Exploring the Predictors of Rapid Eye Movement Sleep Behavior Disorder for Parkinson’s Disease Patients Using Classifier Ensemble
Abstract
:1. Introduction
2. Methods and Materials
2.1. Subjects
2.2. Measurement and Definition of Variables
2.3. Classification Algorithms
2.4. Comparing the Accuracy of Sleep Behavior Disorder Prediction Model
3. Results
3.1. General Characteristics of Subjects
3.2. Results of Developing an RF-Based Parkinson’s Sleep Behavior Disorder Prediction Model
3.3. Selection of the Final Prediction Model
3.4. Importance of Variables in the Final Model
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Seppi, K.; Ray Chaudhuri, K.; Coelho, M.; Fox, S.H.; Katzenschlager, R.; Perez Lloret, S.; Weintraub, D.; Sampaio, C.; The Collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease—An evidence-based medicine review. Mov. Disord. 2019, 34, 180–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trout, J.; Christiansen, T.; Bulkley, M.B.; Tanner, J.J.; Sozda, C.N.; Bowers, D.; Kay, D.B. Cognitive Impairments and Self-Reported Sleep in Early-Stage Parkinson’s Disease with Versus without Probable REM Sleep Behavior Disorder. Brain Sci. 2020, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Ruiz, P.J.; Chaudhuri, K.R.; Martinez-Martin, P. Non-motor Symptoms of Parkinson’s Disease A Review from the Past. J. Neurol. Sci. 2014, 338, 30–33. [Google Scholar] [CrossRef]
- Howell, M.J.; Schenck, C.H. Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Disease. J. Am. Med. Assoc. Neurol. 2015, 72, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Sateia, M.J. International Classification of Sleep Disorders. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, M.M.; Caulet, M.; Priest, R.G. Violent Behavior During Sleep. J. Clin. Psychiatry 1997, 58, 369–376. [Google Scholar] [CrossRef]
- Gagnon, J.F.; Bédard, M.A.; Fantini, M.L.; Petit, D.; Panisset, M.; Rompré, S.; Carrier, J.; Montplaisir, J. REM Sleep Behavior Disorder and REM Sleep Without Atonia in Parkinson’s Disease. Neurology 2002, 59, 585–589. [Google Scholar] [CrossRef]
- Comella, C.L.; Nardine, T.M.; Diederich, N.J.; Stebbins, G.T. Sleep-Related Violence, Injury, and REM Sleep Behavior Disorder in Parkinson’s Disease. Neurology 1998, 51, 526–529. [Google Scholar] [CrossRef]
- Ferini–Strambi, L.; Fantini, M.L.; Zucconi, M.; Castronovo, V.; Marelli, S.; Oldani, A.; Cappa, S. REM Sleep Behaviour Disorder. Neurol. Sci. 2005, 26, S186–S192. [Google Scholar] [CrossRef]
- Iranzo, A.; Santamaria, J.; Tolosa, E. The Clinical and Pathophysiological Relevance of REM Sleep Behavior Disorder in Neurodegenerative Diseases. Sleep Med. Rev. 2009, 13, 385–401. [Google Scholar] [CrossRef]
- Olson, E.J.; Boeve, B.F.; Silber, M.H. Rapid Eye Movement Sleep Behaviour Disorder: Demographic, Clinical and Laboratory Findings in 93 Cases. Brain 2000, 123, 331–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenck, C.H.; Mahowald, M.W. Rapid Eye Movement Sleep Parasomnias. Neurol. Clin. 2005, 23, 1107–1126. [Google Scholar] [CrossRef] [PubMed]
- Aurora, R.N.; Zak, R.S.; Maganti, R.K.; Auerbach, S.H.; Casey, K.R.; Chowdhuri, S.; Karippot, A.; Ramar, K.; Kristo, D.A.; Morgenthaler, T.I.; et al. Best Practice Guide for the Treatment of REM Sleep Behavior Disorder (RBD). J. Clin. Sleep Med. 2010, 6, 85–95. [Google Scholar]
- Carrarini, C.; Russo, M.; Dono, F.; Di Pietro, M.; Rispoli, M.G.; Di Stefano, V.; Ferri, L.; Barbone, F.; Vitale, M.; Thomas, A. A Stage-Based Approach to Therapy in Parkinson’s Disease. Biomolecules 2019, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Mahale, R.; Yadav, R.; Pal, P.K. Rapid Eye Movement Sleep Behaviour Disorder in Young- and Older-Onset Parkinson Disease: A Questionnaire-Based Study. Sleep Med. 2014, 15, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Byeon, H. Development of Depression Prediction Models for Caregivers of Patients with Dementia Using Decision Tree Learning Algorithm. Int. J. Gerontol. 2019, 13, 314–319. [Google Scholar]
- Byeon, H. A Laryngeal Disorders Prediction Model Based on Cluster Analysis and Regression Analysis. Medicine 2019, 98, 314–319. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Widasari, E.R.; Tanno, K.; Tamura, H. Automatic Sleep Disorders Classification Using Ensemble of Bagged Tree Based on Sleep Quality Features. Electronics 2020, 9, 512. [Google Scholar] [CrossRef] [Green Version]
- Byeon, H.; Jin, H.; Cho, S. Development of Parkinson’s Disease Dementia Prediction Model Based on Verbal Memory, Visuospatial Memory, and Executive Function. J. Med. Imaging Health Inf. 2017, 7, 1517–1521. [Google Scholar] [CrossRef]
- Long, N.P.; Park, S.; Anh, N.H.; Nghi, T.D.; Yoon, S.J.; Park, J.H.; Lim, J.; Kwon, S.W. High-throughput Omics and Statistical Learning Integration for the Discovery and Validation of Novel Diagnostic Signatures in Ccancer. Int. J. Mol. Sci. 2019, 20, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galván–Tejada, C.E.; Zanella–Calzada, L.A.; Galván–Tejada, J.; Celaya–Padilla, J.M.; Gamboa–Rosales, H.; Garza–Veloz, I.; Martinez–Fierro, M.L. Multivariate Feature Selection of Image Descriptors Data for Breast Cancer with Computer–Assisted Diagnosis. Diagnostics 2017, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.; Liu, Y.; Xiao, Y.; Yuan, X.; Xu, X.; Zhang, S.; Zhou, S. A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data. Diagnostics 2019, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Kim, J.H.; Hong, E.J.; Yoo, H.S.; Nam, H.Y.; Park, O. National Biobank of Korea: Quality Control Programs of Collected-Human Biospecimens. Osong. Public Health Res. Perspect. 2012, 3, 185–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byeon, H. Developing a Random Forest Classifier for Predicting the Depression and Managing the Health of Caregivers Supporting Patients with Alzheimer’s Disease. Technol. Health Care 2019, 27, 531. [Google Scholar] [CrossRef] [PubMed]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann Publishers Inc: Burlington, MA, USA, 2011. [Google Scholar]
- Yao, Y.; Zhao, X.; Du, H.; Zhang, Y.; Zhang, G.; Rong, J. Classification of Fatigued and Drunk Driving Based on Decision Tree Methods: A Simulator Study. Int. J. Environ. Res. Public Health. 2019, 16, 1935. [Google Scholar] [CrossRef] [Green Version]
- Ionescu, I.R.; Queyreau, S.; Picu, C.R.; Salman, O.U. Mechanics and Physics of Solids at Micro-and Nano-Scales; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Liang, C.P.; Jang, C.S.; Liang, C.W.; Chen, J.S. Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan. Int. J. Environ. Res. Public Health. 2016, 13, 1167. [Google Scholar] [CrossRef] [Green Version]
- Tolles, J.; Meurer, W.J. Logistic Regression: Relating Patient Characteristics to Outcomes. J. Am. Med. Assoc. 2016, 316, 533–534. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling, 2nd ed.; Springer: Manhattan, NY, USA, 2016. [Google Scholar]
- Lee, J.E.; Kim, K.S.; Shin, H.W.; Sohn, Y.H. Factors Related to Clinically Probable REM Sleep Behavior Disorder in Parkinson Disease. Parkinsonism. Relat. Disord. 2010, 16, 105–108. [Google Scholar] [CrossRef]
- Sixel-Döring, F.; Trautmann, E.; Mollenhauer, B.; Trenkwalder, C. Associated Factors for REM Sleep Behavior Disorder in Parkinson Disease. Neurology 2011, 77, 1048–1054. [Google Scholar] [CrossRef]
- Wulff, K.; Gatti, S.; Wettstein, J.G.; Foster, R.G. Sleep and Circadian Rhythm Disruption in Psychiatric and Neurodegenerative Disease. Nat. Rev. Neurosci. 2010, 11, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Schenck, C.H.; Mahowald, M.W. REM sleep behavior disorder: Clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep 2002, 25, 120–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byeon, H. Is the Random Forest Algorithm Suitable for Predicting Parkinson’s Disease with Mild Cognitive Impairment out of Parkinson’s Disease with Normal Cognition? Int. J. Environ. Res. Public Health 2020, 17, 2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaffer, C. Overfitting avoidance as bias. Mach. Learn. 1993, 10, 153–178. [Google Scholar] [CrossRef] [Green Version]
- Tetko, I.V.; Livingstone, D.J.; Luik, A.I. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf. Comput. Sci. 1995, 35, 826–833. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. Random forests. In The Elements of Statistical Learning; Springer: Manhattan, NY, USA, 2009. [Google Scholar]
Factors | Measurement | Characteristics |
---|---|---|
Sociodemographic factors | Age | Continuous variable |
Sex | Male or female | |
Education | Middle school graduate and below or high school graduate and above | |
Handless | Left hand, right hand, or both hands | |
Family dementia history | Yes or no | |
Family history of Parkinson’s disease (PD) | Yes or no | |
The mean age at the time of being diagnosed with Parkinson’s disease for the first time | Continuous variable | |
Health behaviors | Pack-years | Non-smoking, 1–20, 21–40, 41–60, or ≥61 pack-years |
Coffee consumption | Yes or no | |
Mean coffee intake per day (cups/day) | No, ≤1, 2–3, or ≥4 cups | |
Coffee drinking period (year) | No, ≤5, 6–9, or ≥10 years | |
Environmental factors | Exposure to pesticides | Never, currently not exposed but exposed previously, or currently exposed to pesticide |
Disease history | Carbon monoxide poisoning | Yes or no |
Manganese poisoning | ||
Traumatic brain injury | ||
Diabetes | ||
Hypertension | ||
Hyperlipidemia | ||
Atrial fibrillation | ||
PD related motor signs | Tremor | Yes or no |
Rigidity | ||
Bradykinesia | ||
Postural instability | ||
Late motor complications (LMC) | ||
Neuropsychological characteristics | Depression | Yes or no |
Total score of K-MMSE | Continuous variable | |
Total score of K-MoCA | ||
Global CDR score | ||
sum of boxes in CDR, | ||
K-IADL | ||
Total score of UPDRS | ||
Motor score of UPDRS | ||
H&Y staging | ||
Schwab and England ADL |
Characteristics | n (%) |
---|---|
Age, mean ± SD | 68.6 ± 8.9 |
Age at Parkinson’s disease diagnosis, mean ± SD | 68.0 ± 8.6 |
K-MMSE, mean ± SD | 23.7 ± 4.9 |
K-MoCA, mean ± SD | 17.6 ± 6.3 |
Global CDR score, mean ± SD | 0.6 ± 0.5 |
Sum of boxes in CDR, mean ± SD | 2.2 ± 2.7 |
K-IADL, mean ± SD | 1.6 ± 3.7 |
Total score of UPDRS, mean ± SD | 42.1 ± 21.7 |
Motor score of UPDRS, mean ± SD | 24.1 ± 11.8 |
H&Y staging, mean ± SD | 2.3 ± 0.7 |
Schwab and England ADL, mean ± SD | 76.3 ± 16.4 |
Sex | |
Male | 159 (45.4) |
Female | 191 (54.6) |
Education level | |
Middle school graduate and below | 216 (61.7) |
High school graduate and above | 134 (38.3) |
Handedness | |
Right hand | 335 (96.3) |
Left hand | 8 (2.3) |
Both hands | 5 (1.4) |
Family PD history | |
No | 274 (93.8) |
Yes | 18 (6.2) |
Family dementia history | |
No | 257 (94.1) |
Yes | 16 (5.9) |
Pack-year | |
1–20 | 24 (6.9) |
21–40 | 10 (2.9) |
41–60 | 4 (1.1) |
61 + | 312 (89.1) |
Coffee consumption | |
No | 171 (49.1) |
Yes | 177 (50.9) |
Carbon monoxide poisoning | |
No | 305 (93.6) |
Yes | 21 (6.4) |
Manganese poisoning | |
No | 324 (99.4) |
Yes | 2 (0.6) |
Traumatic brain injury | |
No | 311 (95.4) |
Yes | 15 (4.6) |
Diabetes | |
No | 277 (79.8) |
Yes | 70 (20.2) |
Hypertension | |
No | 217 (62.5) |
Yes | 130 (37.5) |
Hyperlipidemia | |
No | 306 (88.2) |
Yes | 41 (11.8) |
Atrial fibrillation | |
No | 336 (96.8) |
Yes | 11 (3.2) |
Tremor | |
No | 83 (24.6) |
Yes | 255 (75.4) |
Rigidity | |
No | 25 (7.3) |
Yes | 319 (92.7) |
Bradykinesia | |
No | 25 (7.3) |
Yes | 319 (92.7) |
Postural instability | |
No | 162 (49.5) |
Yes | 165 (50.5) |
Rapid eye movement sleep behavior disorder (RBD) | |
No | 183 (52.3) |
Yes | 167 (47.7) |
Late motor complications | |
Only on–off/wearing off | 44 (13.3) |
Only levodopa–induced dyskinesia | 20 (6.0) |
Both on-off/wearing off and levodopa-induced dyskinesia are present | 38 (11.5) |
Both on-off/wearing off and levodopa-induced dyskinesia are absent | 229 (69.2) |
Depression | |
No | 138 (59.0) |
Yes | 96 (41.0) |
Number of mtry | Error of Out-of-Bag |
---|---|
5 | 31.13% |
6 | 30.08% |
7 | 30.61% |
8 | 29.44% |
9 | 29.48% |
10 | 29.56% |
11 | 30.81% |
12 | 30.83% |
13 | 30.15% |
14 | 30.13% |
15 | 30.10% |
Accuracy | RF | Discriminant Analysis | CART | Neural Network | Logistic Regression |
---|---|---|---|---|---|
Overall accuracy | 0.71 | 0.66 | 0.47 | 0.78 | 0.55 |
Sensitivity | 0.79 | 0.14 | 0.32 | 0.25 | 0.51 |
Specificity | 0.67 | 0.90 | 0.80 | 0.95 | 0.62 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byeon, H. Exploring the Predictors of Rapid Eye Movement Sleep Behavior Disorder for Parkinson’s Disease Patients Using Classifier Ensemble. Healthcare 2020, 8, 121. https://doi.org/10.3390/healthcare8020121
Byeon H. Exploring the Predictors of Rapid Eye Movement Sleep Behavior Disorder for Parkinson’s Disease Patients Using Classifier Ensemble. Healthcare. 2020; 8(2):121. https://doi.org/10.3390/healthcare8020121
Chicago/Turabian StyleByeon, Haewon. 2020. "Exploring the Predictors of Rapid Eye Movement Sleep Behavior Disorder for Parkinson’s Disease Patients Using Classifier Ensemble" Healthcare 8, no. 2: 121. https://doi.org/10.3390/healthcare8020121
APA StyleByeon, H. (2020). Exploring the Predictors of Rapid Eye Movement Sleep Behavior Disorder for Parkinson’s Disease Patients Using Classifier Ensemble. Healthcare, 8(2), 121. https://doi.org/10.3390/healthcare8020121