The Prevalence of Metabolic Syndrome and Health-Related Behavior Changes: The Korea National Health Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection and Ethical Considerations
2.3. Measuring Health-Related Behavior and Metabolic Syndrome
2.3.1. General Characteristics
2.3.2. Health-Related Behavior
2.3.3. Health-Related Behavior Change
2.3.4. Metabolic Syndrome
2.4. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Changes in Metabolic Syndrome Prevalence
3.3. Changes in Health-Related Behaviors
3.4. Health-Related Behavior Changes and Metabolic Syndrome Prevalence
3.5. The Factors Influencing the Risk of Metabolic Syndrome Prevalence
4. Discussion
4.1. Metabolic Syndrome Prevalence
4.2. Association between Health-Related Behavior Changes and Metabolic Syndrome Prevalence
4.3. The Risk of Metabolic Syndrome Prevalence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pothiwala, P.; Jain, S.K.; Yaturu, S. Metabolic syndrome and cancer. Metab. Syndr. Relat. Disord. 2009, 7, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, K.; Liu, J.; Ning, G. Active smoking and risk of metabolic syndrome: A meta-analysis of prospective studies. PLoS ONE 2012, 7, e47791. [Google Scholar] [CrossRef] [Green Version]
- Alkerwi, A.; Boutsen, M.; Vaillant, M.; Barre, J.; Lair, M.L.; Albert, A.; Guillaume, M.; Dramaix, M. Alcohol consumption and the prevalence of metabolic syndrome: A meta-analysis of observational studies. Atherosclerosis 2009, 204, 624–635. [Google Scholar] [CrossRef]
- Freiberg, M.S.; Cabral, H.J.; Heeren, T.C.; Vasan, R.S.; Ellison, R.C. Alcohol consumption and the prevalence of the metabolic syndrome in the U.S. A cross-sectional analysis of data from the Third National Health and Nutrition Examination Survey. Diabetes Care 2004, 27, 2954–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.C.; Ebrahim, S.; Barros, H. Alcohol intake, smoking, sleeping hours, physical activity and the metabolic syndrome. Prev. Med. 2007, 44, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Kohl, H.W.; Mokdad, A.H.; Ajani, U.A. Sedentary behavior, physical activity, and the metabolic syndrome among U.S. adults. Obes. Res. 2005, 13, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Cleeman, J.I. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). J. Am. Med. Assoc. 2001, 285, 2486–2497. [Google Scholar]
- Yoo, S.; Kim, H.; Cho, H.I. Improvements in the metabolic syndrome and stages of change for lifestyle behaviors in korean older adults. Osong Public Heal. Res. Perspect. 2012, 3, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Lim, S.; Shin, H.; Song, J.H.; Kwak, S.H.; Kang, S.M.; Yoon, J.W.; Choi, S.H.; Cho, S.I.; Park, K.S.; Lee, H.K.; et al. Increasing prevalence of metabolic syndrome in Korea: The Korean National Health and Nutrition Examination Survey for 1998-2007. Diabetes Care 2011, 34, 1323–1328. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.Y.; Lee, J.Y.; Kim, J.E.; Lee, S.; Youn, H.; Kim, H.; Lee, J.; Park, M.S.; Huh, S. Cause-of-death statistics in the Republic of Korea, 2014. J. Korean Med. Assoc. 2016, 59, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.E.; West, R.; Brown, J. If at first you don’t succeed, when should you try again? A prospective study of failed quit attempts and subsequent smoking cessation. Addict. Behav. 2020, 106, 106366. [Google Scholar] [CrossRef] [PubMed]
- Kwasnicka, D.; Dombrowski, S.U.; White, M.; Sniehotta, F.F. ‘It’s not a diet, it’s a lifestyle’: A longitudinal, data-prompted interview study of weight loss maintenance. Psychol. Health 2019, 34, 963–982. [Google Scholar] [CrossRef]
- Nanri, A.; Tomita, K.; Matsushita, Y.; Ichikawa, F.; Yamamoto, M.; Nagafuchi, Y.; Kakumoto, Y.; Mizoue, T. Effect of six months lifestyle intervention in Japanese men with metabolic syndrome: Randomized controlled trial. J. Occup. Health 2012, 54, 215–222. [Google Scholar] [CrossRef]
- Bo, S.; Ciccone, G.; Baldi, C.; Benini, L.; Dusio, F.; Forastiere, G.; Lucia, C.; Nuti, C.; Durazzo, M.; Cassader, M.; et al. Effectiveness of a lifestyle intervention on metabolic syndrome. A randomized controlled trial. J. Gen. Intern. Med. 2007, 22, 1695–1703. [Google Scholar] [CrossRef] [Green Version]
- Oh, E.G.; Bang, S.Y.; Hyun, S.S.; Kim, S.H.; Chu, S.H.; Jeon, J.Y.; Im, J.A.; Lee, M.K.; Lee, J.E. Effects of a 6-month lifestyle modification intervention on the cardiometabolic risk factors and health-related qualities of life in women with metabolic syndrome. Metabolism 2010, 59, 1035–1043. [Google Scholar] [CrossRef]
- Christian, J.G.; Byers, T.E.; Christian, K.K.; Goldstein, M.G.; Bock, B.C.; Prioreschi, B.; Bessesen, D.H. A computer support program that helps clinicians provide patients with metabolic syndrome tailored counseling to promote weight loss. J. Am. Diet. Assoc. 2011, 111, 75–83. [Google Scholar] [CrossRef]
- Schoenborn, C.A.; Adams, P.F.; Peregoy, J.A. Health behaviors of adults: United States, 2008–2010. Vital Health Stat. 2013, 10, 1–184. [Google Scholar]
- Cho, S.M.J.; Lee, H.; Pyun, W.B.; Kim, H.C. Differential control rate of systolic and diastolic blood pressure among Korean adults with hypertension: The Sixth Korean national health and nutrition examination survey, 2013–2015 (KNHANES VI). Korean Circ. J. 2019, 49, 1035–1048. [Google Scholar] [CrossRef] [Green Version]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Health 2009, 6, 790–804. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.K.; Lee, W.Y.; Kang, J.H.; Kang, J.H.; Kim, B.T.; Kim, S.M.; Kim, E.M.; Suh, S.H.; Shin, H.J.; Lee, K.R.; et al. 2014 clinical practice guidelines for overweight and obesity in Korea. Endocrinol. Metab. 2014, 29, 405–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, J.H.; Lee, J.H.; Moon, J.S.; Sung, K.C.; Kim, J.Y.; Kang, D.R. Metabolic Syndrome Severity Score in Korean Adults: Analysis of the 2010–2015 Korea National Health and Nutrition Examination Survey. J. Korean Med. Sci. 2019, 34, e48. [Google Scholar] [CrossRef]
- Marcotte-Chénard, A.; Deshayes, T.A.; Ghachem, A.; Brochu, M. Prevalence of the metabolic syndrome between 1999 and 2014 in the United States adult population and the impact of the 2007–2008 recession: An NHANES study. Appl. Physiol. Nutr. Metab. 2019, 44, 861–868. [Google Scholar] [CrossRef]
- Oh, J.Y.; Hong, Y.S.; Sung, Y.A.; Barrett-Connor, E. Prevalence and factor analysis of metabolic syndrome in an urban Korean population. Diabetes Care 2004, 27, 2027–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic syndrome prevalence by race/ ethnicity and sex in the united states, national health and nutrition examination survey, 1988–2012. Prev. Chronic Dis. 2017, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mankowski, R.T.; Aubertin-leheudre, M.; Beavers, D.P.; Buford, T.W.; Church, T.; Glynn, N.W.; King, A.C.; Liu, C.; Manini, T.M.; Marsh, A.P.; et al. Sedentary time is associated with the metabolic syndrome in older adults with mobility limitations—The LIFE Study. Exp. Gerontol. 2015, 70, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.S.; Oh, S.W.; Baik, H.W.; Park, H.S.; Kim, W.Y. Alcohol consumption and the metabolic syndrome in Korean adults: The 1998 Korean National Health and Nutrition Examination Survey. Am. J. Clin. Nutr. 2004, 80, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H. Smoking-related differential influence of alcohol consumption on the metabolic syndrome. Subst. Use Misuse 2019, 54, 2351–2358. [Google Scholar] [CrossRef]
- Chinn, S.; Jarvis, D.; Melotti, R.; Luczynska, C.; Ackermann-Liebrich, U.; Antó, J.M.; Cerveri, I.; De Marco, R.; Gislason, T.; Heinrich, J.; et al. Smoking cessation, lung function, and weight gain: A follow-up study. Lancet 2005, 365, 1629–1635. [Google Scholar] [CrossRef]
- Yoon, C.; Goh, E.; Park, S.M.; Cho, B. Effects of smoking cessation and weight gain on cardiovascular disease risk factors in Asian male population. Atherosclerosis 2010, 208, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Reas, D.L.; Nygård, J.F.; Sørensen, T. Do quitters have anything to lose? Changes in body mass index for daily, never, and former smokers over an 11-year period (1990–2001). Scand. J. Public Health 2009, 37, 774–777. [Google Scholar] [CrossRef] [PubMed]
- Suliga, E.; Kozieł, D.; Ciesla, E.; Rebak, D.; Głuszek-Osuch, M.; Gluzek, S. Consumption of alcoholic beverages and the prevalence of metabolic syndrome and its components. Nutrients 2019, 11, 2764. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
Categories | n | % | ||
---|---|---|---|---|
Total | 578,416 | 100.0 | ||
Social Economic | Sex | Male | 243,222 | 42.0 |
Female | 335,194 | 58.0 | ||
Age | 40–49 | 115,543 | 20.0 | |
50–59 | 229,769 | 39.7 | ||
60–69 | 153,016 | 26.5 | ||
≥70 | 80,088 | 13.8 | ||
Income | 1st (the lowest) | 96,228 | 16.6 | |
2nd | 82,501 | 14.3 | ||
3rd | 97,137 | 16.8 | ||
4th | 125,768 | 21.7 | ||
5th (the highest) | 176,782 | 30.6 | ||
Location | Metropolitan area | 276,215 | 47.8 | |
Small- to medium-sized cities | 230,053 | 39.8 | ||
Farming/fishery rural | 72,148 | 12.5 | ||
Health-Related Behavior | Smoking | Nonsmoking | 496,860 | 85.9 |
Smoking | 81,556 | 14.1 | ||
Drinking | Moderate | 514,111 | 88.9 | |
Heavy | 64,305 | 11.1 | ||
Physical activity | Passive | 338,302 | 58.5 | |
Active | 240,114 | 41.5 |
Categories | 2011 | 2013 | 2015 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | MetS | Normal | MetS | Normal | MetS | ||||||||
n | % | n | % | n | % | n | % | n | % | n | % | ||
Total | 413,480 | 71.5 | 164,936 | 28.5 | 413,079 | 71.4 | 165,337 | 28.6 | 394,967 | 68.3 | 183,449 | 31.7 | |
Sex | Male | 165,137 | 67.9 | 78,085 | 32.1 | 166,907 | 68.6 | 76,315 | 31.4 | 158,337 | 65.1 | 84,885 | 34.9 |
Female | 248,343 | 74.1 | 86,851 | 25.9 | 246,172 | 73.4 | 89,022 | 26.6 | 236,630 | 70.6 | 98,564 | 29.4 | |
χ2(p) | 2652.629(<0.001) | 1602.987(<0.001) | 1965.273(<0.001) | ||||||||||
Age | 40–49 | 167,810 | 80.9 | 39,596 | 19.1 | 127,035 | 81.6 | 28,642 | 18.4 | 90,919 | 78.7 | 24,624 | 21.3 |
50–59 | 144,630 | 71.2 | 58,398 | 28.8 | 164,291 | 73.4 | 59,517 | 26.6 | 165,057 | 71.8 | 64,712 | 28.2 | |
60–69 | 75,818 | 61.7 | 47,099 | 38.3 | 85,626 | 63.4 | 49,606 | 36.6 | 94,857 | 62.0 | 58,159 | 38.0 | |
≥70 | 25,222 | 56.0 | 19,843 | 44.0 | 36,127 | 56.8 | 27,572 | 43.2 | 44,134 | 55.1 | 35,954 | 44.9 | |
χ2(p) | 20160.172(<0.001) | 19,524.344(<0.001) | 16,332.791(<0.001) | ||||||||||
Income | 1st | 64,768 | 70.8 | 26,690 | 29.2 | 67,471 | 71.0 | 27,552 | 29.0 | 65,497 | 68.1 | 30,731 | 31.9 |
2nd | 59,963 | 71.7 | 23,650 | 28.3 | 58,114 | 71.8 | 22,782 | 28.2 | 56,757 | 68.8 | 25,744 | 31.2 | |
3rd | 72,478 | 70.9 | 29,726 | 29.1 | 71,186 | 71.0 | 29,057 | 29.0 | 65,924 | 67.9 | 31,213 | 32.1 | |
4th | 90,504 | 70.8 | 37,329 | 29.2 | 89,131 | 70.6 | 37,204 | 29.4 | 84,924 | 67.5 | 40,844 | 32.5 | |
5th | 125,767 | 72.6 | 47,541 | 27.4 | 127,177 | 72.3 | 48,742 | 27.7 | 121,865 | 68.9 | 54,917 | 31.1 | |
χ2(p) | 167.822(<0.001) | 135.421(<0.001) | 88.037(<0.001) | ||||||||||
Location | Metropolitan | 201,625 | 73.0 | 74,590 | 27.0 | 200,397 | 72.6 | 75,818 | 27.4 | 191,999 | 69.5 | 84,216 | 30.5 |
Cities | 163,145 | 70.9 | 66,908 | 29.1 | 163,726 | 71.2 | 66,327 | 28.8 | 156,277 | 67.9 | 73,776 | 32.1 | |
Rural | 48,710 | 67.5 | 23,438 | 32.5 | 48,956 | 67.9 | 23,192 | 32.1 | 46,691 | 64.7 | 25,457 | 35.3 | |
χ2(p) | 903.877(<0.001) | 629.403(<0.001) | 629.381(<0.001) | ||||||||||
Smoking | Nonsmoking | 341,941 | 72.0 | 133,245 | 28.0 | 346,140 | 71.8 | 136,162 | 28.2 | 341,310 | 68.7 | 155,550 | 31.3 |
Smoking | 71,539 | 69.3 | 31,691 | 30.7 | 66,939 | 69.6 | 29,175 | 30.4 | 53,657 | 65.8 | 27,899 | 34.2 | |
χ2(p) | 294.113(<0.001) | 176.929(<0.001) | 272.387(<0.001) | ||||||||||
Drinking | Moderate | 366,894 | 72.4 | 139,947 | 27.6 | 368,761 | 72.1 | 142,351 | 27.9 | 355,342 | 69.1 | 158,769 | 30.9 |
Heavy | 46,586 | 65.1 | 24,989 | 34.9 | 44,318 | 65.8 | 22,986 | 34.2 | 39,625 | 61.6 | 24,680 | 38.4 | |
χ2(p) | 1640.276(<0.001) | 1156.778(<0.001) | 1483.481(<0.001) | ||||||||||
Physical Activity | Passive | 255,738 | 71.1 | 104,152 | 28.9 | 247,393 | 70.7 | 102,523 | 29.3 | 227,167 | 67.1 | 111,135 | 32.9 |
Active | 157,742 | 72.2 | 60,784 | 27.8 | 165,686 | 72.5 | 62,814 | 27.5 | 167,800 | 69.9 | 72,314 | 30.1 | |
χ2(p) | 84.345(<0.001) | 221.745(<0.001) | 484.817(<0.001) |
Smoking | Continuous Nonsmoking | Short-Term Nonsmoking | Short-Term Smoking | Continuous Smoking | χ2 (p) | |||||
n | % | n | % | n | % | n | % | |||
Total | 457,133 | 79.0 | 39,727 | 6.9 | 18,544 | 3.2 | 63,012 | 10.9 | ||
Sex | Male | 140,397 | 57.7 | 31,925 | 13.1 | 14,444 | 5.9 | 56,456 | 23.2 | 116,272.686 (<0.001) |
Female | 316,736 | 94.5 | 7802 | 2.3 | 4100 | 1.2 | 6556 | 2.0 | ||
Age | 40–49 | 83,155 | 72.0 | 8646 | 7.5 | 5069 | 4.4 | 18,673 | 16.2 | 10,819.038 (<0.001) |
50–59 | 176,996 | 77.0 | 16,778 | 7.3 | 8171 | 3.6 | 27,824 | 12.1 | ||
60–69 | 126,100 | 82.4 | 10,222 | 6.7 | 3944 | 2.6 | 12,750 | 8.3 | ||
≥70 | 70,882 | 88.5 | 4081 | 5.1 | 1360 | 1.7 | 3765 | 4.7 | ||
Income | 1st | 75,379 | 78.3 | 6767 | 7.0 | 3311 | 3.4 | 10,771 | 11.2 | 2231.495 (<0.001) |
2nd | 62,150 | 75.3 | 6487 | 7.9 | 3062 | 3.7 | 10,802 | 13.1 | ||
3rd | 74,379 | 76.6 | 7282 | 7.5 | 3427 | 3.5 | 12,049 | 12.4 | ||
4th | 99,849 | 79.4 | 8763 | 7.0 | 3748 | 3.0 | 13,408 | 10.7 | ||
5th | 145,376 | 82.2 | 10,428 | 5.9 | 4996 | 2.8 | 15,982 | 9.0 | ||
Location | Metropolitan | 219,386 | 79.4 | 18,380 | 6.7 | 8662 | 3.1 | 29,787 | 10.8 | 68.201 (<0.001) |
Cities | 181,009 | 78.7 | 16,096 | 7.0 | 7556 | 3.3 | 25,392 | 11.0 | ||
Rural | 56,738 | 78.6 | 5251 | 7.3 | 2326 | 3.2 | 7833 | 10.9 | ||
Drinking | Continuous Moderate | Short-Term Moderate | Short-Term Heavy | Continuous Heavy | χ2 (p) | |||||
n | % | n | % | n | % | n | % | |||
Total | 465,147 | 80.4 | 48,964 | 8.5 | 37,460 | 6.5 | 26,845 | 4.6 | ||
Sex | Male | 152,110 | 62.5 | 37,409 | 15.4 | 29,872 | 12.3 | 23,831 | 9.8 | 86,283.507 (<0.001) |
Female | 313,037 | 93.4 | 11,555 | 3.4 | 7588 | 2.3 | 3014 | 0.9 | ||
Age | 40–49 | 83,584 | 72.3 | 11,722 | 10.1 | 11,048 | 9.6 | 9189 | 8.0 | 17,400.494 (<0.001) |
50–59 | 177,400 | 77.2 | 22,382 | 9.7 | 17,290 | 7.5 | 12,697 | 5.5 | ||
60–69 | 130,051 | 85.0 | 11,378 | 7.4 | 7341 | 4.8 | 4246 | 2.8 | ||
≥70 | 74,112 | 92.5 | 3482 | 4.3 | 1781 | 2.2 | 713 | 0.9 | ||
Income | 1st | 78,077 | 81.1 | 8120 | 8.4 | 5976 | 6.2 | 4055 | 4.2 | 817.730 (<0.001) |
2nd | 64,445 | 78.1 | 8022 | 9.7 | 5958 | 7.2 | 4076 | 4.9 | ||
3rd | 76,675 | 78.9 | 9020 | 9.3 | 6,746 | 6.9 | 4696 | 4.8 | ||
4th | 101,285 | 80.5 | 10,622 | 8.4 | 8165 | 6.5 | 5696 | 4.5 | ||
5th | 144,665 | 81.8 | 13,180 | 7.5 | 10,615 | 6.0 | 8322 | 4.7 | ||
Location | Metropolitan | 222,263 | 80.5 | 23,249 | 8.4 | 17,848 | 6.5 | 12,855 | 4.7 | 10.592 (<0.001) |
Cities | 185,039 | 80.4 | 19,386 | 8.4 | 14,965 | 6.5 | 10,663 | 4.6 | ||
Rural | 57,845 | 80.2 | 6329 | 8.8 | 4647 | 6.4 | 3327 | 4.6 | ||
Physical activity | Continuous Passive | Short-Term Passive | Short-Term Active | Continuous Active | χ2 (p) | |||||
n | % | n | % | n | % | n | % | |||
Total | 183,138 | 31.7 | 155,164 | 26.8 | 161,729 | 28.0 | 78,385 | 13.5 | ||
Sex | Male | 73,575 | 30.3 | 63,888 | 26.3 | 68,195 | 28.0 | 37,564 | 15.4 | 1423.333 (<0.001) |
Female | 109,563 | 32.7 | 91,276 | 27.2 | 93,534 | 27.9 | 40,821 | 12.2 | ||
Age | 40–49 | 43,031 | 37.2 | 29,130 | 25.2 | 30,732 | 26.6 | 12,650 | 10.9 | 5346.539 (<0.001) |
50–59 | 76,354 | 33.2 | 61,510 | 26.8 | 63,928 | 27.8 | 27,977 | 12.2 | ||
60–69 | 40,600 | 26.5 | 41,890 | 27.4 | 45,353 | 29.6 | 25,173 | 16.5 | ||
≥70 | 23,153 | 28.9 | 22,634 | 28.3 | 21,716 | 27.1 | 12,585 | 15.7 | ||
Income | 1st | 30,303 | 31.5 | 26,350 | 27.4 | 27,222 | 28.3 | 12,353 | 12.8 | 882.334 (<0.001) |
2nd | 26,534 | 32.2 | 22,708 | 27.5 | 23,296 | 28.2 | 9963 | 12.1 | ||
3rd | 31,404 | 32.3 | 26,652 | 27.4 | 27,065 | 27.9 | 12,016 | 12.4 | ||
4th | 40,038 | 31.8 | 33,663 | 26.8 | 35,277 | 28.0 | 16,790 | 13.3 | ||
5th | 54,859 | 31.0 | 45,791 | 25.9 | 48,869 | 27.6 | 27,263 | 15.4 | ||
Location | Metropolitan | 79,963 | 28.9 | 74,004 | 26.8 | 79,786 | 28.9 | 42,462 | 15.4 | 3588.688 (<0.001) |
Cities | 76,431 | 33.2 | 60,924 | 26.5 | 63,354 | 27.5 | 29,344 | 12.8 | ||
Rural | 26,744 | 37.1 | 20,236 | 28.0 | 18,589 | 25.8 | 6579 | 9.1 |
Categories | Year | Normal | MetS | |||||
---|---|---|---|---|---|---|---|---|
2011 | 2013 | 2015 | n | % | n | % | ||
Smoking | Nonsmoking | × | × | × | 316,344 | 69.2 | 140,789 | 30.8 |
Short-term nonsmoking | ○ | × | × | 24,966 | 62.8 | 14,761 | 37.2 | |
× | ○ | × | ||||||
○ | ○ | × | ||||||
Short-term smoking | × | × | ○ | 12,268 | 66.2 | 6,276 | 33.8 | |
○ | × | ○ | ||||||
× | ○ | ○ | ||||||
Smoking | ○ | ○ | ○ | 41,389 | 65.7 | 21,623 | 34.3 | |
χ2 (p) | 956.068 (<0.001) | |||||||
Drinking | Moderate | × | × | × | 323,738 | 69.6 | 141,409 | 30.4 |
Short-term moderate | ○ | × | × | 31,604 | 64.5 | 17,360 | 35.5 | |
× | ○ | × | ||||||
○ | ○ | × | ||||||
Short-term heavy | × | × | ○ | 23,724 | 63.3 | 13,736 | 36.7 | |
○ | × | ○ | ||||||
× | ○ | ○ | ||||||
Heavy drinking | ○ | ○ | ○ | 15,901 | 59.2 | 10,944 | 40.8 | |
χ2 (p) | 2127.236 (<0.001) | |||||||
Physical Activity | Passive | × | × | × | 123,011 | 67.2 | 60,127 | 32.8 |
Short-term passive | ○ | × | × | 104,156 | 67.1 | 51,008 | 32.9 | |
× | ○ | × | ||||||
○ | ○ | × | ||||||
Short-term active | × | × | ○ | 112,426 | 69.5 | 49,303 | 30.5 | |
○ | × | ○ | ||||||
× | ○ | ○ | ||||||
Active | ○ | ○ | ○ | 55,374 | 70.6 | 23,011 | 29.4 | |
χ2 (p) | 515.936 (<0.001) |
Variable | Reference Value | Model 1 | Model 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |||||
Sex | Female | Male | 1.172 | 1.157 | 1.187 | <0.001 | 1.097 | 1.082 | 1.111 | <0.001 |
Area | Farming/fishery rural area | Metropolitan | 1.494 | 1.468 | 1.519 | <0.001 | 1.075 | 1.062 | 1.088 | <0.001 |
Small- to medium-sized cities | 2.444 | 2.401 | 2.488 | <0.001 | 1.112 | 1.092 | 1.132 | <0.001 | ||
Age group | 50–59 | 40–49 | 3.345 | 3.278 | 3.414 | <0.001 | 1.505 | 1.480 | 1.531 | <0.001 |
60–69 | 1.103 | 1.084 | 1.122 | <0.001 | 2.511 | 2.466 | 2.556 | <0.001 | ||
≥70 | 1.096 | 1.076 | 1.117 | <0.001 | 3.481 | 3.410 | 3.553 | <0.001 | ||
Income Level | 1st (the lowest) | 5th (the highest) | 1.112 | 1.093 | 1.132 | <0.001 | 1.094 | 1.075 | 1.113 | <0.001 |
2nd | 1.085 | 1.068 | 1.102 | <0.001 | 1.084 | 1.064 | 1.104 | <0.001 | ||
3rd | 1.077 | 1.064 | 1.091 | <0.001 | 1.102 | 1.083 | 1.121 | <0.001 | ||
4th | 1.121 | 1.101 | 1.141 | <0.001 | 1.078 | 1.061 | 1.095 | <0.001 | ||
Smoking | Smoking | Nonsmoking | 1.097 | 1.078 | 1.116 | <0.001 | ||||
Drinking | Heavy | Moderate | 1.549 | 1.521 | 1.579 | <0.001 | ||||
Activity | Passive | Active | 1.187 | 1.173 | 1.200 | <0.001 | ||||
Smoking | Short-term nonsmoking | Nonsmoking | 1.220 | 1.192 | 1.248 | <0.001 | ||||
Short-term smoking | 1.116 | 1.080 | 1.152 | <0.001 | ||||||
Smoking | 1.105 | 1.083 | 1.127 | <0.001 | ||||||
Drinking | Short-term moderate | Moderate | 1.323 | 1.295 | 1.351 | <0.001 | ||||
Short-term heavy | 1.483 | 1.449 | 1.518 | <0.001 | ||||||
Heavy drinking | 1.849 | 1.799 | 1.900 | <0.001 | ||||||
Physical Activity | Passive | Active | 1.303 | 1.279 | 1.328 | <0.001 | ||||
Short-term passive | 1.239 | 1.216 | 1.263 | <0.001 | ||||||
Short-term active | 1.114 | 1.093 | 1.135 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yim, E.; Lee, K.; Park, I.; Lee, S. The Prevalence of Metabolic Syndrome and Health-Related Behavior Changes: The Korea National Health Examination Survey. Healthcare 2020, 8, 134. https://doi.org/10.3390/healthcare8020134
Yim E, Lee K, Park I, Lee S. The Prevalence of Metabolic Syndrome and Health-Related Behavior Changes: The Korea National Health Examination Survey. Healthcare. 2020; 8(2):134. https://doi.org/10.3390/healthcare8020134
Chicago/Turabian StyleYim, Eunshil, Kyounga Lee, Ilsu Park, and Sangjin Lee. 2020. "The Prevalence of Metabolic Syndrome and Health-Related Behavior Changes: The Korea National Health Examination Survey" Healthcare 8, no. 2: 134. https://doi.org/10.3390/healthcare8020134
APA StyleYim, E., Lee, K., Park, I., & Lee, S. (2020). The Prevalence of Metabolic Syndrome and Health-Related Behavior Changes: The Korea National Health Examination Survey. Healthcare, 8(2), 134. https://doi.org/10.3390/healthcare8020134