Mood and Metabolic Health Status of Elderly Osteoporotic Patients in Korea: A Cross-Sectional Study of a Nationally Representative Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Ethical Approval
2.3. Health Interview Questionnaire and Definition of Chronic Illness
2.4. Statistical Analysis
3. Results
3.1. Overall Characteristics of Total Subjects with or without Osteoporosis
3.2. Crosstabulation Tables for Osteoporosis Frequency by Comorbid Diseases
3.3. Logistic Regression Analysis of Comorbid Diseases with Osteoporosis
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hui, S.L.; Slemenda, C. W.; Johnston Jr, C. C. Age and bone mass as predictors of fracture in a prospective study. J. Clin. Investig. 1988, 81, 1804–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manolagas, S.C.; Parfitt, A.M. What old means to bone. Trends Endocrinol. Metab. 2010, 21, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, C.J.; van der Meulen, M.C. Understanding Bone Strength Is Not Enough. J. Bone Miner. Res. 2017, 32, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.K.; Chin, K.-Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS ONE 2018, 13, e0192416. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.K.; Chin, K.-Y.; Suhaimi, F.H.; Ahmad, F.; Soelaiman, I.N. The Relationship between Metabolic Syndrome and Osteoporosis: A Review. Nutrients 2016, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.S.; Vilaca, T. Obesity, Type 2 Diabetes and Bone in Adults. Calcif. Tissue Int. 2017, 100, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Von Mühlen, D.; Safii, S.; Jassal, S.K.; Svartberg, J.; Barrett-Connor, E. Associations between the metabolic syndrome and bone health in older men and women: The Rancho Bernardo Study. Osteoporos. Int. 2007, 18, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Hwang, D.-K.; Choi, H. The relationship between low bone mass and metabolic syndrome in Korean women. Osteoporos. Int. 2009, 21, 425–431. [Google Scholar] [CrossRef]
- Kim, H.Y.; Choe, J.; Kim, H.K.; Bae, S.J.; Kim, B.J.; Lee, S.H.; Koh, J.-M.; Han, K.O.; Park, H.M.; Kim, G.S. Negative Association between Metabolic Syndrome and Bone Mineral Density in Koreans, Especially in Men. Calcif. Tissue Int. 2010, 86, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Lin, H.-H.; Huang, C.-Y.; Hwang, L.-C. Association between metabolic syndrome and osteoporosis in Taiwanese middle-aged and elderly participants. Arch. Osteoporos. 2018, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Zhang, X.-M.; Yuan, N.; Yu, X.-F.; Ji, L.-N. Associations of Bone Mineral Density and Bone Metabolism Indices with Urine Albumin to Creatinine Ratio in Chinese Patients with Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes 2018, 6, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.Y.; Kim, H.Y.; Lee, J.M.; Lee, D.H.; Cho, C.G. Association between Bone Mineral Density and Albuminuria: Cross-Sectional Analysis of Data from the 2011 Korea National Health and Nutrition Ex-amination Survey V-2. Endocrinol. Metab. 2018, 33, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.Y.; Chen, F.P.; Chen, L.W.; Kuo, S.F.; Chien, R.N. Association between metabolic syndrome and bone fracture risk: A community-based study using a fracture risk assessment tool. Medicine 2017, 96, e9180. [Google Scholar] [CrossRef]
- Park, S.J.; Roh, S.; Hwang, J.; Kim, H.A.; Kim, S.; Lee, T.K.; Kang, S.H.; Ha, Y.J.; Jang, J.W.; Park, S. Association between depression and metabolic syndrome in korean women: Results from the korean national health and nutrition examination survey (2007–2013). J. Affect. Disord. 2016, 205, 393–399. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Asia-Pacific Perspective: Redefining obesity and Its Treatment; Health Communications Australia: Sydney, Australia, 2000. [Google Scholar]
- Who, E.C. Appropriate body-mass index for Asian populations and its implications for policy and in-tervention strategies. Lancet 2004, 363, 157. [Google Scholar]
- Lee, S.Y.; Park, H.S.; Kim, D.Y.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; Oh, S.J.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pr. 2007, 75, 72–80. [Google Scholar] [CrossRef]
- Soltani, Z.; Rasheed, K.; Kapusta, D.R.; Reisin, E. Potential Role of Uric Acid in Metabolic Syndrome, Hypertension, Kidney Injury, and Cardiovascular Diseases: Is It Time for Reappraisal? Curr. Hypertens. Rep. 2013, 15, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y. The Korea National Health and Nutrition Examination Survey (KNHANES): Current Status and Challenges. Epidemiol. Health 2014, 36, e2014002. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.J.; Kim, H.C.; Oh, S.M.; Choi, D.P.; Cho, J.; Suh, I. Factors Associated with a Low-sodium Diet: The Fourth Korean National Health and Nutrition Examination Survey. Epidemiol. Health 2013, 35, e2013005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-H.; Nam, G.-E.; Cho, K.-H.; Choi, Y.S.; Kim, S.M.; Han, B.-D.; Han, K.D.; Lee, K.-S.; Park, C.-H.; Kim, D. Low bone mineral density is associated with dyslipidemia in South Korean men: The 2008–2010 Korean National Health and Nutrition Examination Survey. Endocr. J. 2013, 60, 1179–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Huang, J.; Fu, Z.; Liang, Y.; Wu, H.; Xu, L.; Sun, Y.; Lee, W.Y.; Wu, T.; Qin, L.; et al. The Effects of Atorvastatin on the Prevention of Osteoporosis and Dyslipidemia in the High-Fat-Fed Ovariectomized Rats. Calcif. Tissue Int. 2015, 96, 541–551. [Google Scholar] [CrossRef] [PubMed]
- A Grasser, W.; Baumann, A.P.; Petras, S.F.; Harwood, H.J.; Devalaraja, R.; Renkiewicz, R.; Baragi, V.; Thompson, D.D.; Paraklar, V.M. Regulation of osteoclast differentiation by statins. J. Musculoskelet. Neuronal Interact. 2003, 3, 53–62. [Google Scholar] [PubMed]
- Chen, P.-Y.; Sun, J.-S.; Tsuang, Y.-H.; Chen, M.-H.; Weng, P.-W.; Lin, F.-H. Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr. Res. 2010, 30, 191–199. [Google Scholar] [CrossRef]
- Maeda, T.; Matsunuma, A.; Kawane, T.; Horiuchi, N. Simvastatin Promotes Osteoblast Differentiation and Mineralization in MC3T3-E1 Cells. Biochem. Biophys. Res. Commun. 2001, 280, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Majima, T.; Shimatsu, A.; Komatsu, Y.; Satoh, N.; Fukao, A.; Ninomiya, K.; Matsumura, T.; Nakao, K. Short-term Effects of Pitavastatin on Biochemical Markers of Bone Turnover in Patients with Hypercholesterolemia. Intern. Med. 2006, 46, 1967–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majima, T.; Shimatsu, A.; Komatsu, Y.; Satoh, N.; Fukao, A.; Ninomiya, K.; Matsumura, T.; Nakao, K. Increased bone turnover in patients with hypercholesterolemia. Endocr. J. 2008, 55, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alay, I.; Kaya, C.; Cengiz, H.; Yildiz, S.; Ekin, M.; Yasar, L. The relation of body mass index, menopausal symptoms, and lipid profile with bone mineral density in postmenopausal women. Taiwan. J. Obstet. Gynecol. 2020, 59, 61–66. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Sugimoto, T.; Yano, S.; Yamauchi, M.; Sowa, H.; Chen, Q.; Chihara, K. Plasma Lipids and Osteoporosis in Postmenopausal Women. Endocr. J. 2002, 49, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadiri-Anari, A.; Mortezaii-Shoroki, Z.; Modarresi, M.; Dehghan, A. Association of lipid profile with bone mineral density in postmenopausal women in Yazd province. Int. J. Reprod. Biomed. 2016, 14, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Aung, M.; Amin, S.; Gulraiz, A.; Gandhi, F.R.; Escobar, J.A.P.; Malik, B.H. The Future of Metformin in the Prevention of Diabetes-Related Osteoporosis. Cureus 2020, 12, 10412. [Google Scholar] [CrossRef]
- Vestergaard, P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos. Int. 2007, 18, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Carraro, S.; Bano, G.; Trevisan, C.; Solmi, M.; Luchini, C.; Manzato, E.; Caccialanza, R.; Sergi, G.; Nicetto, D.; et al. Hyperuricemia protects against low bone mineral density, osteoporosis and fractures: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2016, 46, 920–930. [Google Scholar] [CrossRef]
- Dong, X.W.; Tian, H.Y.; He, J.; Wang, C.; Qiu, R.; Chen, Y.M. Elevated Serum Uric Acid Is As-sociated with Greater Bone Mineral Density and Skeletal Muscle Mass in Middle-Aged and Older Adults. PLoS ONE 2016, 11, e0154692. [Google Scholar]
- Bilic-Curcic, I.; Makarovic, S.; Mihaljevic, I.; Franceschi, M.; Jukic, T. Bone Mineral Density in Rela-tion to Metabolic Syndrome Components in Postmenopausal Women with Diabetes Mellitus Type 2. Acta Clin. Croat. 2017, 56, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meshkani, R.; Zargari, M.; Larijani, B. The relationship between uric acid and metabolic syndrome in normal glucose tolerance and normal fasting glucose subjects. Acta Diabetol. 2011, 48, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Robles-Cervantes, J.A.; Ramos-Zavala, M.G.; González-Ortiz, M.; Martínez-Abundis, E.; Valencia-Sandoval, C.; Torres-Chávez, A.; Espinel-Bermúdez, C.; Santiago-Hernández, N.J.; Hernández-González, S.O. Relationship between Serum Concentration of Uric Acid and Insulin Secretion among Adults with Type 2 Diabetes Mellitus. Int. J. Endocrinol. 2011, 2011, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korea Health Statistics 2017. Korea National Health and Nutrition Examination Survey; (KNHANES Ⅶ-2); Korea Centers for Disease Control and Prevention: 2017. Available online: https://knhanes.cdc.go.kr/knhanes/eng/index.do (accessed on 11 January 2021).
- Rhee, E.-J.; Kim, H.-C.; Kim, J.-H.; Lee, E.-Y.; Kim, B.-J.; Kim, E.-M.; Song, Y.; Lim, J.-H.; Kim, H.-J.; Choi, S.; et al. 2018 Guidelines for the management of dyslipidemia. Korean J. Intern. Med. 2019, 34, 723–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Total (n = 4060) | p Value 3 | Male (n = 1755, Mean ± SD | Female (n = 2305, Mean ± SD) | p Value 5 | ||||
---|---|---|---|---|---|---|---|---|---|
N-OS 1 (n = 3199) | OS 2 (n = 861) | N-OS (n = 1702) | OS (n = 53) | p Value 4 | N-OS (n = 1497) | OS (n = 808) | |||
Age | 69.1 ± 0.1 | 71.3 ± 0.3 | 0.000 | 68.8 ± 0.2 | 71.1 ± 0.9 | 0.138 | 69.5 ± 0.3 | 71.3 ± 0.3 | 0.000 |
Height, cm | 160.0 ± 0.6 | 152..7 ± 0.3 | 0.000 | 166.2 ± 0.2 | 164.3 ± 1.3 | 0.651 | 152.8 ± 0.2 | 151.9 ± 0.3 | 0.586 |
Weight, kg | 62.19 ± 0.4 | 56.3 ± 0.4 | 0.000 | 66.0 ± 0.3 | 62.1 ± 1.1 | 0.817 | 57.6 ± 0.3 | 55.9 ± 0.3 | 0.435 |
BMI (kg/m2) | 24.2 ± 0.7 | 24.1 ± 0.1 | 0.575 | 23.8 ± 0.7 | 23.0 ± 0.3 | 0.639 | 24.6 ± 0.1 | 24.2 ± 0.1 | 0.777 |
Obesity (BMI ≥ 25) (%) | 38.5 ± 1.0 | 37.4 ± 2.0 | 0.656 | 34.9 ± 1.3 | 22.2 ± 5.6 | 0.043 | 42.7 ± 1.6 | 38.5 ± 2.1 | 0.045 |
Waist circumference (cm) | 85.4 ± 0.2 | 83.6 ± 0.4 | 0.000 | 86.5 ± 0.2 | 84.8 ± 1.3 | 0.426 | 84.0 ± 0.3 | 83.6 ± 0.4 | 0.081 |
Abdominal obesity (%) | 28.9 ± 0.9 | 24.7 ± 1.8 | 0.034 | 33.4 ± 1.3 | 32.8 ± 6.6 | 0.139 | 23.7 ± 1.2 | 24.1 ± 1.9 | 0.183 |
Hyperuricemia (%) | 11.9 ± 0.7 | 9.0 ± 1.1 | 0.024 | 13.4 ± 1.0 | 5.2 ± 2.9 | 0.073 | 10.1 ± 0.9 | 9.3 ± 1.2 | 0.668 |
Dyslipidemia (%) | 30.3 ± 1.2 | 42.6 ± 2.2 | 0.000 | 25.0 ± 1.3 | 25.5 ± 6.8 | 0.907 | 36.5 ± 1.6 | 43.8 ± 2.3 | 0.005 |
Type 2 DM 6 (%) | 20.1 ± 1.0 | 20.2 ± 1.6 | 0.981 | 20.1 ± 1.4 | 20.0 ± 6.1 | 0.556 | 19.9 ± 1.4 | 20.2 ± 1.6 | 0.842 |
Depression (%) | 4.6 ± 0.4 | 11.4 ± 1.1 | 0.000 | 2.6 ± 0.4 | 1.6 ± 1.2 | 0.577 | 7.1 ± 0.6 | 12.0 ± 1.2 | 0.001 |
Cormorbid Diseases | Male (Unweighted Count) | X2 (p Value) | Female (Unweighted Count) | X2 (p Value) | |||
N-OS | OS | N-OS | OS | ||||
Obesity | Undiagnosed | 1116 | 40 | 3.448 (0.039) | 846 | 503 | 3.801 (0.123) |
Diagnosed | 584 | 13 | 650 | 300 | |||
Abdominal obesity | Undiagnosed | 1276 | 37 | 0.007 (0.934) | 1128 | 617 | 0.04 (0.858) |
Diagnosed | 570 | 16 | 365 | 188 | |||
Hyperuricemia | Undiagnosed | 1406 | 45 | 2.666 (0.070) | 1248 | 690 | 0.367 (0.590) |
Diagnosed | 226 | 4 | 146 | 62 | |||
Dyslipidemia | Undiagnosed | 1297 | 42 | 0.009 (0.929) | 941 | 458 | 11.347 (0.001) |
Diagnosed | 405 | 11 | 556 | 350 | |||
Type 2 DM | Undiagnosed | 1333 | 42 | 0.003 (0.955) | 1195 | 646 | 0.025 (0.881) |
Diagnosed | 369 | 11 | 302 | 162 | |||
Depression | Undiagnosed | 1655 | 51 | 0.165 (0.539) | 1384 | 710 | 15.747 (0.000) |
Diagnosed | 47 | 2 | 113 | 97 |
Cormorbid Diseases | Univariate OR (95% CI) | p Value | Age Adjusted OR (95% CI) | p Value |
---|---|---|---|---|
Obesity (BMI ≥ 25) (%) | 0.96(0.79–1.16) | 0.656 | 0.99 (0.81–1.20) | 0.880 |
Abdominal obesity (%) | 0.80(0.66–0.98) | 0.034 | 0.80 (0.65–0.97) | 0.024 |
Hyperuricemia (%) | 0.73(0.56–0.96) | 0.024 | 0.68 (0.49–0.92) | 0.013 |
Dyslipidemia (%) | 1.71(1.47–1.99) | <0.001 | 1.84 (1.57–2.15) | <0.001 |
Type 2 DM (%) | 1.00(0.82–1.23) | 0.981 | 0.92 (0.78–1.13) | 0.442 |
Depression (%) | 2.63(1.96–3.54) | <0.001 | 2.56 (1.89–3.47) | <0.001 |
Cormorbid Diseases | Univariate OR (95% CI) | p Value | Age Adjusted OR (95% CI) | p Value |
---|---|---|---|---|
Obesity (BMI ≥ 25) (%) | 0.53(0.29–0.98) | 0.041 | 0.59 (0.32–1.09) | 0.091 |
Abdominal obesity (%) | 0.98(0.54–1.78) | 0.934 | 1.02 (0.56–1.86) | 0.942 |
Hyperuricemia (%) | 0.36(0.11–1.14) | 0.082 | 0.35 (0.11–1.10) | 0.073 |
Dyslipidemia (%) | 1.03(0.52–2.05) | 0.929 | 1.09 (0.56–2.15) | 0.946 |
Type 2 DM (%) | 0.98(0.47–2.04) | 0.955 | 0.98 (0.47–2.03) | 0.795 |
Depression (%) | 0.64(0.15–2.72) | 0.542 | 0.62 (0.15–2.58) | 0.512 |
Cormorbid Diseases | Univariate OR (95% CI) | p Value | Age Adjusted OR (95% CI) | p Value |
---|---|---|---|---|
Obesity (BMI ≥ 25) (%) | 0.84(0.67–1.05) | 0.122 | 0.83 (0.67–1.04) | 0.105 |
Abdominal obesity (%) | 1.02(0.81–1.28) | 0.858 | 0.97 (0.77–1.21) | 0.753 |
Hyperuricemia (%) | 0.91(0.65–1.28) | 0.590 | 0.81 (0.56–1.18) | 0.274 |
Dyslipidemia (%) | 1.35(1.14–1.61) | 0.001 | 1.04 (1.03–1.06) | <0.001 |
Type 2 DM (%) | 1.02(0.81–1.28) | 0.881 | 0.91 (0.72–1.14) | 0.398 |
Depression (%) | 1.79(1.31–2.46) | <0.001 | 1.76 (1.28–2.40) | <0.001 |
High Risk Group 1 Frequency (Mean ± SD) | General Group 2 Frequency (Mean ± SD) | X2 (p Value2) | Odds Ratio (95% CI) | |
Non-osteoporosis | 80 | 3119 | 218.011 (0.000) | 13.330 (8.580–20.710) |
Osteoporosis | 56 | 804 |
Age Adjusted OR (95% CI) | p Value for Trend | |
---|---|---|
Without dyslipidemia and depression | 1.0 | <0.001 |
With dyslipidemia or depression | 1.51(1.27–1.80) | |
With dyslipidemia and depression | 1.98(1.35–2.90) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, H.C.; Jung, G.-H.; Ok, S.-H.; Park, J.E.; Baek, J.C. Mood and Metabolic Health Status of Elderly Osteoporotic Patients in Korea: A Cross-Sectional Study of a Nationally Representative Sample. Healthcare 2021, 9, 77. https://doi.org/10.3390/healthcare9010077
Jo HC, Jung G-H, Ok S-H, Park JE, Baek JC. Mood and Metabolic Health Status of Elderly Osteoporotic Patients in Korea: A Cross-Sectional Study of a Nationally Representative Sample. Healthcare. 2021; 9(1):77. https://doi.org/10.3390/healthcare9010077
Chicago/Turabian StyleJo, Hyen Chul, Gu-Hee Jung, Seong-Ho Ok, Ji Eun Park, and Jong Chul Baek. 2021. "Mood and Metabolic Health Status of Elderly Osteoporotic Patients in Korea: A Cross-Sectional Study of a Nationally Representative Sample" Healthcare 9, no. 1: 77. https://doi.org/10.3390/healthcare9010077
APA StyleJo, H. C., Jung, G.-H., Ok, S.-H., Park, J. E., & Baek, J. C. (2021). Mood and Metabolic Health Status of Elderly Osteoporotic Patients in Korea: A Cross-Sectional Study of a Nationally Representative Sample. Healthcare, 9(1), 77. https://doi.org/10.3390/healthcare9010077