 (15.74) | 48.33–63.07 | 0.000 Z |
FMA-UE Arm | 13.84 (11.27) | 8.41–19.27 | 30.15 (8.71) | 26.07–34.23 | 0.000 Z |
FMA-UE wrist | 3.11 (3.97) | 1.19–5.02 | 8.45 (2.92) | 7.08–9.82 | 0.000 Z |
FMA-UE hand | 5.42 (5.43) | 2.80–8.04 | 12.10 (3.89) | 10.28–13.92 | 0.000 Z |
FMA-UE sensitive | 7.32 (4.04) | 5.37–9.26 | 10.15 (2.88) | 8.80–11.50 | 0.014 Z |
FMA-UE coordination | 4.00 (1.29) | 3.3820134.62 | 4.95 (1.39) | 4.30–5.60 | 0.023 Z |
FMA-UE Pain | 20.47 (4.33) | 18.38–22.56 | 22.75 (2.59) | 21.54–23.96 | 0.034 Z |
FMA-UE Mvt. Pas | 21.9 (2.29) | 20.68–22.90 | 23.10 (1.61) | 22.34–23.86 | 0.008 Z |
JHFT | 671.37 (313.63) | 520.21–822.54 | 210.13 (236.65) | 99.37–320.89 | 0.001 Z |
9-HPT | 102.74 (35.53) | 85.62–119.87 | 61.41 (40.45) | 42.47–80.34 | 0.005 Z |
Dynamometry | 4.25 (6.45) | 1.14–7.36 | 17.32 (11.48) | 11.54–22.18 | 0.000 t |
Zoo map test | 1.47 (1.32) | 0.79–2.15 | 1.58 (1.64) | 0.79–2.37 | 0.935 Z |
Block design | 7.42 (3.30) | 5.83–9.01 | 9.55 (3.22) | 8.04–11.06 | 0.049 t |
Digit span | 10.56 (3.11) | 8.90–12.22 | 10.15 (2.34) | 9.05–11.25 | 0.700 Z |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.CEMIMA | -- | ||||||||||||
2.FMA-UE | 0.74 ** | -- | |||||||||||
3. 9-HPT | -0.58 ** | -0.84 ** | -- | ||||||||||
4.JHFT | -0.71 ** | -0.94 ** | 0.87 ** | -- | |||||||||
5. Dynamo | 0.65 ** | 0.81 ** | 0.80 ** | −0.77 ** | -- | ||||||||
6. ABILHAND | 0.77 ** | 0.94 ** | 0.80 ** | −0.97 ** | 0.77 ** | -- | |||||||
7. Block D | 0.54 ** | 0.43 ** | −0.34 * | −0.41 * | 0.37 * | 0.43 ** | -- | ||||||
8. Digitos | −0.48 | -0.90 | 0.83 | 0.59 | −0.10 | −0.11 | 0.36 * | -- | |||||
9. Zoo Map | 0.18 | 0.28 | −0.32 * | −0.24 | 0.33 * | 0.18 | 0.20 | 0.32 | -- | ||||
10. Age | 0.25 | 0.23 | −0.16 | −0.34 * | 0.12 | 0.34 * | −0.13 | 0.10 | −0.13 | -- | |||
11. M.S.Inj | −0.35 * | −0.27 | 0.26 | 0.33 * | −0.25 | 0.34 * | −0.42 ** | 0.02 | −0.02 | −0.27 | -- | ||
12. IADL | 0.34 * | 0.55 ** | −0.46 * | −041 * | 0.45 * | 0.41 ** | 0.16 | −0.09 | 0.36 * | −0.35 * | 0.28 | -- | |
13. BI | 0.47 ** | 0.62 ** | −0.55 ** | −0.48 ** | 0.56 ** | 0.52 ** | 0.17 | −0.21 | 0.25 | −0.46 | 0.18 | 0.81 ** | -- |
Participants | Time After Injury | Total | ||
---|---|---|---|---|
Group | Counts | < 6m | > 6m | |
Lower | Count | 10 | 9 | 19 |
% within row | 52.632 % | 47.368 % | 100 % | |
% within column | 40.000 % | 64.286 % | 48.718 % | |
% of total | 25.641 % | 23.077 % | 48.718 % | |
Higher | Count | 15 | 5 | 20 |
% within row | 75 % | 25 % | 100 % | |
% within column | 60 % | 35.714 % | 51.282 % | |
% of total | 38.462 % | 12.821 % | 51.282 % | |
Total | Count | 25 | 14 | 39 |
% within row | 64.103 % | 35.897 % | 100 % | |
% within column | 100 % | 100 % | 100 % | |
% of total | 64.103 % | 35.897 % | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poveda-García, A.; Moret-Tatay, C.; Gómez-Martínez, M. The Association between Mental Motor Imagery and Real Movement in Stroke. Healthcare 2021, 9, 1568. https://doi.org/10.3390/healthcare9111568
Poveda-García A, Moret-Tatay C, Gómez-Martínez M. The Association between Mental Motor Imagery and Real Movement in Stroke. Healthcare. 2021; 9(11):1568. https://doi.org/10.3390/healthcare9111568
Chicago/Turabian StylePoveda-García, Ana, Carmen Moret-Tatay, and Miguel Gómez-Martínez. 2021. "The Association between Mental Motor Imagery and Real Movement in Stroke" Healthcare 9, no. 11: 1568. https://doi.org/10.3390/healthcare9111568
APA StylePoveda-García, A., Moret-Tatay, C., & Gómez-Martínez, M. (2021). The Association between Mental Motor Imagery and Real Movement in Stroke. Healthcare, 9(11), 1568. https://doi.org/10.3390/healthcare9111568