A Pilates Exercise Program as a Therapeutic Strategy in Older Adults with Type 2 Diabetes: Effects on Functional Capacity and Blood Glucose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization
2.4. Sample Size Calculation
2.5. Outcomes
2.5.1. Blood Glucose Concentration
2.5.2. Muscle Strength
2.5.3. Physical Function
2.5.4. Flexibility
2.5.5. Balance
2.6. Intervention
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Scalability and Implementation Potential
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DM | Diabetes mellitus |
IDF | International Diabetes Federation |
WHO | World Health Organization |
BMI | Body mass index |
TUG | Timed Up and Go |
CSRT | Chair Sit-and-Reach Test |
BST | Back Scratch Test |
BBS | Berg Balance Scale |
References
- World Health Organization. Summary: World Report on Aging and Health; WHO: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/bitstream/handle/10665/186471/WHO_FWC_ALC_15.01_spa.pdf?sequence=1 (accessed on 14 February 2025).
- IMSERSO. Active Aging; White Paper; Institute for the Elderly and Social Services: Madrid, Spain, 2011. [Google Scholar]
- World Health Organization. Aging and Health; WHO: Geneva, Switzerland, 2022; Available online: https://www.who.int/es/news-room/fact-sheets/detail/ageing-and-health (accessed on 14 February 2025).
- Ayala, A.; Rodríguez-Blázquez, C.; Calderón-Larrañaga, A.; Beridze, G.; Teixeira, L.; Araújo, L.; Rojo-Pérez, F.; Fernández-Mayoralas, G.; Rodríguez-Rodríguez, V.; Quirós-González, V.; et al. Influence of Active and Healthy Aging on Quality of Life Changes: Insights from the Comparison of Three European Countries. Int. J. Environ. Res. Public. Health 2021, 18, 4152. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estadística. INE: Madrid, Spain. Available online: https://www.ine.es/dyngs/Prensa/en/PROP20242074.htm (accessed on 14 February 2025).
- Hossain, M.J.; Al-Mamun, M.; Islam, M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024, 7, e2004. [Google Scholar] [CrossRef] [PubMed]
- Yau, M.; Maclaren, N.K.; Sperling, M.A. Etiology and Pathogenesis of Diabetes Mellitus in Children and Adolescents. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK498653/ (accessed on 14 February 2025).
- Valdés, R.; Camps, A. Clinical characteristics and frequency of chronic complications in people with newly diagnosed type 2 diabetes mellitus. Rev. Cubana Med. Gen. Integr. 2013, 29. [Google Scholar]
- Hodelín, E.; Maynard, R.; Maynard, G.; Hodelín, H. Chronic complications of type 2 diabetes mellitus in older adults. Rev. Inf. Cient. 2018, 97, 1028–9933. [Google Scholar]
- Mora, E. Current status of diabetes mellitus worldwide. Acta Med. Costarric. 2014, 56, 0001–6012. [Google Scholar]
- Mendoza, M.A.; Padrón, A.; Cossío, P.E.; Soria, M. Global prevalence of type 2 diabetes mellitus and its relationship with the Human Development Index. Rev. Panam. Salud Pub. 2017, 41, e103. [Google Scholar]
- International Diabetes Federation (IDF). IDF Diabetes Atlas. 2021. Available online: https://diabetesatlas.org/ (accessed on 14 February 2025).
- World Health Organization (WHO). World Diabetes Report. 2016. Available online: http://apps.who.int/iris/bitstream/handle/10665/254649/9789243565255-spa.pdf?sequence=1 (accessed on 14 February 2025).
- Federación Española de Diabetes (FEDE). España Supera la Media Europea en Prevalencia en Diabetes. 2023. Available online: https://www.sediabetes.org/comunicacion/sala-de-prensa/la-diabetes-en-espana-y-en-el-mundo-del-aumento-de-casos-al-infradiagnostico-pasando-por-los-deficits-en-educacion-terapeutica/#:~:text=La%20media%20de%20prevalencia%20de,Italia%20(9%2C9%25) (accessed on 4 March 2025).
- Herold, K.C.; Bundy, B.N.; Long, S.A.; Bluestone, J.A.; DiMeglio, L.A.; Dufort, M.J.; Gitelman, S.E.; Gottlieb, P.A.; Krischer, J.P.; Linsley, P.S.; et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for type 1 Diabetes. N. Engl. J. Med. 2019, 381, 603–613. [Google Scholar] [CrossRef]
- Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 2017, 3, 17016. [Google Scholar] [CrossRef]
- Hernandez, M.; Padrón, A.; Gómez, N.; Soto, R.; García, V. Alimentary and lifestyle changes as a strategy in the prevention of metabolic syndrome and diabetes mellitus type 2: Milestones and perspectives. An. Sist. Sanit. Navar. 2016, 39, 269–289. [Google Scholar]
- Laakso, M. Biomarkers for type 2 diabetes. Mol. Metab. 2019, 27, 139–146. [Google Scholar] [CrossRef]
- Goldberg, R.B.; Katz, M. Definition, classification and diagnosis of Diabetes, prediabetes and metabolic syndrome. Clin. Pract. Guidel. 2018, 42, S10–S15. [Google Scholar]
- Kulkarni, A.; Thool, A.R.; Daigavane, S. Understanding the Clinical Relationship Between Diabetic Retinopathy, Nephropathy, and Neuropathy: A Comprehensive Review. Cureus 2024, 16, e56674. [Google Scholar] [CrossRef] [PubMed]
- Zakir, M.; Ahuja, N.; Surksha, M.A.; Sachdev, R.; Kalariya, Y.; Nasir, M.; Kashif, M.; Shahzeen, F.; Tayyab, A.; Khan, M.S.M.; et al. Cardiovascular Complications of Diabetes: From Microvascular to Macrovascular Pathways. Cureus 2023, 15, e45835. [Google Scholar] [CrossRef]
- Pfeiffer, A.F.; Klein, H.H. The treatment of type 2 diabetes. Dtsch. Arztebl. Int. 2014, 111, 69–81. [Google Scholar] [CrossRef]
- Schmidt, A.M. Diabetes mellitus and cardiovascular disease. Arteriorscler. Thromb. Vasc. Biol. 2019, 39, 558–568. [Google Scholar] [CrossRef]
- Khadka, R.; Tian, W.; Hao, X.; Koirala, R. Risk factor, early diagnosis and overall survival on outcome of association between pancreatic cancer and diabetes mellitus: Changes and advances, a review. Int. J. Surg. 2019, 52, 342–346. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, E.; Santana-Pérez, F.; Merino-Marban, R. Joseph Hubertus Pilates; Anatomía de un gigante olvidado. Trances: Rev. De Transm. Del Conoc. Educ. Y la Salud 2011, 3, 353–378. [Google Scholar]
- Lim, E.J.; Hyun, E.J. The Impacts of Pilates and Yoga on Health-Promoting Behaviors and Subjective Health Status. Int. J. Environ. Res. Public Health 2021, 18, 3802. [Google Scholar] [CrossRef]
- Wells, C.; Kolt, G.; Bialocerkowski, A. Defining Pilates exercise: A systematic review. Complement. Ther. Med. 2012, 20, 253–262. [Google Scholar] [CrossRef]
- Guidotti, S.; Fiduccia, A.; Morisi, G.; Pruneti, C. Benefits of Pilates on Depression, Anxiety, and Stress: An Observational Study Comparing People Practicing Pilates to Non-Active Controls. Healthcare 2025, 13, 772. [Google Scholar] [CrossRef]
- Cetin, E.; Nas, K.; Kilinc, M. The effects of Pilates exercise on body composition and blood glucose in women with type 2 diabetes. J. Diabetes Metab. Disord. 2018, 17, 5–12. [Google Scholar]
- Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B. Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement. Diabetes Care 2010, 33, e147–e167. [Google Scholar] [CrossRef] [PubMed]
- Way, K.L.; Hackett, D.A.; Baker, M.K.; Johnson, N.A. The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Metab. J. 2016, 40, 253–271. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; de Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; Newman, A.B. Decreased muscle strength and quality in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes 2006, 55, 1813–1818. [Google Scholar] [CrossRef]
- Lee, H.T.; Oh, H.O.; Han, H.S.; Jin, K.Y.; Roh, H.L. Effect of mat Pilates exercise on postural alignment and body composition of middle-aged women. J. Phys. Ther. Sci. 2016, 28, 1691–1695. [Google Scholar] [CrossRef]
- Barker, A.L.; Bird, M.L.; Talevski, J. Effect of Pilates exercise for improving balance in older adults: A systematic review with meta-analysis. Arch. Phys. Med. Rehabil. 2015, 96, 715–723. [Google Scholar] [CrossRef]
- Dlugosz-Bós, M.; Filar-Mierzwa, K.; Stawarz, R.; Scislowska-Czarnecka, A.; Jankowicz-Szymanska, A.; Bac, A. Effect of Three Months Pilates Training on Balance and Fall Risk in Older Women. Int. J. Environ. Res. Public Health 2021, 18, 3663. [Google Scholar] [CrossRef]
- Aibar-Almazán, A.; Martínez-Amat, A.; Cruz-Díaz, D.; de la Torre-Cruz, M.J.; Jiménez-García, J.D.; Zagalaz-Anula, N.; Redecillas-Peiró, M.T.; de Guevara, N.M.-L.; Hita-Contreras, F. The Influence of Pilates Exercises on Body Composition, Muscle Strength, and Gait Speed in Community-Dwelling Older Women: A Randomized Controlled Trial. J. Strength. Cond. Res. 2022, 36, 2298–2305. [Google Scholar] [CrossRef]
- García-Garro, P.A.; Hita-Contreras, F.; Martínez-Amat, A.; Achalandabaso-Ochoa, A.; Jiménez-García, J.D.; Cruz-Díaz, D.; Aibar-Almazán, A. Effectiveness of A Pilates Training Program on Cognitive and Functional Abilities in Postmenopausal Women. Int. J. Environ. Res. Public Health 2020, 17, 3580. [Google Scholar] [CrossRef]
- Aibar-Almazán, A.; Hita-Contreras, F.; Cruz-Díaz, D.; de la Torre-Cruz, M.; Jiménez-García, J.D.; Martínez-Amat, A. Effects of Pilates training on sleep quality, anxiety, depression and fatigue in postmenopausal women: A randomized controlled trial. Maturitas 2019, 124, 62–67. [Google Scholar] [CrossRef]
- Aibar-Almazán, A.; Martínez-Amat, A.; Cruz-Díaz, D.; De la Torre-Cruz, M.J.; Jiménez-García, J.D.; Zagalaz-Anula, N.; Pérez-Herrezuelo, I.; Hita-Contreras, F. Effects of Pilates on fall risk factors in community-dwelling elderly women: A randomized, controlled trial. Eur. J. Sport Sci. 2019, 19, 1386–1394. [Google Scholar] [CrossRef]
- González-Devesa, D.; Otero Rodríguez, A.; Blanco-Martínez, N.; Ayán, C. Pilates for people with type 2 diabetes: A systematic review. Diabetes Metab. Syndr. 2024, 18, 102922. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.D.; Tsauo, J.Y.; Lin, L.F.; Huang, S.W.; Ku, J.W.; Chou, J.C.; Liou, T.H. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: A CONSORT-compliant prospective randomized controlled trial. Medicine 2017, 96, e7115. [Google Scholar] [CrossRef] [PubMed]
- Von Scholten, B.J.; Kreiner, F.F.; Gouhh, S.C.; Von Herrath, M. Current and future therapies for type 1 diabetes. Diabetologia. 2021, 64, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletalmuscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of a functional fitness test for community-residing older adults. J. Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human Kinetics: Champaign, IL, USA, 2001. [Google Scholar]
- Berg, K.; Wood-Dauphinee, S.; Williams, G.D. Clinical and laboratory measures of postural balance in an elderly population. Physiother. Can. 1992, 41, 304–311. [Google Scholar] [CrossRef]
- Lopes, J.B.P.; de Melo, G.E.L.; Lazzari, R.D.; Santos, C.A.; de Moura, R.C.F.; Dumont, A.J.L.; Braun, L.A.F.; Duarte, N.A.C.; Pareira, R.B.; Miziara, I.M.; et al. Measures used for the evaluation of balance in individuals with Parkinson’s disease: A systematic review. J. Phys. Ther. Sci. 2016, 28, 936–942. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Naranjo, Y. La diabetes mellitus: Un reto para la salud pública. Rev. Final. 2016, 6, 2221–2434. [Google Scholar]
- Zavala, A.; Fernández, E. Diabetes mellitus tipo 2 en el Ecuador; revisión epidemiológica. Mediciencias UTA 2018, 2, 3–9. [Google Scholar] [CrossRef]
- Wibowo, R.A.; Nurámalia, R.; Nurrahma, H.A.; Oktariani, E.; Setiawan, J.; Icanervilia, A.V.; Agustiningsih, D. The Effect of Yoga on Health-Related Fitness among Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 4199. [Google Scholar] [CrossRef] [PubMed]
- Leonel, L.D.S.; Brum, G.; Alberton, C.L.; Delevatti, R.S. Aquatic training improves HbA1c, blood pressure and functional outcomes of patients with type 2 diabetes: A systematic review with meta-analysis. Diabetes Res. Clin. Pract. 2023, 197, 110575. [Google Scholar] [CrossRef]
- Feng, M.; Gu, L.; Zeng, Y.; Gao, W.; Cai, C.; Chen, Y.; Guo, X. The efficacy of resistance exercise training on metabolic health, body composition, and muscle strength in older adults with type 2 diabetes: A systematic review and Meta-Analysis. Diabetes Res. Clin. Pract. 2025, 222, 112079. [Google Scholar] [CrossRef]
- Valenti, V.E.; Chagas, A.d.S.; Chedraui, P.; de Souza, I.S.; Porto, A.A.; Sorpreso, I.C.E.; Júnior, J.M.S.; Zangirolami-Raimundo, J.; Garner, D.M.; Raimundo, R.D. Effect of combined aerobic exercise and resistance training on postmenopausal women with type 2 diabetes: A systematic review and meta-analysis. Gynecol. Endocrinol. 2025, 41, 2450338. [Google Scholar] [CrossRef]
- Xing, H.; Lu, J.; Yoong, S.Q.; Tan, Y.Q.; Kusuyama, J.; Wu, X.V. Effect of Aerobic and Resistant Exercise Intervention on Inflammaging of Type 2 Diabetes Mellitus in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2022, 23, 823–830.e13. [Google Scholar] [CrossRef]
- Kerner, W.; Brückel, J. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2014, 122, 384–386. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E.; et al. Physical activity, cognition, and brain outcomes: A review of the 2018 physical activity guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef]
- Melov, S.; Tarnopolsky, M.A.; Beckman, K.; Felkey, K.; Hubbard, A. Resistance exercise reverses aging in human skeletal muscle. PLoS ONE 2007, 2, e465. [Google Scholar] [CrossRef]
- Melo, K.C.B.; Araújo, F.S.; Cordeiro Júnior, C.C.M.; de Andrade, K.T.P.; Moreira, S.R. Pilates method training: Functional and blood glucose responses of older women with type 2 diabetes. J. Strength Cond. Res. 2020, 34, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Parra, J.; Moreno, M.; Nicola, C.M.; Nocua, I.I.; Amegló, M.R.; Peña, M.C.; Cordero, C.; Gajardo, M.J. Evaluation of a supervised physical exercise program in sedentary patients over 65 years with type 2 diabetes mellitus. Aten. Primaria 2015, 47, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Nikkhah Ravari, O.; Mousavi, S.Z.; Babak, A. Evaluation of the effects of 12 weeks mindfulness-based stress reduction on glycemic control and mental health indices in women with diabetes mellitus type 2. Adv. Biomed. Res. 2020, 9, 61. [Google Scholar]
- Kozinoga, M.; Majchrzycki, M.; Piotrowska, S. Low back pain in women before and after menopause. Przeglaą D Menopauzalny = Menopause Rev. 2015, 14, 203–207. [Google Scholar] [CrossRef]
- Thind, H.; Lantini, R.; Balletto, B.L.; Donahue, M.L.; Salmoirago-Blotcher, E.; Bock, B.C.; Scott-Sheldon, L.A.J. The effects of yoga among adults with type 2 diabetes: A systematic review and meta-analysis. Prev. Med. 2017, 105, 116–126. [Google Scholar] [CrossRef]
- Ni, Y.X.; Ma, L.; Li, J.P. Effects of mindfulness-based intervention on glycemic control and psychological outcomes in people with diabetes: A systematic review and meta-analysis. J. Diabetes Investig. 2021, 12, 1092–1103. [Google Scholar] [CrossRef]
- Savović, J.; Jones, H.E.; Altman, D.G.; Harris, R.J.; Jüni, P.; Pildal, J.; Als-Nielsen, B.; Balk, E.M.; Gluud, C.; Gluud, L.L.; et al. Influence of reported study design characteristics on intervention effect estimates from randomized, controlled trials. Ann. Intern. Med. 2012, 157, 429–438. [Google Scholar] [CrossRef]
- Streeter, C.C.; Whitfield, T.H.; Owen, L.; Rein, T.; Karri, S.K.; Yakhkind, A.; Perlmutter, R.; Prescot, A.; Renshaw, P.F.; Ciraulo, D.A.; et al. Effects of yoga versus walking on mood, anxiety, and brain GABA levels: A randomized controlled MRS study. J. Altern. Complement. Med. 2010, 16, 1145–1152. [Google Scholar] [CrossRef]
- Bullo, V.; Bergamin, M.; Gobbo, S.; Sieverdes, J.C.; Zaccaria, M.; Neunhaeuserer, D.; Ermolao, A. The effects of Pilates exercise training on physical fitness and well-being in the elderly: A systematic review for future exercise prescription. Prev. Med. 2015, 75, 1–11. [Google Scholar] [CrossRef]
- Campos de Oliveira, L.; Gonçalves de Oliveira, R.; Pires-Oliveira, D.A. Effects of Pilates on muscle strength, postural balance and quality of life of older adults: A randomized, controlled, clinical trial. J. Phys. Ther. Sci. 2015, 27, 871–876. [Google Scholar] [CrossRef]
- Gandolfi, N.R.S.; Corrente, J.E.; De Vitta, A.; Gollino, L.; Mazeto, G.M.F.D.S. The influence of the Pilates method on quality of life and bone remodeling in older women: A controlled study. Qual. Life Res. 2020, 29, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Sarabon, N.; Greblo, Z.; Krizanic, V. Effects of feedback-based balance and core resistance training vs. Pilates training on balance and muscle function in older women: A randomized-controlled trial. Arch. Gerontol. Geriatr. 2015, 61, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Bortone, I.; Sardone, R.; Lampignano, L.; Castellana, F.; Zupo, R.; Lozupone, M.; Moretti, B.; Giannelli, G.; Panza, F. How gait influences frailty models and health-related outcomes in clinical-based and population-based studies: A systematic review. J. Cachexia Sarcopenia Muscle 2021, 12, 274–297. [Google Scholar] [CrossRef]
- Fell, J.; Axmacher, N.; Haupt, S. From alpha to gamma: Electrophysiological correlates of meditation-related states of consciousness. Med. Hypotheses 2010, 75, 218–224. [Google Scholar] [CrossRef]
- Sharma, V.; Das, S.; Mondal, S.; Goswami, U.; Gandhi, A. Effect of Sahaj Yoga on neuro-cognitive functions in patients suffering from major depression. Indian J. Physiol. Pharmacol. 2006, 50, 375. [Google Scholar]
- Newell, D.; Shead, V.; Sloane, L. Changes in gait and balance parameters in elderly subjects attending an 8-week supervised Pilates programme. J. Bodyw. Mov. Ther. 2012, 16, 549–554. [Google Scholar] [CrossRef]
- Penkhoss, Y. Joseph Pilates, a man, a method. KinÈsithÈrapie La Rev. 2021, 21, 3–6. [Google Scholar] [CrossRef]
- Latey, P. The Pilates method: History and philosophy. J. Bodyw. Mov. Ther. 2001, 5, 275–282. [Google Scholar] [CrossRef]
- Geremia, J.M.; Iskiewicz, M.M.; Marschner, R.A.; Lehnen, T.E.; Lehnen, A.M. Effect of a physical training program using the Pilates method on flexibility in elderly subjects. Age 2015, 37, 119. [Google Scholar] [CrossRef]
- Curi, V.S.; VilaÁa, J.; Haas, A.N.; Fernandes, H.M. Effects of 16-weeks of Pilates on health perception and sleep quality among elderly women. Arch. Gerontol. Geriatr. 2018, 74, 118–122. [Google Scholar] [CrossRef]
- Gabizon, H.; Press, Y.; Volkov, I.; Melzer, I. The effects of Pilates training on balance control and self-reported health status in community-dwelling older adults: A randomized controlled trial. J. Aging Phys. Act. 2016, 24, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, L.S.; de Carvalho, F.T.; Freire, L.S.; Neto, O.P.; Zíngaro, R.A. Effects of two exercise protocols on postural balance of elderly women: A randomized controlled trial. BMC Geriatr. 2015, 15, 61. [Google Scholar] [CrossRef] [PubMed]
Weeks | Exercise Focus | Examples of Exercises | Implements Used |
---|---|---|---|
1–2 | Familiarization, chair-based training | Seated spine twist, scapular retraction, seated leg raises, pelvic tilts in chair | None |
3–4 | Standing balance and posture control | Standing marching, lateral leg lifts, mini-squats with arm elevation, wall roll-downs | Light ball (support/feedback) |
5–6 | Mat-based foundation exercises | Supine pelvic curl, one-leg stretch, toe taps, arm arcs | Magic circle, soft ball |
7–9 | Progression in stability and strength | Side-lying leg lifts, seated spine twist with resistance, bridge with ball squeeze, seated rows with band | Elastic band, magic circle, soft ball |
10–12 | Functional integration and challenge | Supine hundred with leg extension, side-kick series, standing band pushes, mat balance with ball | Bands, circle, ball |
Total (n = 104) | Experimental (n = 52) | Control (n = 52) | p-Value | ||
---|---|---|---|---|---|
Age | 70.57 ± 3.15 | 70.67 ± 3.21 | 70.46 ± 3.12 | 0.632 | |
Sex | Male | 31 (29.81) | 15 (48.39) | 16 (51.61) | 0.672 |
Female | 73 (70.19) | 37 (50.68) | 36 (49.32) | ||
Years with the disease | 12.63 ± 7.58 | 13.10 ± 8.41 | 12.15 ± 6.70 | 0.720 | |
Occupational status | Retired | 75 (51.00) | 39 (52.00) | 36 (48.00) | 0.586 |
Worker | 3 (2.00) | 2 (66.70) | 1 (33.30) | ||
Unemployed | 26 (17.70) | 11 (42.30) | 15 (57.70) | ||
Marital status | Single | 14 (9.50) | 8 (57.10) | 6 (42.90) | 0.710 |
Married | 60 (40.80) | 28 (46.70) | 32 (53.3) | ||
Divorced/separated/widowed | 30 (20.40) | 16 (53.3) | 14 (46.7) | ||
Educational status | No education | 12 (8.20) | 9 (75.00) | 3 (25.00) | 0.090 |
Primary education | 65 (44.20) | 34 (52.30) | 31 (47.7) | ||
Secondary education | 20 (13.60) | 6 (30.00) | 14 (70.00) | ||
University education | 7 (4.80) | 4 (57.10) | 3 (42.90) | ||
Height | 1.63 ± 0.11 | 1.63 ± 0.11 | 1.64 ± 0.12 | 0.355 | |
Weight | 70.75 ± 10.81 | 69.41 ± 10.99 | 71.08 ± 10.55 | 0.753 | |
BMI | 26.57 ± 3.14 | 26.14 ± 2.98 | 26.98 ± 3.27 | 0.585 | |
Waist circumference | 95.04 ± 8.84 | 94.38 ± 8.80 | 95.69 ± 8.91 | 0.900 | |
Hip circumference | 107.46 ± 7.14 | 106.96 ± 7.16 | 107.96 ± 7.15 | 0.702 | |
Waist–hip ratio | 0.88 ± 0.62 | 0.88 ± 0.67 | 0.89 ± 0.56 | 0.214 | |
Blood glucose concentration | 139.76 ± 6.86 | 140.05 ± 7.43 | 139. 47 ± 6.30 | 0.368 | |
Handgrip strength | 16.89 ± 3.78 | 17.25 ± 3.83 | 16.52 ± 3.73 | 0.941 | |
Gait speed | 9.60 ± 1.63 | 9.72 ± 1.55 | 9.49 ± 1.70 | 0.412 | |
Right-arm flexibility | −10.40 ± 10.39 | −12.29 ± 10.45 | −8.52 ± 10.10 | 0.711 | |
Left-arm flexibility | −17.84 ± 17.42 | −17.33 ± 12.26 | −18.35 ± 21.50 | 0.932 | |
Right-leg flexibility | −7.10 ± 9.22 | −7.06 ± 9.49 | −7.13 ± 9.03 | 0.322 | |
Left-leg flexibility | −7.20 ± 9.85 | −6.44 ± 9.41 | −7.96 ± 10.31 | 0.932 | |
Balance | 43.12 ± 1.48 | 44.38 ± 9.81 | 41.85 ± 11.05 | 0.282 |
Study | Type of Exercise | Main Findings | Main Limitations |
---|---|---|---|
Wibowo et al. [52] | Yoga (postural exercises, breathing, relaxation) | Yoga improved muscle strength and cardiorespiratory fitness (low-quality evidence). | Methodological flaws and small samples in most studies. |
Leonel et al. [53] | Aquatic training (water aerobics, resistance movements in water) | Aquatic training improved HbA1c (−0.62%), VO2peak, BP, and functional capacity. | Few studies included; more high-quality RCTs needed. |
Feng, M, et al. [54] | Resistance exercise training (RET), including various forms, such as weightlifting, resistance-band exercises, and machine-based resistance training | The meta-analysis demonstrated that RET significantly improved glycemic control, evidenced by reductions in HbA1c (mean difference [MD]: −0.51%, p < 0.0001) and fasting blood glucose (MD: −1.43 mg/dL, p = 0.04). Additionally, RET led to significant reductions in triglycerides (MD: −0.32 mmol/L, p = 0.03), total cholesterol (MD: −7.08 mg/dL, p = 0.005), and LDL cholesterol (MD: −1.91 mg/dL, p = 0.05). RET also increased lean body mass and muscle strength but had no significant effects on body weight, fat mass, blood pressure, or heart rate. | The included studies exhibited heterogeneity in intervention protocols, durations, and intensities. The limited number of high-quality randomized controlled trials (RCTs) and variations in participant characteristics may affect the generalizability of the findings. Further high-quality RCTs are needed to confirm these results and explore the long-term effects of RET in this population. |
Valenti et al. [55] | Combined aerobic and resistance training, including activities such as treadmill walking, cycling, and weightlifting exercises | The meta-analysis demonstrated that combined aerobic and resistance training significantly improved glycemic control, evidenced by reductions in HbA1c levels. Additionally, participants experienced improvements in lipid profiles, including reductions in total cholesterol and LDL cholesterol, as well as enhancements in insulin sensitivity. | The included studies exhibited heterogeneity in intervention protocols, durations, and intensities. The limited number of high-quality randomized controlled trials (RCTs) and variations in participant characteristics may affect the generalizability of the findings. Further high-quality RCTs are needed to confirm these results and explore the long-term effects of combined training in postmenopausal women with type 2 diabetes. |
Xing et al. [56] | Combined aerobic (e.g., walking, cycling) and resistance training (e.g., weightlifting, resistance bands) interventions | The meta-analysis of 14 randomized controlled trials demonstrated that combined aerobic and resistance exercise interventions significantly reduced inflammatory biomarkers associated with inflammaging in middle-aged and older adults with type 2 diabetes mellitus. Specifically, there were significant reductions in interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP) levels. These findings suggest that such exercise interventions can effectively mitigate chronic low-grade inflammation, potentially improving insulin resistance and metabolic health in this population. | The included studies exhibited considerable heterogeneity in intervention protocols, durations, and intensities. Additionally, the overall risk of bias was high, and the certainty of evidence was low for all biomarker outcomes. The small sample sizes and methodological limitations of the included studies limit the generalizability of the findings. Further high-quality, large-scale randomized controlled trials are needed to confirm these results and explore the long-term effects of combined exercise interventions on inflammaging in middle-aged and older adults with type 2 diabetes mellitus. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Ariza, B.; Hita-Contreras, F.; Aibar-Almazán, A.; Carcelén-Fraile, M.D.C.; Castellote-Caballero, Y. A Pilates Exercise Program as a Therapeutic Strategy in Older Adults with Type 2 Diabetes: Effects on Functional Capacity and Blood Glucose. Healthcare 2025, 13, 1012. https://doi.org/10.3390/healthcare13091012
Ruiz-Ariza B, Hita-Contreras F, Aibar-Almazán A, Carcelén-Fraile MDC, Castellote-Caballero Y. A Pilates Exercise Program as a Therapeutic Strategy in Older Adults with Type 2 Diabetes: Effects on Functional Capacity and Blood Glucose. Healthcare. 2025; 13(9):1012. https://doi.org/10.3390/healthcare13091012
Chicago/Turabian StyleRuiz-Ariza, Beatriz, Fidel Hita-Contreras, Agustín Aibar-Almazán, María Del Carmen Carcelén-Fraile, and Yolanda Castellote-Caballero. 2025. "A Pilates Exercise Program as a Therapeutic Strategy in Older Adults with Type 2 Diabetes: Effects on Functional Capacity and Blood Glucose" Healthcare 13, no. 9: 1012. https://doi.org/10.3390/healthcare13091012
APA StyleRuiz-Ariza, B., Hita-Contreras, F., Aibar-Almazán, A., Carcelén-Fraile, M. D. C., & Castellote-Caballero, Y. (2025). A Pilates Exercise Program as a Therapeutic Strategy in Older Adults with Type 2 Diabetes: Effects on Functional Capacity and Blood Glucose. Healthcare, 13(9), 1012. https://doi.org/10.3390/healthcare13091012