Showing Value in Newborn Screening: Challenges in Quantifying the Effectiveness and Cost-Effectiveness of Early Detection of Phenylketonuria and Cystic Fibrosis
Abstract
:1. Introduction
1.1. Economic Evaluation Overview
1.2. Assessing Effectiveness in Newborn Screening
2. Case Studies
2.1. Phenylketonuria (PKU)
2.2. Cystic Fibrosis (CF)
2.2.1. Health Outcomes
2.2.2. Economic Evaluations
3. Discussion
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Therrell, B.L.; Adams, J. Newborn screening in North America. J. Inherit. Metab. Dis. 2007, 30, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Loeber, J.G.; Burgard, P.; Cornel, M.C.; Rigter, T.; Weinreich, S.S.; Rupp, K.; Hoffmann, G.F.; Vittozzi, L. Newborn screening programmes in europe; arguments and efforts regardingharmonization. Part 1. From blood spot to screening result. J. Inherit. Metab. Dis. 2012, 35, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Rogowski, W.H.; Ross, L.F.; Cornel, M.C.; Dondorp, W.J.; Khoury, M.J. Population screening for genetic disorders in the 21st century: Evidence, economics, and ethics. Public Health Genomics 2010, 13, 106–115. [Google Scholar] [CrossRef] [PubMed]
- McCabe, L.L.; McCabe, E.R. Expanded newborn screening: Implications for genomic medicine. Annu. Rev. Med. 2008, 59, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; McCann, D. Universal neonatal hearing screening moving from evidence to practice. Arch. Dis. Child. Fetal. Neonatal. Ed. 2004, 89, F378–F383. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Gaffney, M.; Eichwald, J. Improved newborn hearing screening follow-up results in more infants identified. J. Public Health Manag. Pract. 2014, 20, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.E. What is value in health care? N. Engl J. Med. 2010, 363, 2477–2481. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, J.M.; Olsen, L.; Young, P.L. Value in Health Care: Accounting for Cost, Quality, Safety, Outcomes, and Innovation: Workshop Summary; National Academies Press: Washington, WA, USA, 2010. [Google Scholar]
- Grosse, S.D.; Wordsworth, S.; Payne, K. Economic methods for valuing the outcomes of genetic testing: Beyond cost-effectiveness analysis. Genet. Med. 2008, 10, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.G.; Wilson, B.J.; Etchegary, H.; Brehaut, J.C.; Potter, B.K.; Hayeems, R.; Chakraborty, P.; Milburn, J.; Pullman, D.; Turner, L. Benefits and burdens of newborn screening: Public understanding and decision-making. Pers. Med. 2014, 11, 593–607. [Google Scholar] [CrossRef]
- Riley, C. Newborn Screening: Science, Policy, and People. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2012. [Google Scholar]
- Andermann, A.; Blancquaert, I.; Beauchamp, S.; Dery, V. Revisiting wilson and jungner in the genomic age: A review of screening criteria over the past 40 years. Bull. World Health Organ. 2008, 86, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Wilcken, B. Newborn screening: Gaps in the evidence. Science 2013, 342, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Cornel, M.C.; Rigter, T.; Weinreich, S.S.; Burgard, P.; Hoffmann, G.F.; Lindner, M.; Loeber, J.G.; Rupp, K.; Taruscio, D.; Vittozzi, L. A framework to start the debate on neonatal screening policies in the EU: An expert opinion document. Eur. J. Hum. Genet. 2014, 22, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Jungner, Y.G. Principles and practice of mass screening for disease. Bol. Oficina. Sanit. Panam. 1968, 65, 281–393. [Google Scholar] [PubMed]
- Grosse, S.D. Cost effectiveness as a criterion for newborn screening policy decisions. In Ethics and Newborn Genetic Screening: New Technologies, New Challenges; Baily, M.A., Murray, T.H., Eds.; Johns Hopkins University Press: Baltimore, MA, USA, 2009; pp. 58–88. [Google Scholar]
- Fischer, K.E.; Grosse, S.D.; Rogowski, W.H. The role of health technology assessment in coverage decisions on newborn screening. Int. J. Technol. Assess. Health Care 2011, 27, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Hutubessy, R.; Chisholm, D.; Edejer, T.T. Generalized cost-effectiveness analysis for national-level priority-setting in the health sector. Cost Eff. Resour. Alloc. 2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, M.; O’Brien, B.; Stoddart, G.; Torrance, G. Methods for the Economic Evaluation of Health Care; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Haddix, A.; Teutsch, S.; Corso, P. Prevention effectiveness: A Guide to Decision Analysis and Economic Evaluation, 2nd ed.; Oxford University Press: London, UK, 2003. [Google Scholar]
- Gold, M.R.; Siegel, J.E.; Russell, L.B.; Weinstein, M.C. Cost-Effectiveness in Health and Medicine; Oxford University Press: New York, NY, 1996. [Google Scholar]
- Kromm, S.K.; Bethell, J.; Kraglund, F.; Edwards, S.A.; Laporte, A.; Coyte, P.C.; Ungar, W.J. Characteristics and quality of pediatric cost-utility analyses. Qual. Life Res. 2012, 21, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Prosser, L.A.; Asakawa, K.; Feeny, D. QALY weights for neurosensory impairments in pediatric economic evaluations: Case studies and a critique. Expert Rev. Pharmacoecon. Outcomes Res. 2010, 10, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Sung, L.; Petrou, S.; Ungar, W.J. Measurement of health utilities in children. In Economic Evaluation in Child Health; Ungar, W.J., Ed.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Neumann, P.J.; Cohen, J.T.; Weinstein, M.C. Updating cost-effectiveness—The curious resilience of the $50,000-per-QALY threshold. N. Engl. J. Med. 2014, 371, 796–797. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D. Assessing cost-effectiveness in healthcare: History of the $50,000 per QALY threshold. Expert Rev. Pharmacoecon. Outcomes Res. 2008, 8, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Hirth, R.A.; Chernew, M.E.; Miller, E.; Fendrick, A.M.; Weissert, W.G. Willingness to pay for a quality-adjusted life year: In search of a standard. Med. Decis. Making 2000, 20, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Kanters, T.A.; Hoogenboom-Plug, I.; Rutten-van Mölken, M.; Redekop, W.K.; van der Ploeg, A.T.; Hakkaart, L. Cost-effectiveness of enzyme replacement therapy with alglucosidase alfa in classic-infantile patients with Pompe disease. Orphanet J. Rare Dis. 2014, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosse, S.D.; Krueger, K.V. The income-based human capital valuation methods in public health economics used by forensic economics. J. Forensic Econ. 2011, 22, 43–57. [Google Scholar] [CrossRef]
- Nyman, J.A. Productivity costs revisited: Toward a new us policy. Health Econ. 2012, 21, 1387–1401. [Google Scholar] [CrossRef]
- Kopp, R.J.; Krupnick, A.J.; Toman, M.A. Cost-Benefit Analysis and Regulatory Reform: An Assessment of the Science and the Art. Available online: http://www.rff.org/files/sharepoint/WorkImages/Download/RFF-DP-97-19.pdf (accessed on 9 September 2015).
- Robinson, L.A.; Hammitt, J.K. Skills of the trade: Valuing health risk reductions in benefit-cost analysis. J. Benefit Cost Anal. 2013, 4, 107–130. [Google Scholar] [CrossRef]
- Robinson, L.A.; Hammitt, J.K. Valuing reductions in fatal illness risks: Implications of recent research. Health Econo. 2015. [Google Scholar] [CrossRef] [PubMed]
- Viscusi, W.K. The role of publication selection bias in estimates of the value of a statistical life. Am. J. Health Econ. 2015, 1, 27–52. [Google Scholar] [CrossRef]
- Grosse, S.D.; Krueger, K.V.; Mvundura, M. Economic productivity by age and sex: 2007 estimates for the United States. Med. Care 2009, 47, S94–S103. [Google Scholar] [CrossRef] [PubMed]
- Mason, H.; Baker, R.; Donaldson, C. Willingness to pay for a QALY: Past, present and future. Expert Rev. Pharmacoecon. Outcomes Res. 2008, 8, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, S.; Willke, R.; Briggs, A.; Brown, R.; Buxton, M.; Chawla, A.; Cook, J.; Glick, H.; Liljas, B.; Petitti, D.; et al. Good research practices for cost-effectiveness analysis alongside clinical trials: The ISPOR RCT-CEA task force report. Value Health 2005, 8, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C. Evidence for newborn screening for cystic fibrosis. Paediat. Respire. Rev. 2003, 4, 278–284. [Google Scholar] [CrossRef]
- Khoury, M.; Bedrosian, S.; Gwinn, M.; Higgins, J.; Ioannidis, J.; Little, J. Human Genome Epidemiology: Building the Evidence for Using Genetic Information to Improve Health and Prevent Disease; Oxford University Press: New York, NY, 2009; pp. 517–532. [Google Scholar]
- Accurso, F.J.; Sontag, M.K.; Wagener, J.S. Complications associated with symptomatic diagnosis in infants with cystic fibrosis. J. Pediatr. 2005, 147, S37–S41. [Google Scholar] [CrossRef] [PubMed]
- Vernooij-van Langen, A.M.; Gerzon, F.L.; Loeber, J.G.; Dompeling, E.; Dankert-Roelse, J.E. Differences in clinical condition and genotype at time of diagnosis of cystic fibrosis by newborn screening or by symptoms. Mol. Genet. Metab. 2014, 113, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Kaye, C.I. Newborn screening fact sheets. Am. Acad. Pediatr. 2006, 118, e934–e963. [Google Scholar] [CrossRef] [PubMed]
- Pitt, D. The natural history of untreated phenylketonuria. Med. J. Aust. 1971, 1, 378–383. [Google Scholar] [PubMed]
- Woolf, L.; Griffiths, R.; Moncrieff, A. Treatment of phenylketonuria with a diet low in phenylalanine. Br. Med. J. 1955, 1, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Knox, W.E. An evaluation of the treatment of phenylketonuria with diets low in phenylalanine. Pediatrics 1960, 26, 1–11. [Google Scholar] [PubMed]
- Paul, D.B.; Brosco, J.P. The PKU Paradox: A short History of a Genetic Disease; JHU Press: Baltimore, MA, USA, 2013. [Google Scholar]
- Guthrie, R. Blood screening for phenylketonuria. JAMA 1961. [Google Scholar] [CrossRef]
- Wilcken, B.; Wiley, V. Newborn screening. Pathology 2008, 40, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, G.C. Two years of PKU testing in California—The role of the laboratory. Calif. Med. 1969, 110, 11–16. [Google Scholar] [PubMed]
- Steiner, K.C.; Smith, H.A. Application of cost-benefit analysis to a PKU screening program. Inquiry 1973, 10, 34–40. [Google Scholar] [PubMed]
- Webb, J.F. PKU screening. Can. Med. Assoc. J. 1973, 108, 963–964. [Google Scholar] [PubMed]
- Van Pelt, A.; Levy, H.L. Cost-benefit analysis of newborn screening for metabolic disorders. N. Engl. J. Med. 1974, 291, 1414–1416. [Google Scholar]
- Barden, H.S.; Kessel, R.; Schuett, V.E. The costs and benefits of screening for PKU in Wisconsin. Soc. Biol. 1984, 31, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, D.L.; Courville, L.; Dagenais, M.G. A cost-benefit analysis of the Quebec network of genetic medicine. Soc. Sci. Med. 1985, 20, 601–607. [Google Scholar] [CrossRef]
- U.S. Congress Office of Technology Assessment. Healthy Children: Investing in the Future; Government Printing Office: Washington, WA, USA, 1988.
- Hisashige, A. Health economic analysis of the neonatal screening program in Japan. Int. J. Technol. Assess. Health Care 1994, 10, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Pollitt, R.J.; Green, A.; McCabe, C.J.; Booth, A.; Cooper, N.J.; Leonard, J.V.; Nicholl, J.; Nicholson, P.; Tunaley, J.R.; Virdi, N.K. Neonatal screening for inborn errors of metabolism: Cost, yield and outcome. Health Technol. Assess. 1997, 1, 1–202. [Google Scholar]
- Sladkevicius, E.; Pollitt, R.J.; Mgadmi, A.; Guest, J.F. Cost effectiveness of establishing a neonatal screening programme for phenylketonuria in Libya. Appl. Health Econ. Health Policy 2010, 8, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.; Thomason, M.J.; Littlejohns, P.; Chalmers, R.A.; Bain, M.D.; Addison, G.M.; Wilcox, A.H.; Seymour, C.A. Secondary analysis of economic data: A review of cost-benefit studies of neonatal screening for phenylketonuria. J. Epidemiol. Community Health 1999, 53, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.E.; Downs, S.M. Comprehensive cost-utility analysis of newborn screening strategies. Pediatrics 2006, 117, S287–S295. [Google Scholar] [PubMed]
- Geelhoed, E.A.; Lewis, B.; Hounsome, D.; O’Leary, P. Economic evaluation of neonatal screening for phenylketonuria and congenital hypothyroidism. J. Paediatr. Child Health 2005, 41, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D. Late-treated phenylketonuria and partial reversibility of intellectual impairment. Child Dev. 2010, 81, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Dobson, J.; Koch, R.; Williamson, M.; Spector, R.; Frankenburg, W.; O’Flynn, M.; Warner, R.; Hudson, F. Cognitive development and dietary therapy in phenylketonuric children. N. Engl. J. Med. 1968, 278, 1142–1144. [Google Scholar] [CrossRef] [PubMed]
- Siegel, F.S.; Balow, B.; Fisch, R.O.; Anderson, V.E. School behavior profile ratings of phenylketonuric children. Am. J. Ment. Defic. 1968, 72, 937–943. [Google Scholar] [PubMed]
- Koch, R.; Moseley, K.; Ning, J.; Romstad, A.; Guldberg, P.; Guttler, F. Long-term beneficial effects of the phenylalanine-restricted diet in late-diagnosed individuals with phenylketonuria. Mol. Genet. Metab. 1999, 67, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Levy, H.L. Comments on final intelligence in late treated patients with phenylketonuria. Eur. J. Pediatr. 2000, 159, S149–S149. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D. Does newborn screening save money? The difference between cost-effective and cost-saving interventions. J. Pediatr. 2005, 146, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Sharman, R.; Sullivan, K.A.; Jones, T.; Young, R.M.; McGill, J. Executive functioning of 4 children with hyperphenylalaninemia from childhood to adolescence. Pediatrics 2015, 135, e1072–e1074. [Google Scholar] [CrossRef] [PubMed]
- Honeycutt, A.A.; Grosse, S.D.; Dunlap, L.J.; Schendel, D.E.; Chen, H.; Brann, E.; al Homsi, G. Economic costs of mental retardation, cerebral palsy, hearing loss, and vision impairment. In Using Survey Data to Study Disability. Results from the National Health Interview Survey on Disability. Research in Social Science and Disability; Altman, B.M., Barnartt, S.N., Hendershot, G., Larson, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 207–228. [Google Scholar]
- Centers for Disease Control and Prevention. Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment—United States, 2003. MMWR Morb. Mortal. Wkly. Rep. 2004, 53, 57–59. [Google Scholar]
- Resta, R. Generation n + 1: Projected numbers of babies born to women with PKU compared to babies with PKU in the United States in 2009. Am. J. Med. Genet. A 2012, 158, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Matte, T.D.; Schwartz, J.; Jackson, R.J. Economic gains resulting from the reduction in children’s exposure to lead in the United States. Environ. Health Perspect 2002, 110, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Monahan, M.; Boelaert, K.; Jolly, K.; Chan, S.; Barton, P.; Roberts, T.E. Costs and benefits of iodine supplementation for pregnant women in a mildly to moderately iodine-deficient population: A modelling analysis. Lancet. Diabetes Endocrinol. 2015, 3, 715–722. [Google Scholar] [CrossRef]
- Von Stackelberg, K.; Hammitt, J. Use of contingent valuation to elicit willingness-to-pay for the benefits of developmental health risk reductions. Environ. Resour. Econ. 2009, 43, 45–61. [Google Scholar] [CrossRef]
- Stephenson, A.L.; Mannik, L.A.; Walsh, S.; Brotherwood, M.; Robert, R.; Darling, P.B.; Nisenbaum, R.; Moerman, J.; Stanojevic, S. Longitudinal trends in nutritional status and the relation between lung function and bmi in cystic fibrosis: A population-based cohort study. Am. J. Clin. Nutr. 2013, 97, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.D.; Daly, L.; Kelleher, C.; Marshall, B.C.; Quinton, H.B.; Foley, L.; Fitzpatrick, P. The application of current lifetable methods to compare cystic fibrosis median survival internationally is limited. J. Cyst. Fibros. 2011, 10, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.L.; Tom, M.; Berthiaume, Y.; Singer, L.G.; Aaron, S.D.; Whitmore, G.A.; Stanojevic, S. A contemporary survival analysis of individuals with cystic fibrosis: A cohort study. Eur. Respir. J. 2015, 45, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.W.; Blizzard, C.L.; Shugg, D.M.; Flowers, C.; Cash, C.; Greville, H.M. Changes in cystic fibrosis mortality in Australia, 1979–2005. Med. J. Aust. 2011, 195, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Gaskin, K.J.; Wilcken, B. Long-term outcomes for patients with cystic fibrosis in Australia. Med. J. Aust. 2011, 195, 370–371. [Google Scholar] [CrossRef] [PubMed]
- VanDevanter, D.R.; Pasta, D.J.; Konstan, M.W. Improvements in lung function and height among cohorts of 6-year-olds with cystic fibrosis from 1994 to 2012. J. Pediatr. 2014, 165, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Cystic Fibrosis Foundation. Neonatal screening for cystic fibrosis: Position paper. Pediatrics 1983, 72, 741–745. [Google Scholar]
- Farrell, P.M.; Lai, H.J.; Li, Z.; Kosorok, M.R.; Laxova, A.; Green, C.G.; Collins, J.; Hoffman, G.; Laessig, R.; Rock, M.J.; et al. Evidence on improved outcomes with early diagnosis of cystic fibrosis through neonatal screening: Enough is enough! J. Pediatr. 2005, 147, S30–S36. [Google Scholar] [CrossRef] [PubMed]
- Chatfield, S.; Owen, G.; Ryley, H.C.; Williams, J.; Alfaham, M.; Goodchild, M.C.; Weller, P. Neonatal screening for cystic fibrosis in wales and the west midlands: Clinical assessment after five years of screening. Arch. Dis. Child. 1991, 66, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Boyle, C.A.; Botkin, J.R.; Comeau, A.M.; Kharrazi, M.; Rosenfeld, M.; Wilfond, B.S. Newborn screening for cystic fibrosis: Evaluation of benefits and risks and recommendations for state newborn screening programs. MMWR Recomm. Rep. 2004, 53, 1–36. [Google Scholar] [PubMed]
- Southern, K.W.; Merelle, M.M.; Dankert-Roelse, J.E.; Nagelkerke, A.D. Newborn screening for cystic fibrosis. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef]
- Farrell, P.M.; Kosorok, M.R.; Rock, M.J.; Laxova, A.; Zeng, L.; Lai, H.C.; Hoffman, G.; Laessig, R.H.; Splaingard, M.L. Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin cystic fibrosis neonatal screening study group. Pediatrics 2001, 107, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Rosenfeld, M.; Devine, O.J.; Lai, H.J.; Farrell, P.M. Potential impact of newborn screening for cystic fibrosis on child survival: A systematic review and analysis. J. Pediatr. 2006, 149, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Newborn screening for cystic fibrosis: A paradigm for public health genetics policy development: Proceedings of a 1997 workshop. MMWR Rep. Recomm. 1997, 46, 1–24. [Google Scholar]
- Haute Autorité de la Santé. Le Dépistage Systématique de la Mucoviscidose en France: État Des Lieux et Perspectives Après 5 ans de Fonctionnement; Haute Autorité de la Santé: Paris, France, 2009. (In French)
- Health Council of The Netherlands. Neonatal Screening; Health Council of The Netherlands: The Hague, The Netherlands, 2005. [Google Scholar]
- Health Council of The Netherlands. Neonatal Screening for Cystic Fibrosis; Health Council of The Netherlands: The Hague, The Netherlands, 2010. [Google Scholar]
- American College of Medical Genetics Newborn Screening Expert Group. Newborn screening: Toward a uniform screening panel and system—Executive summary. Pediatrics 2006, 117, S296–S307. [Google Scholar]
- Borowski, H.Z.; Brehaut, J.; Hailey, D. Linking evidence from health technology assessments to policy and decision making: The Alberta model. Int. J. Technol. Assess. Health Care 2007, 23, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Therrell, B.L.; Padilla, C.D.; Loeber, J.G.; Kneisser, I.; Saadallah, A.; Borrajo, G.J.; Adams, J. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 2015, 39, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Southern, K.W.; Brownlee, K.; Dankert Roelse, J.; Duff, A.; Farrell, M.; Mehta, A.; Munck, A.; Pollitt, R.; Sermet-Gaudelus, I.; et al. European best practice guidelines for cystic fibrosis neonatal screening. J. Cyst. Fibros. 2009, 8, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Sly, P.D.; Gangell, C.L.; Chen, L.; Ware, R.S.; Ranganathan, S.; Mott, L.S.; Murray, C.P.; Stick, S.M.; Investigators, A.C. Risk factors for bronchiectasis in children with cystic fibrosis. N. Engl. J. Med. 2013, 368, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- VanDevanter, D.R.; Kahle, J.S.; O’Sullivan, A.K.; Sikirica, S.; Hodgkins, P.S. Cystic fibrosis in young children: A review of disease manifestation, progression, and response to early treatment. J. Cyst. Fibros. 2015. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Schechter, M.S.; Jaffe, A.; Cooper, P.; Bell, S.C.; Ranganathan, S. Comparison of the US and Australian cystic fibrosis registries: The impact of newborn screening. Pediatrics 2012, 129, e348–e355. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.C.; Rault, G.; Li, Z.; Scotet, V.; Dugueperoux, I.; Ferec, C.; Roussey, M.; Laxova, A.; Farrell, P.M. Pulmonary outcome differences in US and French cystic fibrosis cohorts diagnosed through newborn screening. J. Cyst. Fibros. 2010, 9, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Yen, E.H.; Quinton, H.; Borowitz, D. Better nutritional status in early childhood is associated with improved clinical outcomes and survival in patients with cystic fibrosis. J. Pediatr. 2013, 162, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Konstan, M.W.; Butler, S.M.; Wohl, M.E.; Stoddard, M.; Matousek, R.; Wagener, J.S.; Johnson, C.A.; Morgan, W.J. Growth and nutritional indexes in early life predict pulmonary function in cystic fibrosis. J. Pediatr. 2003, 142, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, M. Overview of published evidence on outcomes with early diagnosis from large US observational studies. J. Pediatr. 2005, 147, S11–S14. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.H.; Farrell, P.M. Newborn screening for cystic fibrosis: Ensuring more good than harm. J. Pediatr. 2003, 143, 707–712. [Google Scholar] [CrossRef] [PubMed]
- McKay, K.O.; Waters, D.L.; Gaskin, K.J. The influence of newborn screening for cystic fibrosis on pulmonary outcomes in New South Wales. J. Pediatr. 2005, 147, S47–S50. [Google Scholar] [CrossRef] [PubMed]
- Dijk, F.N.; McKay, K.; Barzi, F.; Gaskin, K.J.; Fitzgerald, D.A. Improved survival in cystic fibrosis patients diagnosed by newborn screening compared to a historical cohort from the same centre. Arch. Dis. Child. 2011, 96, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Merelle, M.E.; Nagelkerke, A.F.; Lees, C.M.; Dezateux, C.; Merelle, M.E.; Dankert-Roelse, J.E.; Dezateux, C.; Lees, C.; Nagelkerke, A.; Southern, K.W. Newborn screening for cystic fibrosis. Cochrane Database Syst. Rev. 2001. [Google Scholar] [CrossRef]
- Sims, E.J.; McCormick, J.; Mehta, G.; Mehta, A. Neonatal screening for cystic fibrosis is beneficial even in the context of modern treatment. J. Pediatr. 2005, 147, S42–S46. [Google Scholar] [CrossRef] [PubMed]
- Siret, D.; Bretaudeau, G.; Branger, B.; Dabadie, A.; Dagorne, M.; David, V.; de Braekeleer, M.; Moisan-Petit, V.; Picherot, G.; Rault, G.; et al. Comparing the clinical evolution of cystic fibrosis screened neonatally to that of cystic fibrosis diagnosed from clinical symptoms: A 10-year retrospective study in a French region (Brittany). Pediatr. Pulmonol. 2003, 35, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.S.; Abbott, M.A.; Wakefield, D.B.; Lapin, C.D.; Drapeau, G.; Hopfer, S.M.; Greenstein, R.M.; Cloutier, M.M. Improved pulmonary and growth outcomes in cystic fibrosis by newborn screening. Pediatr. Pulmonol. 2008, 43, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Orenstein, D.M.; Boat, T.F.; Stern, R.C.; Tucker, A.S.; Charnock, E.L.; Matthews, L.W.; Doershuk, C.F. The effect of early diagnosis and treatment in cystic fibrosis: A seven-year study of 16 sibling pairs. Am. J. Di.s Child. 1977, 131, 973–975. [Google Scholar] [CrossRef]
- Picard, E.; Aviram, M.; Yahav, Y.; Rivlin, J.; Blau, H.; Bentur, L.; Avital, A.; Villa, Y.; Schwartz, S.; Kerem, B.; et al. Familial concordance of phenotype and microbial variation among siblings with CF. Pediatr. Pulmonol. 2004, 38, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.L.; Strug, L.J.; Coates, A.L.; Corey, M. Disease severity in siblings with cystic fibrosis. Pediatr. Pulmonol. 2004, 37, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Slieker, M.G.; van den Berg, J.M.; Kouwenberg, J.; van Berkhout, F.T.; Heijerman, H.G.; van der Ent, C.K. Long-term effects of birth order and age at diagnosis in cystic fibrosis: A sibling cohort study. Pediatr. Pulmonol. 2010, 45, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Doull, I.J.; Ryley, H.C.; Weller, P.; Goodchild, M.C. Cystic fibrosis-related deaths in infancy and the effect of newborn screening. Pediatr. Pulmonol. 2001, 31, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Dankert-Roelse, J.E.; Merelle, M.E. Review of outcomes of neonatal screening for cystic fibrosis versus non-screening in Europe. J. Pediatr. 2005, 147, S15–S20. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.J.; Cheng, Y.; Farrell, P.M. The survival advantage of patients with cystic fibrosis diagnosed through neonatal screening: Evidence from the United States cystic fibrosis foundation registry data. J. Pediatr. 2005, 147, S57–S63. [Google Scholar] [CrossRef] [PubMed]
- Eng, K.; Jacobs, P. Economics of Screening Newborns for Medium Chain Acyl-coA Dehydrogenase Deficiency (MCAD) and Cystic Fibrosis (CF) in Alberta: A Report for the Alberta Health Technology Decision Process; Health Technology Decision Process: Calgary, AB, Canada, 2006. [Google Scholar]
- Washington State Department of Health, Washington, WA, USA. Newborn screening for cystic fibrosis economic analysis. Unpublished work. 2005. [Google Scholar]
- Simpson, N.; Anderson, R.; Sassi, F.; Pitman, A.; Lewis, P.; Tu, K.; Lannin, H. The cost-effectiveness of neonatal screening for cystic fibrosis: An analysis of alternative scenarios using a decision model. Cost Eff. Resour. Alloc. 2005. [Google Scholar] [CrossRef] [PubMed]
- Van den Akker-van Marle, M.E.; Dankert, H.M.; Verkerk, P.H.; Dankert-Roelse, J.E. Cost-effectiveness of 4 neonatal screening strategies for cystic fibrosis. Pediatrics 2006, 118, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, C.P.; van den Akker-van Marle, M.E.; Vernooij-van Langen, A.M.; Elvers, L.H.; Gille, J.J.; Verkerk, P.H.; Dankert-Roelse, J.E. Cost-effectiveness of newborn screening for cystic fibrosis determined with real-life data. J. Cyst. Fibros. 2015, 14, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Nshimyumukiza, L.; Bois, A.; Daigneault, P.; Lands, L.; Laberge, A.M.; Fournier, D.; Duplantie, J.; Giguere, Y.; Gekas, J.; Gagne, C.; et al. Cost effectiveness of newborn screening for cystic fibrosis: A simulation study. J. Cyst. Fibros. 2014, 13, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.; Rosenberg, M.; Hoffman, G.; Anstead, M.; Farrell, P.M. A decision-tree approach to cost comparison of newborn screening strategies for cystic fibrosis. Pediatrics 2012, 129, e339–e347. [Google Scholar] [CrossRef] [PubMed]
- Seror, V.; Cao, C.; Roussey, M.; Giorgi, R. PAP assays in newborn screening for cystic fibrosis: A population-based cost-effectiveness study. J. Med. Screen. 2015. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Rosenberg, M.A.; Peterson, A.; Makholm, L.; Hoffman, G.; Laessig, R.H.; Farrell, P.M. Analysis of the costs of diagnosing cystic fibrosis with a newborn screening program. J. Pediatr. 2003, 142, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.A.; Farrell, P.M. Assessing the cost of cystic fibrosis diagnosis and treatment. J. Pediatr. 2005, 147, S101–S105. [Google Scholar] [CrossRef] [PubMed]
- Orenstein, D.M.; Nixon, P.A.; Ross, E.A.; Kaplan, R.M. The quality of well-being in cystic fibrosis. CHEST J. 1989, 95, 344–347. [Google Scholar] [CrossRef]
- Slieker, M.G.; Uiterwaal, C.S.; Sinaasappel, M.; Heijerman, H.G.; van der Laag, J.; van der Ent, C.K. Birth prevalence and survival in cystic fibrosis: A national cohort study in The Netherlands. CHEST J. 2005, 128, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Wilcken, B.; Chalmers, G. Reduced morbidity in patients with cystic fibrosis detected by neonatal screening. Lancet 1985, 2, 1319–1321. [Google Scholar] [CrossRef]
- Sims, E.J.; Mugford, M.; Clark, A.; Aitken, D.; McCormick, J.; Mehta, G.; Mehta, A. Economic implications of newborn screening for cystic fibrosis: A cost of illness retrospective cohort study. Lancet 2007, 369, 1187–1195. [Google Scholar] [CrossRef]
- Scotet, V.; Audrezet, M.P.; Roussey, M.; Rault, G.; Blayau, M.; de Braekeleer, M.; Ferec, C. Impact of public health strategies on the birth prevalence of cystic fibrosis in Brittany, France. Human Genet. 2003, 113, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Scotet, V.; Assael, B.M.; Dugueperoux, I.; Tamanini, A.; Audrezet, M.P.; Ferec, C.; Castellani, C. Time trends in birth incidence of cystic fibrosis in two European areas: Data from newborn screening programs. J. Pediatr. 2008, 152, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Parker-McGill, K.; Nugent, M.; Bersie, R.; Hoffman, G.; Rock, M.; Baker, M.; Farrell, P.M.; Simpson, P.; Levy, H. Changing incidence of cystic fibrosis in Wisconsin, USA. Pediatr. Pulmonol. 2015, 50, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D. Economic evaluations of newborn screening interventions. In Economic Evaluation in Child Health; Ungar, W.J., Ed.; Oxford University Press: New York, NY, USA, 2009; pp. 113–132. [Google Scholar]
- Langer, A.; Holle, R.; John, J. Specific guidelines for assessing and improving the methodological quality of economic evaluations of newborn screening. BMC Health Serv. Res. 2012. [Google Scholar] [CrossRef] [PubMed]
- Camp, K.M.; Parisi, M.A.; Acosta, P.B.; Berry, G.T.; Bilder, D.A.; Blau, N.; Bodamer, O.A.; Brosco, J.P.; Brown, C.S.; Burlina, A.B.; et al. Phenylketonuria scientific review conference: State of the science and future research needs. Mol. Genet. Metab. 2014, 112, 87–122. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.A.; Brown, C.; Grant, M.; Greene, C.L.; Jurecki, E.; Koch, J.; Moseley, K.; Suter, R.; van Calcar, S.C.; Wiles, J.; et al. Newborn screening 50 years later: Access issues faced by adults with PKU. Genet. Med. 2013, 15, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.Y.; Castellani, C.; Keenan, K.; Avolio, J.; Volpi, S.; Boland, M.; Kovesi, T.; Bjornson, C.; Chilvers, M.A.; Morgan, L.; et al. Inconclusive diagnosis of cystic fibrosis after newborn screening. Pediatrics 2015. [Google Scholar] [CrossRef] [PubMed]
- Shoff, S.M.; Tluczek, A.; Laxova, A.; Farrell, P.M.; Lai, H.J. Nutritional status is associated with health-related quality of life in children with cystic fibrosis aged 9–19 years. J. Cyst. Fibros. 2013, 12, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Kemper, A.R.; Green, N.S.; Calonge, N.; Lam, W.K.; Comeau, A.M.; Goldenberg, A.J.; Ojodu, J.; Prosser, L.A.; Tanksley, S.; Bocchini, J.A., Jr. Decision-making process for conditions nominated to the recommended uniform screening panel: Statement of the us department of health and human services secretary’s advisory committee on heritable disorders in newborns and children. Genet. Med. 2014, 16, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Prosser, L.A.; Grosse, S.D.; Kemper, A.R.; Tarini, B.A.; Perrin, J.M. Decision analysis, economic evaluation, and newborn screening: Challenges and opportunities. Genet. Med. 2012, 14, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.E.; Rogowski, W.H. Funding decisions for newborn screening: A comparative review of 22 decision processes in Europe. Int. J. Environ. Res. Public Health 2014, 11, 5403–5430. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Olney, R.S.; Baily, M.A. The cost effectiveness of universal versus selective newborn screening for sickle cell disease in the US and the UK: A critique. Appl. Health Econ. Health Policy 2005, 4, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Downing, M.; Pollitt, R. Newborn bloodspot screening in the UK—Past, present and future. Ann. Clin. Biochem. 2008, 45, 11–17. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosse, S.D. Showing Value in Newborn Screening: Challenges in Quantifying the Effectiveness and Cost-Effectiveness of Early Detection of Phenylketonuria and Cystic Fibrosis. Healthcare 2015, 3, 1133-1157. https://doi.org/10.3390/healthcare3041133
Grosse SD. Showing Value in Newborn Screening: Challenges in Quantifying the Effectiveness and Cost-Effectiveness of Early Detection of Phenylketonuria and Cystic Fibrosis. Healthcare. 2015; 3(4):1133-1157. https://doi.org/10.3390/healthcare3041133
Chicago/Turabian StyleGrosse, Scott D. 2015. "Showing Value in Newborn Screening: Challenges in Quantifying the Effectiveness and Cost-Effectiveness of Early Detection of Phenylketonuria and Cystic Fibrosis" Healthcare 3, no. 4: 1133-1157. https://doi.org/10.3390/healthcare3041133
APA StyleGrosse, S. D. (2015). Showing Value in Newborn Screening: Challenges in Quantifying the Effectiveness and Cost-Effectiveness of Early Detection of Phenylketonuria and Cystic Fibrosis. Healthcare, 3(4), 1133-1157. https://doi.org/10.3390/healthcare3041133