Development and Validation of the Artificial Intelligence in Mental Health Scale: Application for AI Mental Health Chatbots
Highlights
- The Artificial Intelligence in Mental Health Scale (AIMHS) is a newly developed tool to measure people’s attitudes toward the use of Artificial Intelligence-based chatbots for mental health support.
- Validity and reliability analyses show that the AIMHS has robust measurement properties.
- Comprising five items and requiring approximately two minutes to administer, the AIMHS represents a concise and user-friendly instrument for evaluating attitudes toward the use of Artificial Intelligence-based chatbots.
- Assessing individuals’ acceptance of AI-based mental health chatbots is critical for understanding their potential integration into mental healthcare services.
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of the Scale
2.2. Participants and Procedure
2.3. Item Analysis
2.4. Construct Validity
2.5. Concurrent Validity
2.6. Reliability
2.7. Ethical Issues
2.8. Statistical Analysis
3. Results
3.1. Item Analysis
3.2. Exploratory Factor Analysis
3.3. Confirmatory Factor Analysis
3.4. Measurement Invariance
3.5. Concurrent Validity
3.6. Reliability
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAAW | Attitudes Towards Artificial Intelligence at Work |
| AI | Artificial Intelligence |
| AIAS | Artificial Intelligence Anxiety Scale |
| AIAS-4 | Artificial Intelligence Attitude Scale |
| AIMHS | Artificial Intelligence in Mental Health Scale |
| ASUAITIN | Attitude Scale Towards the Use of Artificial Intelligence Technologies in Nursing |
| ATAI | Attitudes Towards Artificial Intelligence Scale |
| ATTARI-12 | Attitudes Towards Artificial Intelligence Scale |
| CFA | Confirmatory Factor Analysis |
| CFI | Comparative Fit Index |
| CVR | Content Validity Ratio |
| EFA | Exploratory Factor Analysis |
| GAAIS | General Attitudes Towards Artificial Intelligence Scale |
| GFI | Goodness of Fit Index |
| KMO | Kaiser-Meyer-Olkin |
| NFI | Normed Fit Index |
| RMSEA | Root Mean Square Error of Approximation |
| SPSS | Statistical Package for Social Sciences |
| S-TIAS | Short Trust in Automation Scale |
| TAI | Treats of Artificial Intelligence Scale |
| WHO | World Health Organization |
References
- Sheikh, H.; Prins, C.; Schrijvers, E. Artificial Intelligence: Definition and Background. In Mission AI; Research for Policy; Springer International Publishing: Cham, Switzerland, 2023; pp. 15–41. ISBN 978-3-031-21447-9. [Google Scholar]
- Kamel Rahimi, A.; Canfell, O.J.; Chan, W.; Sly, B.; Pole, J.D.; Sullivan, C.; Shrapnel, S. Machine Learning Models for Diabetes Management in Acute Care Using Electronic Medical Records: A Systematic Review. Int. J. Med. Inform. 2022, 162, 104758. [Google Scholar] [CrossRef]
- Martinez-Millana, A.; Saez-Saez, A.; Tornero-Costa, R.; Azzopardi-Muscat, N.; Traver, V.; Novillo-Ortiz, D. Artificial Intelligence and Its Impact on the Domains of Universal Health Coverage, Health Emergencies and Health Promotion: An Overview of Systematic Reviews. Int. J. Med. Inform. 2022, 166, 104855. [Google Scholar] [CrossRef]
- D’Alfonso, S. AI in Mental Health. Curr. Opin. Psychol. 2020, 36, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Milne-Ives, M.; De Cock, C.; Lim, E.; Shehadeh, M.H.; De Pennington, N.; Mole, G.; Normando, E.; Meinert, E. The Effectiveness of Artificial Intelligence Conversational Agents in Health Care: Systematic Review. J. Med. Internet Res. 2020, 22, e20346. [Google Scholar] [CrossRef] [PubMed]
- Boucher, E.M.; Harake, N.R.; Ward, H.E.; Stoeckl, S.E.; Vargas, J.; Minkel, J.; Parks, A.C.; Zilca, R. Artificially Intelligent Chatbots in Digital Mental Health Interventions: A Review. Expert Rev. Med. Devices 2021, 18, 37–49. [Google Scholar] [CrossRef]
- Koulouri, T.; Macredie, R.D.; Olakitan, D. Chatbots to Support Young Adults’ Mental Health: An Exploratory Study of Acceptability. ACM Trans. Interact. Intell. Syst. 2022, 12, 1–39. [Google Scholar] [CrossRef]
- Lim, S.M.; Shiau, C.W.C.; Cheng, L.J.; Lau, Y. Chatbot-Delivered Psychotherapy for Adults with Depressive and Anxiety Symptoms: A Systematic Review and Meta-Regression. Behav. Ther. 2022, 53, 334–347. [Google Scholar] [CrossRef]
- Sachan, D. Self-Help Robots Drive Blues Away. Lancet Psychiatry 2018, 5, 547. [Google Scholar] [CrossRef]
- Greer, S.; Ramo, D.; Chang, Y.-J.; Fu, M.; Moskowitz, J.; Haritatos, J. Use of the Chatbot “Vivibot” to Deliver Positive Psychology Skills and Promote Well-Being Among Young People After Cancer Treatment: Randomized Controlled Feasibility Trial. JMIR mHealth uHealth 2019, 7, e15018. [Google Scholar] [CrossRef]
- Drouin, M.; Sprecher, S.; Nicola, R.; Perkins, T. Is Chatting with a Sophisticated Chatbot as Good as Chatting Online or FTF with a Stranger? Comput. Hum. Behav. 2022, 128, 107100. [Google Scholar] [CrossRef]
- De Gennaro, M.; Krumhuber, E.G.; Lucas, G. Effectiveness of an Empathic Chatbot in Combating Adverse Effects of Social Exclusion on Mood. Front. Psychol. 2020, 10, 3061. [Google Scholar] [CrossRef] [PubMed]
- Denecke, K.; Vaaheesan, S.; Arulnathan, A. A Mental Health Chatbot for Regulating Emotions (SERMO)—Concept and Usability Test. IEEE Trans. Emerg. Top. Comput. 2021, 9, 1170–1182. [Google Scholar] [CrossRef]
- Inkster, B.; Sarda, S.; Subramanian, V. An Empathy-Driven, Conversational Artificial Intelligence Agent (Wysa) for Digital Mental Well-Being: Real-World Data Evaluation Mixed-Methods Study. JMIR mHealth uHealth 2018, 6, e12106. [Google Scholar] [CrossRef]
- Fitzpatrick, K.K.; Darcy, A.; Vierhile, M. Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment. Health 2017, 4, e19. [Google Scholar] [CrossRef]
- Burns, J.M.; Davenport, T.A.; Durkin, L.A.; Luscombe, G.M.; Hickie, I.B. The Internet as a Setting for Mental Health Service Utilisation by Young People. Med. J. Aust. 2010, 192, S22–S26. [Google Scholar] [CrossRef]
- Eagly, A.; Chaiken, S. The Psychology of Attitudes; Harcourt Brace Jovanovich College Publishers: Fort Worth, TX, USA, 1993. [Google Scholar]
- Ajzen, I. Nature and Operation of Attitudes. Annu. Rev. Psychol. 2001, 52, 27–58. [Google Scholar] [CrossRef] [PubMed]
- Dehbozorgi, R.; Zangeneh, S.; Khooshab, E.; Nia, D.H.; Hanif, H.R.; Samian, P.; Yousefi, M.; Hashemi, F.H.; Vakili, M.; Jamalimoghadam, N.; et al. The Application of Artificial Intelligence in the Field of Mental Health: A Systematic Review. BMC Psychiatry 2025, 25, 132. [Google Scholar] [CrossRef]
- Stein, J.-P.; Messingschlager, T.; Gnambs, T.; Hutmacher, F.; Appel, M. Attitudes towards AI: Measurement and Associations with Personality. Sci. Rep. 2024, 14, 2909. [Google Scholar] [CrossRef]
- Sindermann, C.; Sha, P.; Zhou, M.; Wernicke, J.; Schmitt, H.S.; Li, M.; Sariyska, R.; Stavrou, M.; Becker, B.; Montag, C. Assessing the Attitude Towards Artificial Intelligence: Introduction of a Short Measure in German, Chinese, and English Language. Künstliche Intell. 2021, 35, 109–118. [Google Scholar] [CrossRef]
- Schepman, A.; Rodway, P. The General Attitudes towards Artificial Intelligence Scale (GAAIS): Confirmatory Validation and Associations with Personality, Corporate Distrust, and General Trust. Int. J. Hum. Comput. Interact. 2023, 39, 2724–2741. [Google Scholar] [CrossRef]
- Stein, J.-P.; Liebold, B.; Ohler, P. Stay Back, Clever Thing! Linking Situational Control and Human Uniqueness Concerns to the Aversion against Autonomous Technology. Comput. Hum. Behav. 2019, 95, 73–82. [Google Scholar] [CrossRef]
- Grassini, S. Development and Validation of the AI Attitude Scale (AIAS-4): A Brief Measure of General Attitude toward Artificial Intelligence. Front. Psychol. 2023, 14, 1191628. [Google Scholar] [CrossRef]
- Krägeloh, C.U.; Melekhov, V.; Alyami, M.M.; Medvedev, O.N. Artificial Intelligence Attitudes Inventory (AIAI): Development and Validation Using Rasch Methodology. Curr. Psychol. 2025, 44, 12315–12327. [Google Scholar] [CrossRef]
- Park, J.; Woo, S.E.; Kim, J. Attitudes towards Artificial Intelligence at Work: Scale Development and Validation. J. Occup. Organ. Psychol. 2024, 97, 920–951. [Google Scholar] [CrossRef]
- Kieslich, K.; Lünich, M.; Marcinkowski, F. The Threats of Artificial Intelligence Scale (TAI): Development, Measurement and Test Over Three Application Domains. Int. J. Soc. Robot. 2021, 13, 1563–1577. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Wang, Y.-S. Development and Validation of an Artificial Intelligence Anxiety Scale: An Initial Application in Predicting Motivated Learning Behavior. Interact. Learn. Environ. 2022, 30, 619–634. [Google Scholar] [CrossRef]
- McGrath, M.J.; Lack, O.; Tisch, J.; Duenser, A. Measuring Trust in Artificial Intelligence: Validation of an Established Scale and Its Short Form. Front. Artif. Intell. 2025, 8, 1582880. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, D.; Uzelli, D.; Dikmen, Y. Psychometrics of the Attitude Scale towards the Use of Artificial Intelligence Technologies in Nursing. BMC Nurs. 2025, 24, 151. [Google Scholar] [CrossRef]
- El-Hachem, S.S.; Lakkis, N.A.; Osman, M.H.; Issa, H.G.; Beshara, R.Y. University Students’ Intentions to Seek Psychological Counseling, Attitudes toward Seeking Psychological Help, and Stigma. Soc. Psychiatry Psychiatr. Epidemiol. 2023, 58, 1661–1674. [Google Scholar] [CrossRef]
- Lannin, D.G.; Vogel, D.L.; Brenner, R.E.; Abraham, W.T.; Heath, P.J. Does Self-Stigma Reduce the Probability of Seeking Mental Health Information? J. Couns. Psychol. 2016, 63, 351–358. [Google Scholar] [CrossRef]
- Vogel, D.L.; Wade, N.G.; Hackler, A.H. Perceived Public Stigma and the Willingness to Seek Counseling: The Mediating Roles of Self-Stigma and Attitudes toward Counseling. J. Couns. Psychol. 2007, 54, 40–50. [Google Scholar] [CrossRef]
- Algumaei, A.; Yaacob, N.M.; Doheir, M.; Al-Andoli, M.N.; Algumaie, M. Symmetric Therapeutic Frameworks and Ethical Dimensions in AI-Based Mental Health Chatbots (2020–2025): A Systematic Review of Design Patterns, Cultural Balance, and Structural Symmetry. Symmetry 2025, 17, 1082. [Google Scholar] [CrossRef]
- Casu, M.; Triscari, S.; Battiato, S.; Guarnera, L.; Caponnetto, P. AI Chatbots for Mental Health: A Scoping Review of Effectiveness, Feasibility, and Applications. Appl. Sci. 2024, 14, 5889. [Google Scholar] [CrossRef]
- Hornstein, S.; Zantvoort, K.; Lueken, U.; Funk, B.; Hilbert, K. Personalization Strategies in Digital Mental Health Interventions: A Systematic Review and Conceptual Framework for Depressive Symptoms. Front. Digit. Health 2023, 5, 1170002. [Google Scholar] [CrossRef]
- Chakraborty, C.; Pal, S.; Bhattacharya, M.; Dash, S.; Lee, S.-S. Overview of Chatbots with Special Emphasis on Artificial Intelligence-Enabled ChatGPT in Medical Science. Front. Artif. Intell. 2023, 6, 1237704. [Google Scholar] [CrossRef]
- Chin, H.; Song, H.; Baek, G.; Shin, M.; Jung, C.; Cha, M.; Choi, J.; Cha, C. The Potential of Chatbots for Emotional Support and Promoting Mental Well-Being in Different Cultures: Mixed Methods Study. J. Med. Internet Res. 2023, 25, e51712. [Google Scholar] [CrossRef]
- Laymouna, M.; Ma, Y.; Lessard, D.; Schuster, T.; Engler, K.; Lebouché, B. Roles, Users, Benefits, and Limitations of Chatbots in Health Care: Rapid Review. J. Med. Internet Res. 2024, 26, e56930. [Google Scholar] [CrossRef]
- Moilanen, J.; Van Berkel, N.; Visuri, A.; Gadiraju, U.; Van Der Maden, W.; Hosio, S. Supporting Mental Health Self-Care Discovery through a Chatbot. Front. Digit. Health 2023, 5, 1034724. [Google Scholar] [CrossRef]
- Ogilvie, L.; Prescott, J.; Carson, J. The Use of Chatbots as Supportive Agents for People Seeking Help with Substance Use Disorder: A Systematic Review. Eur. Addict. Res. 2022, 28, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.M.; Liu, A.R.; Danry, V.; Lee, E.; Chan, S.W.T.; Pataranutaporn, P.; Maes, P.; Phang, J.; Lampe, M.; Ahmad, L.; et al. How AI and Human Behaviors Shape Psychosocial Effects of Extended Chatbot Use: A Longitudinal Randomized Controlled Study. arXiv 2025, arXiv:2503.17473. [Google Scholar]
- Namvarpour, M.; Pauwels, H.; Razi, A. AI-Induced Sexual Harassment: Investigating Contextual Characteristics and User Reactions of Sexual Harassment by a Companion Chatbot. Proc. ACM Human-Comput. Interact. 2025, 9, 1–28. [Google Scholar] [CrossRef]
- Hipgrave, L.; Goldie, J.; Dennis, S.; Coleman, A. Balancing Risks and Benefits: Clinicians’ Perspectives on the Use of Generative AI Chatbots in Mental Healthcare. Front. Digit. Health 2025, 7, 1606291. [Google Scholar] [CrossRef]
- De Freitas, J.; Uğuralp, A.K.; Oğuz-Uğuralp, Z.; Puntoni, S. Chatbots and Mental Health: Insights into the Safety of Generative AI. J. Consum. Psychol. 2024, 34, 481–491. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef]
- Davis, F.D.; Granić, A. The Technology Acceptance Model: 30 Years of TAM; Human–Computer Interaction Series; Springer International Publishing: Cham, Switzerland, 2024; ISBN 978-3-030-45273-5. [Google Scholar]
- DeVellis, R.F.; Thorpe, C.T. Scale Development: Theory and Applications, 5th ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2022; ISBN 978-1-5443-7934-0. [Google Scholar]
- Johnson, R.L.; Morgan, G.B. Survey Scales: A Guide to Development, Analysis, and Reporting; The Guilford Press: New York, NY, USA, 2016; ISBN 978-1-4625-2696-3. [Google Scholar]
- Saris, W.E. Design, Evaluation, and Analysis of Questionnaires for Survey Research, 2nd ed.; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-1-118-63461-5. [Google Scholar]
- Gnambs, T.; Stein, J.-P.; Appel, M.; Griese, F.; Zinn, S. An Economical Measure of Attitudes towards Artificial Intelligence in Work, Healthcare, and Education (ATTARI-WHE). Comput. Hum. Behav. Artif. Hum. 2025, 3, 100106. [Google Scholar] [CrossRef]
- Klarin, J.; Hoff, E.; Larsson, A.; Daukantaitė, D. Adolescents’ Use and Perceived Usefulness of Generative AI for Schoolwork: Exploring Their Relationships with Executive Functioning and Academic Achievement. Front. Artif. Intell. 2024, 7, 1415782. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Ward, C.; Mendelson, M.; Mock, J.; Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961, 4, 561. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An Inventory for Measuring Clinical Anxiety: Psychometric Properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef]
- Hamilton, M. The Assessment of Anxiety States by Rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W.; Lowe, B. An Ultra-Brief Screening Scale for Anxiety and Depression: The PHQ-4. Psychosomatics 2009, 50, 613–621. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a Brief Depression Severity Measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Mughal, A.Y.; Devadas, J.; Ardman, E.; Levis, B.; Go, V.F.; Gaynes, B.N. A Systematic Review of Validated Screening Tools for Anxiety Disorders and PTSD in Low to Middle Income Countries. BMC Psychiatry 2020, 20, 338. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Ayre, C.; Scally, A.J. Critical Values for Lawshe’s Content Validity Ratio: Revisiting the Original Methods of Calculation. Meas. Eval. Couns. Dev. 2014, 47, 79–86. [Google Scholar] [CrossRef]
- Meadows, K. Cognitive Interviewing Methodologies. Clin. Nurs. Res. 2021, 30, 375–379. [Google Scholar] [CrossRef]
- Yusoff, M.S.B. ABC of Response Process Validation and Face Validity Index Calculation. Educ. Med. J. 2019, 11, 55–61. [Google Scholar] [CrossRef]
- Wu, M.-J.; Zhao, K.; Fils-Aime, F. Response Rates of Online Surveys in Published Research: A Meta-Analysis. Comput. Hum. Behav. Rep. 2022, 7, 100206. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most from Your Analysis. Pract. Assess. Res. Eval. 2005, 10, 7. [Google Scholar] [CrossRef]
- DeVon, H.A.; Block, M.E.; Moyle-Wright, P.; Ernst, D.M.; Hayden, S.J.; Lazzara, D.J.; Savoy, S.M.; Kostas-Polston, E. A Psychometric Toolbox for Testing Validity and Reliability. J. Nurs. Scholarsh. 2007, 39, 155–164. [Google Scholar] [CrossRef]
- De Vaus, D. Surveys in Social Research, 5th ed.; Routledge: London, UK, 2004. [Google Scholar]
- Yusoff, M.S.B.; Arifin, W.N.; Hadie, S.N.H. ABC of Questionnaire Development and Validation for Survey Research. Educ. Med. J. 2021, 13, 97–108. [Google Scholar] [CrossRef]
- Hair, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2017. [Google Scholar]
- De Winter, J.C.F.; Dodou, D.; Wieringa, P.A. Exploratory Factor Analysis with Small Sample Sizes. Multivar. Behav. Res. 2009, 44, 147–181. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. An Index of Factorial Simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistics Notes: Cronbach’s Alpha. BMJ 1997, 314, 572. [Google Scholar] [CrossRef]
- Baumgartner, H.; Homburg, C. Applications of Structural Equation Modeling in Marketing and Consumer Research: A Review. Int. J. Res. Mark. 1996, 13, 139–161. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Putnick, D.L.; Bornstein, M.H. Measurement Invariance Conventions and Reporting: The State of the Art and Future Directions for Psychological Research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.F. Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Struct. Equ. Model. Multidiscip. J. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Katsiroumpa, A.; Moisoglou, I.; Gallos, P.; Galani, O.; Tsiachri, M.; Lialiou, P.; Konstantakopoulou, O.; Lamprakopoulou, K.; Galanis, P. Artificial Intelligence Attitude Scale: Translation and Validation in Greek. Arch. Hell. Med. 2026; in press. [Google Scholar]
- Konstantakopoulou, O.; Katsiroumpa, A.; Moisoglou, I.; Gallos, P.; Galani, O.; Tsiachri, M.; Lialiou, P.; Lamprakopoulou, K.; Galanis, P. Attitudes Towards Artificial Intelligence Scale: Translation and Validation in Greek. Arch. Hell. Med. 2026; in press. [Google Scholar]
- Katsiroumpa, A.; Moisoglou, I.; Gallos, P.; Galani, O.; Tsiachri, M.; Lialiou, P.; Konstantakopoulou, O.; Lamprakopoulou, K.; Galanis, P. Short Trust in Automation Scale: Translation and Validation in Greek. Arch. Hell. Med. 2026; in press. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Mental Health: Strengthening Our Response; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Grand View Research. AI In Mental Health Market Size, Share & Trends Analysis Report; Grand View Research: San Francisco, CA, USA, 2025. [Google Scholar]
- Data Bridge Market Research. Global Mental Health Chatbot Services Market Size, Share, and Trends Analysis Report—Industry Overview and Forecast to 2032; Data Bridge Market Research: Pune, India, 2025. [Google Scholar]


| Artificial Intelligence Chatbots … | Mean (Standard Deviation) | Corrected Item-Total Correlation | Floor Effect (%) | Ceiling Effect (%) | Skewness | Kurtosis | Cronbach’s Alpha if Item Deleted | Item Exclusion or Retention |
|---|---|---|---|---|---|---|---|---|
| 2.36 (0.94) | 0.543 | 19.4 | 0.5 | 0.21 | −0.67 | 0.882 | Retained |
| 2.91 (0.94) | 0.587 | 7.7 | 1.6 | −0.28 | −0.52 | 0.879 | Retained |
| 2.77 (0.79) | 0.566 | 7.0 | 0.5 | −0.37 | 0.13 | 0.881 | Retained |
| 1.76 (0.79) | 0.491 | 42.5 | 0.1 | 0.85 | 0.41 | 0.884 | Retained |
| 2.30 (1.02) | 0.492 | 25.9 | 0.5 | 0.26 | −0.93 | 0.884 | Retained |
| 1.95 (0.81) | 0.541 | 32.2 | 0.5 | 0.49 | −0.11 | 0.882 | Retained |
| 3.29 (0.96) | 0.672 | 5.8 | 4.7 | −0.70 | 0.01 | 0.875 | Retained |
| 3.43 (0.90) | 0.708 | 4.2 | 6.5 | −0.75 | 0.52 | 0.874 | Retained |
| 3.44 (0.93) | 0.611 | 4.4 | 7.9 | −0.70 | 0.40 | 0.878 | Retained |
| 3.08 (1.02) | 0.460 | 7.5 | 4.2 | −0.33 | −0.69 | 0.886 | Retained |
| 3.03 (0.80) | 0.501 | 4.0 | 0.9 | −0.41 | 0.12 | 0.883 | Retained |
| 3.07 (0.82) | 0.559 | 4.7 | 0.9 | −0.54 | 0.13 | 0.881 | Retained |
| 2.72 (0.92) | 0.625 | 9.6 | 0.9 | −0.09 | −0.60 | 0.878 | Retained |
| 2.69 (0.90) | 0.582 | 9.8 | 0.7 | −0.10 | −0.57 | 0.880 | Retained |
| Artificial Intelligence Chatbots … | Factors | Communalities | ||
|---|---|---|---|---|
| First (Items #4, #6) | Second (Items #7, #8, #9) | Third (Items #3, #12) | ||
| 0.344 | 0.578 | 0.399 | 0.463 |
| 0.536 | 0.437 | 0.491 | 0.467 |
| 0.361 | 0.471 | 0.601 | 0.403 |
| 0.226 | 0.831 | 0.263 | 0.536 |
| 0.410 | 0.537 | 0.348 | 0.348 |
| 0.302 | 0.745 | 0.381 | 0.488 |
| 0.815 | 0.425 | 0.472 | 0.655 |
| 0.933 | 0.388 | 0.489 | 0.730 |
| 0.792 | 0.233 | 0.486 | 0.592 |
| 0.511 | 0.277 | 0.544 | 0.341 |
| 0.355 | 0.294 | 0.483 | 0.250 |
| 0.403 | 0.280 | 0.778 | 0.404 |
| 0.483 | 0.586 | 0.552 | 0.481 |
| 0.438 | 0.549 | 0.552 | 0.450 |
| Eigenvalues | 5.604 | 1.632 | 1.130 | |
| % of variance | 40.030 | 11.655 | 8.073 | |
| Cumulative % of variance | 40.030 | 51.685 | 59.758 | |
| Artificial Intelligence Chatbots … | Factors | Communalities | |
|---|---|---|---|
| First (Items #7, #8, #9) | Second (Items #4, #6) | ||
| 0.370 | 0.473 | 0.330 |
| 0.248 | 0.775 | 0.438 |
| 0.321 | 0.806 | 0.445 |
| 0.811 | 0.385 | 0.617 |
| 0.938 | 0.368 | 0.714 |
| 0.783 | 0.208 | 0.568 |
| 0.391 | 0.294 | 0.292 |
| Eigenvalues | 3.211 | 1.423 | |
| % of variance | 45.870 | 20.329 | |
| Cumulative % of variance | 45.870 | 66.199 | |
| Artificial Intelligence Chatbots … | Factors | Communalities | |
|---|---|---|---|
| First (Items #4, #6) | Second (Items #7, #8, #9) | ||
| 0.982 | 0.215 | 0.415 |
| 0.649 | 0.293 | 0.420 |
| 0.353 | 0.799 | 0.606 |
| 0.314 | 0.958 | 0.710 |
| 0.161 | 0.771 | 0.556 |
| Eigenvalues | 2.696 | 1.368 | |
| % of variance | 53.922 | 27.357 | |
| Cumulative % of variance | 53.922 | 81.280 | |
| Variable | Levels of Measurement Invariance | RMSEA | CFI | SRMR | ΔRMSEA | ΔCFI | ΔSRMR |
|---|---|---|---|---|---|---|---|
| Gender | Configural | <0.001 | 1.000 | 0.026 | |||
| Metric | <0.001 | 1.000 | 0.035 | 0.000 | 0.000 | 0.009 | |
| Scalar | <0.001 | 1.000 | 0.050 | 0.000 | 0.000 | 0.015 | |
| Age | Configural | <0.001 | 1.000 | 0.016 | |||
| Metric | <0.001 | 1.000 | 0.043 | 0.000 | 0.000 | 0.027 | |
| Scalar | <0.001 | 1.000 | 0.049 | 0.000 | 0.000 | 0.006 | |
| Daily use of artificial intelligence chatbots, social media platforms, and websites | Configural | <0.001 | 1.000 | 0.019 | |||
| Metric | <0.001 | 1.000 | 0.040 | 0.000 | 0.000 | 0.021 | |
| Scalar | <0.001 | 1.000 | 0.061 | 0.000 | 0.000 | 0.021 |
| Artificial Intelligence in Mental Health Scale | ||
|---|---|---|
| Pearson’s Correlation Coefficient | p-Value | |
| Artificial Intelligence Attitude Scale | 0.405 | <0.001 |
| Attitudes Towards Artificial Intelligence Scale (acceptance subscale) | 0.401 | <0.001 |
| Attitudes Towards Artificial Intelligence Scale (fear subscale) | −0.151 | 0.002 |
| Short Trust in Automation Scale | 0.450 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsiroumpa, A.; Konstantakopoulou, O.; Moisoglou, I.; Gallos, P.; Galani, O.; Lialiou, P.; Tsiachri, M.; Galanis, P. Development and Validation of the Artificial Intelligence in Mental Health Scale: Application for AI Mental Health Chatbots. Healthcare 2025, 13, 3269. https://doi.org/10.3390/healthcare13243269
Katsiroumpa A, Konstantakopoulou O, Moisoglou I, Gallos P, Galani O, Lialiou P, Tsiachri M, Galanis P. Development and Validation of the Artificial Intelligence in Mental Health Scale: Application for AI Mental Health Chatbots. Healthcare. 2025; 13(24):3269. https://doi.org/10.3390/healthcare13243269
Chicago/Turabian StyleKatsiroumpa, Aglaia, Olympia Konstantakopoulou, Ioannis Moisoglou, Parisis Gallos, Olga Galani, Paschalina Lialiou, Maria Tsiachri, and Petros Galanis. 2025. "Development and Validation of the Artificial Intelligence in Mental Health Scale: Application for AI Mental Health Chatbots" Healthcare 13, no. 24: 3269. https://doi.org/10.3390/healthcare13243269
APA StyleKatsiroumpa, A., Konstantakopoulou, O., Moisoglou, I., Gallos, P., Galani, O., Lialiou, P., Tsiachri, M., & Galanis, P. (2025). Development and Validation of the Artificial Intelligence in Mental Health Scale: Application for AI Mental Health Chatbots. Healthcare, 13(24), 3269. https://doi.org/10.3390/healthcare13243269

