Multivariate Patterns in Mental Health Burden and Psychiatric Resource Allocation in Europe: A Principal Component Analysis
Abstract
1. Introduction
- Carry out a rigorous selection of clinically and epidemiologically relevant indicators that reflect the prevalence/severity of mental disorders and the institutional capacity for diagnosis and treatment in the Member States of the European Union.
- Apply a principal component analysis (PCA) to reduce the dimensionality of the dataset and extract statistically and clinically significant components.
- Define the latent dimensions underlying inter-state variability in mental health by interpreting the factor loadings associated with each component.
- Calculate standardized factor scores for each Member State and classify countries according to the resulting mental health profiles.
- Correlate these profiles with structural aspects of health systems (human and material resources) to assess the degree of alignment between population needs and institutional response.
- Based on the results obtained, substantiate public policy proposals tailored to the specific context of each group of countries, aimed at optimizing mental health interventions and reducing disparities.
- Q1.
- How can these components and scores be used to construct a European mental health taxonomy that would enable monitoring national performance and inform differentiated and effective public policies?
- Q2.
- What are the implications of these findings in terms of institutional reform and future strategies for prevention, early intervention, and destigmatization in mental health?
2. Materials and Methods
2.1. Study Design
2.2. Variables and Data Source
| Symbol | Indicator Name * | Analytical Category | Type of Measure | Original Scale/Unit ** | Source (Repository Code) |
|---|---|---|---|---|---|
| DT | Causes of death—deaths by country of residence and occurrence | Epidemiological outcome | Mortality | Number of deaths | Eurostat, hlth_cd_aro [59] |
| LE | Life expectancy at birth | General health outcome | Population longevity | Years | Eurostat, demo_mlexpec [60] |
| PGPH | Perceived health: share of population reporting good/very good health | Perception indicator | Self-reported health status | Percentage of population | Eurostat, sdg_03_20 [61] |
| CHE | Total current health care expenditure | Resource indicator | Expenditure | Euro per capita | Eurostat, tps00207 [62] |
| HBTI | Hospital beds | Resource indicator | Infrastructure | Beds per 100,000 inhabitants | Eurostat, tps00046 [63] |
| DDRUG | Deaths due to drug dependence | Epidemiological outcome | Addictive mortality | % of total deaths | Eurostat, tps00149 [64] |
| DSUICID | Deaths due to suicide | Epidemiological outcome | Suicide mortality | % of total deaths | Eurostat, tps00122 [65] |
| DALC | Deaths due to alcohol abuse | Epidemiological outcome | Addictive mortality | % of total deaths | Eurostat, tps00140 [66] |
| DSNERV | Deaths due to diseases of the nervous system | Epidemiological outcome | Neurological mortality | % of total deaths | Eurostat, tps00134 [67] |
| TSPEC | Physicians by medical specialty | Resource indicator | Workforce capacity | Number | Eurostat, hlth_rs_spec [68] |
| PSIHSPEC | Psychiatrists by specialty | Resource indicator | Workforce capacity | Number | Eurostat, hlth_rs_spec [69] |
| EXTPT | Hospital discharges—total (A00–Z99, excl. V00-Y98, Z38) | Epidemiological outcome | Hospital morbidity | Number of discharges | Eurostat, hlth_co_disch1 [70] |
| EXTP-MENTAL | Hospital discharges—mental and behavioural disorders (F00–F99) | Epidemiological outcome | Psychiatric morbidity | Number of discharges | Eurostat, hlth_co_disch1 [70] |
| EXTP-DEMENT | Hospital discharges—dementia | Epidemiological outcome | Dementia morbidity | Number of discharges | Eurostat, hlth_co_disch1 [70] |
| EXTP-ALC | Hospital discharges—mental disorders due to alcohol use | Epidemiological outcome | Alcohol-related psychiatric morbidity | Number of discharges | Eurostat, hlth_co_disch1 [70] |
| EXTP-DRUG | Hospital discharges—mental disorders due to psychoactive substances | Epidemiological outcome | Drug-related psychiatric morbidity | Number of discharges | Eurostat, hlth_co_disch1 [70] |
| EXTP-SCHIZ | Hospital discharges—schizophrenia, schizotypal and delusional disorders | Epidemiological outcome | Severe mental disorder morbidity | Number of discharges | Eurostat, hlth_co_disch1 [70] |
| EXTP-AFECT | Hospital discharges—mood (affective) disorders | Epidemiological outcome | Affective disorder morbidity | Number of discharges | Eurostat, hlth_co_disch1 |
2.3. Integration of Datasets and Limitations
2.4. Statistical Methods
3. Results
3.1. Sampling Adequacy and PCA Dimensionality Checks
3.2. Component Extraction and Variance Explained
3.3. Rotated Structure and Interpretation of Loadings
3.4. Results of the KMEANS Cluster Analysis
4. Discussion
4.1. Classification of European Union Member States According to Psychosocial Risk Patterns Identified with Principal Component Analysis
4.2. Contextualizing Psychosocial Risk Patterns and Strategic Directions in European Mental Health Policies
4.3. Using Key Components to Build a European Mental Health Taxonomy
4.4. Implications for Institutional Reform and Mental Health Strategies in Europe
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Test/Year | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | 0.723 | 0.717 | 0.722 | 0.704 | 0.715 | 0.698 | 0.680 | 0.663 | 0.596 | 0.553 | |
| Bartlett’s Test of Sphericity | Approx. Chi-Square | 779.385 | 809.399 | 797.592 | 790.304 | 805.359 | 802.723 | 783.901 | 780.962 | 812.230 | 818.990 |
| df | 153.000 | 153.000 | 153.000 | 153.000 | 153.000 | 153.000 | 153.000 | 153.000 | 153.000 | 153.000 | |
| Sig. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| Variables | Initial | Extraction | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | ||
| DT | 1.000 | 0.899 | 0.898 | 0.895 | 0.888 | 0.907 | 0.911 | 0.874 | 0.888 | 0.884 | 0.883 |
| LEX | 1.000 | 0.705 | 0.730 | 0.712 | 0.721 | 0.712 | 0.741 | 0.770 | 0.768 | 0.760 | 0.748 |
| PGPH | 1.000 | 0.662 | 0.653 | 0.656 | 0.684 | 0.673 | 0.663 | 0.613 | 0.501 | 0.480 | 0.483 |
| CHE | 1.000 | 0.866 | 0.871 | 0.852 | 0.843 | 0.810 | 0.770 | 0.738 | 0.703 | 0.709 | 0.691 |
| HBTI | 1.000 | 0.750 | 0.725 | 0.702 | 0.693 | 0.699 | 0.709 | 0.684 | 0.695 | 0.675 | 0.680 |
| DDRUG | 1.000 | 0.604 | 0.698 | 0.745 | 0.748 | 0.710 | 0.677 | 0.626 | 0.681 | 0.691 | 0.731 |
| DSUICID | 1.000 | 0.685 | 0.755 | 0.731 | 0.735 | 0.786 | 0.737 | 0.761 | 0.698 | 0.758 | 0.794 |
| DALC | 1.000 | 0.590 | 0.614 | 0.639 | 0.524 | 0.538 | 0.534 | 0.557 | 0.646 | 0.690 | 0.682 |
| DSNERV | 1.000 | 0.428 | 0.382 | 0.384 | 0.454 | 0.467 | 0.465 | 0.486 | 0.483 | 0.502 | 0.482 |
| TSPEC | 1.000 | 0.899 | 0.898 | 0.894 | 0.905 | 0.856 | 0.868 | 0.857 | 0.862 | 0.861 | 0.865 |
| PSIHSPEC | 1.000 | 0.907 | 0.901 | 0.897 | 0.900 | 0.958 | 0.961 | 0.962 | 0.961 | 0.963 | 0.962 |
| EXTPT | 1.000 | 0.979 | 0.979 | 0.978 | 0.979 | 0.990 | 0.990 | 0.989 | 0.989 | 0.984 | 0.982 |
| EXTPMENTAL | 1.000 | 0.946 | 0.948 | 0.951 | 0.952 | 0.976 | 0.976 | 0.976 | 0.975 | 0.975 | 0.973 |
| EXTPDEMENT | 1.000 | 0.596 | 0.558 | 0.558 | 0.539 | 0.614 | 0.612 | 0.613 | 0.606 | 0.660 | 0.684 |
| EXTPALC | 1.000 | 0.916 | 0.916 | 0.922 | 0.925 | 0.920 | 0.919 | 0.919 | 0.918 | 0.930 | 0.925 |
| EXTPDRUG | 1.000 | 0.835 | 0.847 | 0.855 | 0.855 | 0.814 | 0.819 | 0.823 | 0.828 | 0.815 | 0.823 |
| EXTPSCHIZ | 1.000 | 0.873 | 0.876 | 0.879 | 0.881 | 0.874 | 0.867 | 0.859 | 0.861 | 0.891 | 0.885 |
| EXTPAFECT | 1.000 | 0.902 | 0.903 | 0.908 | 0.906 | 0.958 | 0.957 | 0.957 | 0.954 | 0.960 | 0.953 |
| Component/Year | Extraction Sums of Squared Loadings (% of Variance) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
| 1 | 49.09 | 49.32 | 49.73 | 49.36 | 50.72 | 50.05 | 49.59 | 49.67 | 50.28 | 50.3 |
| 2 | 18.56 | 18.38 | 18.21 | 18.48 | 17.48 | 17.55 | 17.55 | 16.44 | 15.52 | 15.32 |
| 3 | 10.36 | 10.91 | 10.72 | 10.69 | 11.02 | 11.16 | 10.98 | 11.77 | 13.02 | 13.4 |
| Total | 78.01 | 78.61 | 78.66 | 78.53 | 79.22 | 78.76 | 78.12 | 77.88 | 78.82 | 79.02 |
| Component/Year | Rotation Sums of Squared Loadings (% of Variance) | |||||||||
| 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
| 1 | 48.36 | 48.65 | 49.1 | 48.87 | 50.23 | 49.65 | 49.45 | 49.52 | 50.16 | 50.05 |
| 2 | 17.97 | 18.39 | 18.25 | 17.85 | 17.17 | 16.74 | 17.37 | 16.32 | 15.16 | 15.39 |
| 3 | 11.69 | 11.58 | 11.32 | 11.8 | 11.83 | 12.36 | 11.32 | 12.04 | 13.5 | 13.58 |
| Total | 78.02 | 78.62 | 78.67 | 78.52 | 79.23 | 78.75 | 78.14 | 77.88 | 78.82 | 79.02 |
| Variable | All Years | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EXTPT | Component 1 | 0.991 | 0.988 | 0.989 | 0.989 | 0.989 | 0.995 | 0.995 | 0.994 | 0.994 | 0.991 | 0.991 |
| EXTPMENTAL | 0.974 | 0.959 | 0.959 | 0.960 | 0.965 | 0.981 | 0.980 | 0.982 | 0.981 | 0.983 | 0.980 | |
| EXTPAFECT | 0.961 | 0.939 | 0.938 | 0.940 | 0.943 | 0.973 | 0.971 | 0.973 | 0.972 | 0.976 | 0.972 | |
| PSIHSPEC | 0.956 | 0.937 | 0.935 | 0.933 | 0.930 | 0.965 | 0.966 | 0.970 | 0.970 | 0.972 | 0.973 | |
| EXTPALC | 0.937 | 0.931 | 0.930 | 0.932 | 0.939 | 0.942 | 0.940 | 0.943 | 0.941 | 0.954 | 0.946 | |
| DT | 0.929 | 0.937 | 0.935 | 0.933 | 0.924 | 0.940 | 0.940 | 0.918 | 0.932 | 0.931 | 0.931 | |
| EXTPSCHIZ | 0.925 | 0.925 | 0.927 | 0.929 | 0.932 | 0.934 | 0.931 | 0.926 | 0.927 | 0.943 | 0.940 | |
| TSPEC | 0.913 | 0.930 | 0.929 | 0.926 | 0.925 | 0.903 | 0.905 | 0.900 | 0.913 | 0.912 | 0.916 | |
| EXTPDRUG | 0.896 | 0.895 | 0.899 | 0.900 | 0.908 | 0.888 | 0.891 | 0.896 | 0.897 | 0.896 | 0.898 | |
| EXTPDEMENT | 0.766 | 0.741 | 0.728 | 0.743 | 0.728 | 0.781 | 0.775 | 0.776 | 0.771 | 0.807 | 0.820 | |
| CHE | 0.185 | 0.145 | 0.161 | 0.166 | 0.170 | 0.195 | 0.185 | 0.196 | 0.189 | 0.225 | 0.209 | |
| LEX | 0.124 | 0.144 | 0.112 | 0.120 | 0.102 | 0.132 | 0.132 | 0.104 | 0.131 | 0.143 | 0.141 | |
| HBTI | 0.384 | 0.357 | 0.370 | 0.386 | 0.407 | 0.408 | 0.399 | 0.384 | 0.375 | 0.367 | 0.358 | |
| PGPH | 0.008 | 0.009 | 0.011 | 0.036 | 0.036 | 0.026 | −0.001 | −0.035 | −0.028 | −0.022 | 0.018 | |
| DSNERV | −0.046 | −0.046 | −0.040 | −0.043 | −0.065 | −0.039 | −0.055 | −0.049 | −0.055 | −0.051 | −0.039 | |
| DALC | 0.029 | 0.030 | 0.016 | 0.001 | 0.064 | 0.037 | 0.037 | 0.011 | 0.019 | −0.004 | 0.048 | |
| DSUICID | −0.090 | −0.122 | −0.165 | −0.153 | −0.100 | −0.121 | −0.075 | −0.078 | −0.063 | −0.024 | −0.003 | |
| DDRUG | 0.240 | 0.217 | 0.320 | 0.378 | 0.309 | 0.337 | 0.205 | 0.224 | 0.163 | 0.141 | 0.134 | |
| EXTPT | Component 2 | 0.011 | 0.028 | 0.016 | 0.014 | 0.032 | 0.018 | 0.016 | −0.001 | −0.002 | 0.006 | 0.015 |
| EXTPMENTAL | 0.004 | −0.079 | −0.064 | −0.050 | 0.022 | 0.028 | 0.058 | 0.021 | 0.010 | 0.030 | 0.009 | |
| EXTPAFECT | 0.021 | −0.062 | −0.050 | −0.036 | 0.029 | 0.045 | 0.074 | 0.039 | 0.026 | 0.046 | 0.029 | |
| PSIHSPEC | 0.147 | 0.157 | 0.161 | 0.165 | 0.170 | 0.157 | 0.145 | 0.138 | 0.136 | 0.113 | 0.120 | |
| EXTPALC | 0.004 | −0.082 | −0.053 | −0.037 | 0.055 | 0.021 | 0.069 | 0.021 | 0.006 | 0.026 | −0.019 | |
| DT | 0.027 | 0.101 | 0.080 | 0.070 | 0.025 | 0.027 | −0.003 | −0.008 | −0.033 | −0.019 | 0.036 | |
| EXTPSCHIZ | −0.058 | −0.122 | −0.129 | −0.130 | −0.113 | −0.020 | −0.014 | −0.039 | −0.040 | −0.021 | −0.025 | |
| TSPEC | 0.079 | 0.148 | 0.123 | 0.115 | 0.063 | 0.078 | 0.043 | 0.044 | 0.064 | 0.024 | 0.055 | |
| EXTPDRUG | 0.070 | −0.003 | 0.005 | 0.015 | 0.090 | 0.083 | 0.120 | 0.087 | 0.079 | 0.065 | 0.034 | |
| EXTPDEMENT | −0.031 | −0.015 | 0.014 | 0.013 | 0.047 | −0.010 | −0.020 | −0.074 | −0.098 | −0.021 | −0.029 | |
| CHE | 0.833 | 0.679 | 0.757 | 0.788 | 0.894 | 0.863 | 0.858 | 0.832 | 0.813 | 0.810 | 0.794 | |
| LEX | 0.824 | 0.789 | 0.838 | 0.833 | 0.799 | 0.813 | 0.785 | 0.858 | 0.862 | 0.821 | 0.841 | |
| HBTI | −0.687 | −0.776 | −0.737 | −0.716 | −0.587 | −0.648 | −0.581 | −0.681 | −0.706 | −0.694 | −0.724 | |
| PGPH | 0.647 | 0.813 | 0.799 | 0.773 | 0.620 | 0.644 | 0.539 | 0.644 | 0.558 | 0.354 | 0.505 | |
| DSNERV | 0.634 | 0.497 | 0.540 | 0.604 | 0.668 | 0.663 | 0.669 | 0.660 | 0.655 | 0.672 | 0.619 | |
| DALC | 0.089 | −0.107 | −0.050 | −0.036 | 0.200 | 0.118 | 0.258 | 0.065 | 0.028 | 0.070 | 0.037 | |
| DSUICID | −0.373 | −0.726 | −0.652 | −0.586 | −0.276 | −0.300 | −0.135 | −0.206 | −0.235 | −0.087 | −0.132 | |
| DDRUG | 0.487 | 0.106 | 0.245 | 0.287 | 0.651 | 0.514 | 0.670 | 0.547 | 0.445 | 0.554 | 0.479 | |
| EXTPT | Component 3 | −0.015 | 0.036 | 0.022 | 0.023 | −0.027 | −0.014 | −0.027 | −0.028 | −0.016 | −0.037 | −0.021 |
| EXTPMENTAL | 0.123 | 0.140 | 0.155 | 0.162 | 0.141 | 0.116 | 0.111 | 0.109 | 0.111 | 0.089 | 0.111 | |
| EXTPAFECT | 0.107 | 0.133 | 0.145 | 0.152 | 0.123 | 0.099 | 0.091 | 0.093 | 0.088 | 0.071 | 0.092 | |
| PSIHSPEC | −0.041 | 0.065 | 0.024 | 0.009 | −0.073 | −0.041 | −0.082 | −0.048 | −0.039 | −0.070 | −0.042 | |
| EXTPALC | 0.188 | 0.207 | 0.219 | 0.225 | 0.202 | 0.180 | 0.173 | 0.172 | 0.182 | 0.140 | 0.173 | |
| DT | −0.155 | −0.105 | −0.136 | −0.139 | −0.186 | −0.149 | −0.166 | −0.176 | −0.133 | −0.132 | −0.121 | |
| EXTPSCHIZ | 0.013 | −0.042 | −0.017 | −0.012 | 0.016 | 0.015 | 0.027 | 0.027 | 0.021 | 0.040 | 0.038 | |
| TSPEC | −0.177 | −0.112 | −0.144 | −0.150 | −0.213 | −0.185 | −0.216 | −0.211 | −0.154 | −0.169 | −0.153 | |
| EXTPDRUG | 0.143 | 0.188 | 0.197 | 0.210 | 0.154 | 0.134 | 0.104 | 0.113 | 0.129 | 0.089 | 0.120 | |
| EXTPDEMENT | 0.084 | 0.216 | 0.166 | 0.078 | 0.083 | 0.068 | 0.104 | 0.068 | 0.042 | 0.095 | 0.105 | |
| CHE | 0.182 | 0.620 | 0.521 | 0.451 | 0.125 | 0.166 | −0.012 | 0.084 | 0.084 | −0.046 | 0.130 | |
| LEX | −0.114 | 0.247 | 0.119 | 0.062 | −0.269 | −0.183 | −0.326 | −0.151 | −0.091 | −0.257 | −0.146 | |
| HBTI | 0.280 | 0.140 | 0.214 | 0.201 | 0.428 | 0.336 | 0.461 | 0.270 | 0.235 | 0.243 | 0.164 | |
| PGPH | −0.433 | 0.022 | −0.122 | −0.239 | −0.546 | −0.507 | −0.610 | −0.444 | −0.435 | −0.595 | −0.477 | |
| DSNERV | 0.213 | 0.423 | 0.298 | 0.131 | 0.063 | 0.163 | 0.121 | 0.219 | 0.226 | 0.217 | 0.312 | |
| DALC | 0.765 | 0.760 | 0.782 | 0.798 | 0.693 | 0.723 | 0.683 | 0.744 | 0.803 | 0.828 | 0.823 | |
| DSUICID | 0.754 | 0.379 | 0.550 | 0.604 | 0.806 | 0.825 | 0.845 | 0.844 | 0.799 | 0.866 | 0.881 | |
| DDRUG | 0.625 | 0.739 | 0.732 | 0.721 | 0.479 | 0.576 | 0.431 | 0.526 | 0.676 | 0.603 | 0.696 | |
| Cluster | Member States | Characteristic Profile | Avg. Distance |
|---|---|---|---|
| Cluster 1 | Germany | High institutionalization combined with strong specialist capacity; distinct outlier with highly concentrated inpatient care | 0.875 |
| Cluster 2 | Austria, Belgium, Croatia, Denmark, Estonia, Finland, France, Hungary, Latvia, Lithuania, Luxembourg, Poland, Slovenia | Mixed systems with moderate-to-high institutional reliance and robust health system capacity; heterogeneous resource distribution | 1.148 (general mean) |
| Cluster 3 | Bulgaria, Cyprus, Czechia, Greece, Ireland, Italy, Malta, Netherlands, Portugal, Romania, Slovakia, Spain, Sweden | Lower reliance on institutional care and higher exposure to psychosocial mortality risks; relatively diversified structural patterns | ~1.03 (approx.) |
References
- GBD 2019 Mental Disorders Collaborators. Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef]
- Vigo, D.; Jones, L.; Atun, R.; Thornicroft, G. The True Global Disease Burden of Mental Illness: Still Elusive. Lancet Psychiatry 2022, 9, 98–100. [Google Scholar] [CrossRef]
- World Health Organization. World Mental Health Report: Transforming Mental Health for All; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Kirkbride, J.B.; Anglin, D.M.; Colman, I.; Dykxhoorn, J.; Jones, P.B.; Patalay, P.; Pitman, A.; Soneson, E.; Steare, T.; Wright, T.; et al. The Social Determinants of Mental Health and Disorder: Evidence, Prevention and Recommendations. World Psychiatry 2024, 23, 58–90. [Google Scholar] [CrossRef] [PubMed]
- Iliuta, F.; Manea, M.; Budisteanu, M.; Andrei, E.; Linca, F.; Rad, F.; Cergan, R.; Ciobanu, A. Magnetic Resonance Imaging of Brain Anomalies in Adult and Pediatric Schizophrenia Patients: Experience of a Romanian Tertiary Hospital. Exp. Ther. Med. 2021, 22, 1098. [Google Scholar] [CrossRef] [PubMed]
- Mutica, M.; Ciubara, A.; Duica, L.; Alexandru, D.; Plesea, C.C.; Pirlog, M.; Cara, M. Elderly Schizophrenic Patients—Clinical and Social Correlations. Eur. Neuropsychopharmacol. 2016, 26, S512. [Google Scholar] [CrossRef]
- Gagiu, C.; Dionisie, V.; Manea, M.C.; Mazilu, D.C.; Manea, M. Internalised Stigma, Self-Esteem and Perceived Social Support as Psychosocial Predictors of Quality of Life in Adult Patients with Schizophrenia. J. Clin. Med. 2024, 13, 6959. [Google Scholar] [CrossRef]
- Iliuta, F.; Manea, M.; Budisteanu, M.; Ciobanu, A.; Manea, M. Magnetic Resonance Imaging in Schizophrenia: Luxury or Necessity? (Review). Exp. Ther. Med. 2021, 22, 765. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Martínez-González, M.B.; Benitez-Agudelo, J.C.; Navarro-Jiménez, E.; Beltran-Velasco, A.I.; Ruisoto, P.; Diaz Arroyo, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The Impact of the COVID-19 Pandemic on Mental Disorders. A Critical Review. Int. J. Environ. Res. Public Health 2021, 18, 10041. [Google Scholar] [CrossRef]
- Manchia, M.; Gathier, A.W.; Yapici-Eser, H.; Schmidt, M.V.; de Quervain, D.; van Amelsvoort, T.; Bisson, J.I.; Cryan, J.F.; Howes, O.D.; Pinto, L.; et al. The Impact of the Prolonged COVID-19 Pandemic on Stress Resilience and Mental Health: A Critical Review across Waves. Eur. Neuropsychopharmacol. 2022, 55, 22–83. [Google Scholar] [CrossRef]
- Ahmed, N.; Barnett, P.; Greenburgh, A.; Pemovska, T.; Stefanidou, T.; Lyons, N.; Ikhtabi, S.; Talwar, S.; Francis, E.; Harris, S.; et al. Mental Health in Europe during the COVID-19 Pandemic: A Systematic Review. Lancet Psychiatry 2023, 10, 537–556. [Google Scholar] [CrossRef]
- Kietzman, H.W.; Styles, W.L.; Franklin-Zitzkat, L.; Del Vecchio Valerian, M.; Yuen, E.Y. Family-Centered Care in Adolescent Intensive Outpatient Mental Health Treatment in the United States: A Case Study. Healthcare 2025, 13, 1079. [Google Scholar] [CrossRef]
- Maerlender, A.; Bray, P.G. Adolescent Mental Health in the Twenty-First Century BT—Adolescent Public Mental Health: Why Systems Need Changing and How a Public Mental Health Approach Can Work; Bray, P.G., Maerlender, A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 11–33. ISBN 978-3-031-68294-0. [Google Scholar]
- Dionisie, V.; Ciobanu, A.M.; Moisa, E.; Manea, M.C.; Puiu, M.G. The Impact of the COVID-19 Pandemic on Inpatient Admissions for Psychotic and Affective Disorders: The Experience of a Large Psychiatric Teaching Hospital in Romania. Healthcare 2022, 10, 1570. [Google Scholar] [CrossRef]
- Antohi, V.M.; Ionescu, R.V.; Zlati, M.L.; Mirica, C. Approaches Related to the Effects of Covid-19 Pandemics on Financing of the Healthcare System in Romania. Front. Public Health 2022, 10, 940021. [Google Scholar] [CrossRef] [PubMed]
- Scheffran, J. Planetary Boundaries, Polycrisis and Politics in the Anthropocene: Climate Pathways, Tipping Cascades and Transition to Sustainable Peace in Integrative Geography BT—Towards Rethinking Politics, Policy and Polity in the Anthropocene: Multidisciplinary; Brauch, H.G., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 339–444. ISBN 978-3-031-71807-6. [Google Scholar]
- OECD. States of Fragility 2025; OECD: Paris, France, 2025. [Google Scholar]
- Neuvonen, A. The Future(s) of the Welfare State BT—Creative Co-Evolution of the Economies and Welfare States in the Nordic Countries; Tokumaru, N., Yabunaga, C., Shibayama, Y., Eds.; Springer Nature: Singapore, 2024; pp. 253–273. ISBN 978-981-97-8569-8. [Google Scholar]
- Hoyer, D.; Bennett, J.S.; Reddish, J.; Holder, S.; Howard, R.; Benam, M.; Levine, J.; Ludlow, F.; Feinman, G.; Turchin, P. Navigating Polycrisis: Long-Run Socio-Cultural Factors Shape Response to Changing Climate. Philos. Trans. R Soc. Lond. B Biol. Sci. 2023, 378, 20220402. [Google Scholar] [CrossRef]
- Fahrudin, A.; Albert, W.; Esterilita, M.; Rochman, U.; Utami, N.; Abdul Rauf, S.; Chik, A.; Wardani, L. Impact of Climate Change on Mental Health Among Vulnerable Groups: A Systematic Literature Review. J. Lifestyle SDGs Rev. 2024, 5, e02671. [Google Scholar] [CrossRef]
- Gunasiri, H.; Patrick, R.; Garad, R.; Enticott, J.; Meadows, G.; Snell, T. Coping with the Mental Health Impacts of Climate Change: A Green Script for Sustainable Action. Sustainability 2024, 16, 1022. [Google Scholar] [CrossRef]
- European Council Mental Health. Available online: https://www.consilium.europa.eu/en/policies/mental-health/ (accessed on 8 October 2025).
- World Health Organization. WHO European Framework for Action on Mental Health 2021–2025. Available online: https://www.who.int/europe/publications/i/item/9789289057813 (accessed on 8 October 2025).
- Eurostat. Mental Health and Related Issues Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Mental_health_and_related_issues_statistics (accessed on 5 September 2025).
- OECD/European Union. Health at a Glance: Europe 2022: State of Health in the EU Cycle; OECD: Paris, France, 2022. [Google Scholar]
- Zrnić Novaković, I.; Ajduković, D.; Ajduković, M.; Kenntemich, L.; Lotzin, A.; Schäfer, I.; Anastassiou-Hadjicharalambous, X.; Evgeniou, E.; Borges, C.; Figueiredo-Braga, M.; et al. Mental Health during and after the COVID-19 Pandemic—A Longitudinal Study over 42 Months in Five European Countries. Eur. J. Psychotraumatol 2025, 16, 2488700. [Google Scholar] [CrossRef]
- Markiewicz-Gospodarek, A.; Górska, A.; Markiewicz, R.; Chilimoniuk, Z.; Czeczelewski, M.; Baj, J.; Maciejewski, R.; Masiak, J. The Relationship between Mental Disorders and the COVID-19 Pandemic—Course, Risk Factors, and Potential Consequences. Int. J. Environ. Res. Public Health 2022, 19, 9573. [Google Scholar] [CrossRef]
- Wang, J.; Guan, X.; Tao, N. GBD: Incidence Rates and Prevalence of Anxiety Disorders, Depression and Schizophrenia in Countries with Different SDI Levels, 1990–2021. Front. Public Health 2025, 13, 1556981. [Google Scholar] [CrossRef]
- Iliuta, F.; Manea, M.; Teodorescu, A.; Lacau, R.-M.; Manea, M.; Mares, A.; Varlam, C.; Ciobanu, C.; Ciobanu, A. Predictive Factors and Symptom Severity Spectrum in Adult Schizophrenia: Potential Insights for Improved Management and Adequate Care. Biomed. Rep. 2024, 21, 132. [Google Scholar] [CrossRef]
- European Union. The Joint Action on Mental Health and Well-Being. Available online: https://mentalhealthandwellbeing.eu/the-joint-action/ (accessed on 8 October 2025).
- European Commission. EU-Compass for Action on Mental Health and Well-Being. Available online: https://health.ec.europa.eu/non-communicable-diseases/mental-health/eu-compass-action-mental-health-and-well-being_en (accessed on 8 October 2025).
- European Commission. EU4Health Programme 2021–2027—A Vision for a Healthier European Union. Available online: https://health.ec.europa.eu/funding/eu4health-programme-2021-2027-vision-healthier-european-union_en (accessed on 8 October 2025).
- European Commission. A Comprehensive Approach to Mental Health. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/promoting-our-european-way-life/european-health-union/comprehensive-approach-mental-health_en (accessed on 8 October 2025).
- European Commission. The Recovery and Resilience Facility. Available online: https://commission.europa.eu/business-economy-euro/economic-recovery/recovery-and-resilience-facility_en (accessed on 8 October 2025).
- European Commission. A European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 21 October 2025).
- European Commission. The European Pillar of Social Rights Action Plan. Available online: https://ec.europa.eu/social/main.jsp?catId=1607&langId=en (accessed on 21 October 2025).
- OECD. Does Healthcare Deliver? Results from the Patient-Reported Indicator Surveys (PaRIS); OECD: Paris, France, 2025. [Google Scholar]
- World Health Organization. Global Patient Safety Report 2024; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- World Health Organization. Scaling up Mental Health Services Within the PHC Approach Lessons from the WHO European Region; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Kalman, J.L.; Burkhardt, G.; Samochowiec, J.; Gebhard, C.; Dom, G.; John, M.; Kilic, O.; Kurimay, T.; Lien, L.; Schouler-Ocak, M.; et al. Digitalising Mental Health Care: Practical Recommendations from the European Psychiatric Association. Eur. Psychiatry 2023, 67, e4. [Google Scholar] [CrossRef]
- Majcherek, D.; Hegerty, S.W.; Kowalski, A.M.; Lewandowska, M.S.; Dikova, D. Opportunities for Healthcare Digitalization in Europe: Comparative Analysis of Inequalities in Access to Medical Services. Health Policy 2024, 139, 104950. [Google Scholar] [CrossRef]
- Kuhlmann, E.; Falkenbach, M.; Brînzac, M.-G.; Correia, T.; Panagioti, M.; Ungureanu, M.-I. The Mental Health Needs of Healthcare Workers: When Evidence Does Not Guide Policy. A Comparative Assessment of Selected European Countries. Int. J. Health Plann Manag. 2024, 39, 614–636. [Google Scholar] [CrossRef]
- Vandoni, M.; D’Avanzo, B.; Barbato, A. The Transition towards Community-Based Mental Health Care in the European Union: Current Realities and Prospects. Health Policy 2024, 144, 105081. [Google Scholar] [CrossRef]
- Gao, C.X.; Dwyer, D.; Zhu, Y.; Smith, C.L.; Du, L.; Filia, K.M.; Bayer, J.; Menssink, J.M.; Wang, T.; Bergmeir, C.; et al. An Overview of Clustering Methods with Guidelines for Application in Mental Health Research. Psychiatry Res. 2023, 327, 115265. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S. The Use of Multivariate Statistical Methods in Psychiatry. Stat. Methods Med. Res. 1998, 7, 253–277. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Galvez, J.; Vegas-Lozano, E. Discovery and Classification of Complex Multimorbidity Patterns: Unravelling Chronicity Networks and Their Social Profiles. Sci. Rep. 2022, 12, 20004. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.S.; Kulkarni, P.; Galatzer-Levy, I.R.; Bigio, B.; Nasca, C.; Zhang, Y. Modern Views of Machine Learning for Precision Psychiatry. Patterns 2022, 3, 100602. [Google Scholar] [CrossRef] [PubMed]
- Utchimahali, S.; Kannan, S.; Velayutham, K. Principal Component Analysis of Clinical, Mental Health, and Behavioral Factors in a Mixed Population: Insights for Public Health Strategies. Int. J. Community Med. Public. Health 2024, 11, 4727–4734. [Google Scholar] [CrossRef]
- McWhinney, S.R.; Hlinka, J.; Bakstein, E.; Dietze, L.M.F.; Corkum, E.L.V.; Abé, C.; Alda, M.; Alexander, N.; Benedetti, F.; Berk, M.; et al. Principal Component Analysis as an Efficient Method for Capturing Multivariate Brain Signatures of Complex Disorders-ENIGMA Study in People with Bipolar Disorders and Obesity. Hum. Brain Mapp. 2024, 45, e26682. [Google Scholar] [CrossRef]
- Hendra, H.; Deris, M.M.; Windiarti, I.S. Mental Health Classification Using Machine Learning with PCA and Logistics Regression Approaches for Decision Making. Eng. Proc. 2025, 84, 47. [Google Scholar] [CrossRef]
- Ho, W.W.Y. Principal Component Analysis: Development and Initial Validation of the Mirror Effects Inventory. BMC Psychol. 2023, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, S.M.; Rusu, E.; Jinga, M.; Ursu, C.G.; Stanciu, R.I.; Miricescu, D.; Antohi, V.M.; Barbu, E. Multivariate Analysis of the Determinants of Total Mortality in the European Union with Focus on Fat Intake, Diabetes, Myocardial Infarction, Life Expectancy, and Preventable Mortality: A Panel Data Fixed-Effects Panel Data Model Approach. J. Cardiovasc. Dev. Dis. 2024, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Rethink Mental Health: Invest in and Design Better Systems for a More Resilient European Region. Available online: https://www.who.int/europe/news/item/10-10-2023-rethink-mental-health--invest-in-and-design-better-systems-for-a-more-resilient-european-region?utm_source=chatgpt.com (accessed on 21 October 2025).
- Mboweni, E.N.; Mphasha, M.H.; Skaal, L. Exploring Mental Health Awareness: A Study on Knowledge and Perceptions of Mental Health Disorders among Residents of Matsafeni Village, Mbombela, Mpumalanga Province. Healthcare 2023, 12, 85. [Google Scholar] [CrossRef]
- Pesqueira, A.; Sousa, M.J.; Pereira, R.; Schwendinger, M. Designing and Implementing SMILE: An AI-Driven Platform for Enhancing Clinical Decision-Making in Mental Health and Neurodivergence Management. Comput. Struct. Biotechnol. J. 2025, 27, 785–803. [Google Scholar] [CrossRef]
- Acoba, E.F. Social Support and Mental Health: The Mediating Role of Perceived Stress. Front. Psychol. 2024, 15, 1330720. [Google Scholar] [CrossRef]
- OECD. A New Benchmark for Mental Health Systems: Tackling the Social and Economic Costs of Mental Ill-Health; OECD: Paris, France, 2021. [Google Scholar]
- Collins, P.Y.; Sinha, M.; Concepcion, T.; Patton, G.; Way, T.; McCay, L.; Mensa-Kwao, A.; Herrman, H.; de Leeuw, E.; Anand, N.; et al. Making Cities Mental Health Friendly for Adolescents and Young Adults. Nature 2024, 627, 137–148. [Google Scholar] [CrossRef]
- Eurostat. Causes of Death—Deaths by Country of Residence and Occurrence. Available online: https://ec.europa.eu/eurostat/databrowser/view/hlth_cd_aro$defaultview/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/demo_mlexpec$DV_292/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Share of People with Good or Very Good Perceived Health by Sex. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_03_20/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Total Health Care Expenditure. Available online: https://ec.europa.eu/eurostat/databrowser/view/tps00207/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Hospital Beds. Available online: https://ec.europa.eu/eurostat/databrowser/view/tps00046/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Death Due to Drugs Dependence, by Sex. Available online: https://ec.europa.eu/eurostat/databrowser/view/tps00149/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Death Due to Suicide, by Sex. Available online: https://ec.europa.eu/eurostat/databrowser/view/tps00122/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Death Due to Alcoholic Abuse, by Sex. Available online: https://ec.europa.eu/eurostat/databrowser/view/tps00140/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Death Due to Diseases of the Nervous System, by Sex. Available online: https://ec.europa.eu/eurostat/databrowser/view/tps00134/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Physicians by Medical Speciality. Available online: https://ec.europa.eu/eurostat/databrowser/view/hlth_rs_spec/default/table?lang=en (accessed on 24 November 2025).
- Eurostat. Physicians by Medical Speciality—Historical Data. Available online: https://ec.europa.eu/eurostat/databrowser/view/hlth_rs_spec__custom_17574559/default/table (accessed on 24 November 2025).
- Eurostat. Hospital Discharges by Diagnosis, in-Patients, Total Number. Available online: https://ec.europa.eu/eurostat/databrowser/view/hlth_co_disch1__custom_8820332/default/table (accessed on 24 November 2025).
- Trezza, A.; Visibelli, A.; Roncaglia, B.; Spiga, O.; Santucci, A. Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI. Appl. Sci. 2024, 14, 9305. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Huang, D.; Jiang, F.; Li, K.; Tong, G.; Zhou, G. Scaled PCA: A New Approach to Dimension Reduction. Manag. Sci. 2021, 68, 1678–1695. [Google Scholar] [CrossRef]
- Hou, C.K.J.; Behdinan, K. Dimensionality Reduction in Surrogate Modeling: A Review of Combined Methods. Data Sci. Eng. 2022, 7, 402–427. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Cattell, R.B. The Scree Test For The Number Of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. An Index of Factorial Simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Hutcheson, G. The Multivariate Social Scientist; SAGE Publications, Ltd.: London, UK, 1999. [Google Scholar]
- Fabrigar, L.R.; Wegener, D.T.; MacCallum, R.C.; Strahan, E.J. Evaluating the Use of Exploratory Factor Analysis in Psychological Research. Psychol. Methods 1999, 4, 272–299. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis. Pract. Assess. Res. Eval. 2005, 10, 7. [Google Scholar]
- Vairagade, V.S.; Dhale, S.A.; Joshi, K.V.; Waje, M.G. Leveraging an Integrated Multivariate Analytical Approach towards Strength Enhancement of Fly Ash-Based Concrete. Multiscale Multidiscip. Model. Exp. Des. 2025, 8, 127. [Google Scholar] [CrossRef]
- Wu, R.M.X.; Zhang, Z.; Yan, W.; Fan, J.; Gou, J.; Liu, B.; Gide, E.; Soar, J.; Shen, B.; Fazal-e-Hasan, S.; et al. A Comparative Analysis of the Principal Component Analysis and Entropy Weight Methods to Establish the Indexing Measurement. PLoS ONE 2022, 17, e0262261. [Google Scholar] [CrossRef]
- Elhaik, E. Principal Component Analyses (PCA)-Based Findings in Population Genetic Studies Are Highly Biased and Must Be Reevaluated. Sci. Rep. 2022, 12, 14683. [Google Scholar] [CrossRef]
- Jiménez-Narváez, A.D.; Vaca, V.D.C.; Loor-Duque, J.J.; Martín, I.R.A.; Reyes-Chacón, I.G.; Vizcaíno, P.; Morocho-Cayamcela, M.E. Predictive Modeling for Fetal Health: A Comparative Study of PCA, LDA, and KPCA for Dimensionality Reduction. IEEE Access 2025, 13, 59687–59703. [Google Scholar] [CrossRef]
- Goretzko, D.; Pham, T.T.H.; Bühner, M. Exploratory Factor Analysis: Current Use, Methodological Developments and Recommendations for Good Practice. Curr. Psychol. 2021, 40, 3510–3521. [Google Scholar] [CrossRef]
- Finch, W.H. A Comparison of Methods for Determining the Number of Factors to Retain with Exploratory Factor Analysis of Dichotomous Data. Psych 2023, 5, 1004–1018. [Google Scholar] [CrossRef]
- Smithson, M.; Broomell, S.B. Compositional Data Analysis Tutorial. Psychol. Methods 2024, 29, 362–378. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.C. A Systematic Literature Review of Exploratory Factor Analyses in Management. J. Bus. Res. 2023, 164, 113969. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y. Autoregressive Mediation Models Using Composite Scores and Latent Variables: Comparisons and Recommendations. Psychol. Methods 2020, 25, 472–495. [Google Scholar] [CrossRef] [PubMed]
- Goretzko, D. How Many Factors to Retain in Exploratory Factor Analysis? A Critical Overview of Factor Retention Methods. Psychol. Methods 2025. [Google Scholar] [CrossRef]
- Van Vliet, M.; Doornenbal, B.M.; Boerema, S.; van den Akker-van Marle, E.M. Development and Psychometric Evaluation of a Positive Health Measurement Scale: A Factor Analysis Study Based on a Dutch Population. BMJ Open 2021, 11, e040816. [Google Scholar] [CrossRef]
- Ambuehl, B.; Inauen, J. Contextualized Measurement Scale Adaptation: A 4-Step Tutorial for Health Psychology Research. Int. J. Environ. Res. Public Health 2022, 19, 12775. [Google Scholar] [CrossRef]
- Őri, D.; Szocsics, P.; Molnár, T.; Bankovska Motlova, L.; Kazakova, O.; Mörkl, S.; Wallies, M.; Abdulhakim, M.; Boivin, S.; Bruna, K.; et al. Psychometric Properties of the Opening Minds Stigma Scale for Health Care Providers in 32 European Countries—A Bifactor ESEM Representation. Front. Public. Health 2023, 11, 1168929. [Google Scholar] [CrossRef]
- Stefana, A.; Damiani, S.; Granziol, U.; Provenzani, U.; Solmi, M.; Youngstrom, E.A.; Fusar-Poli, P. Psychological, Psychiatric, and Behavioral Sciences Measurement Scales: Best Practice Guidelines for Their Development and Validation. Front. Psychol. 2025, 15, 1494261. [Google Scholar] [CrossRef]
- Georgescu, L.P.; Balsalobre-Lorente, D.; Zlati, M.L.; Fortea, C.; Antohi, V.M.; Barbuta-Misu, N. Cluster Analysis of the Transition to Climate Neutrality in the European Union. Sustain. Dev. 2025, 33 (Suppl. S1), 1498–1519. [Google Scholar] [CrossRef]
- García-Alonso, C.R.; Almeda, N.; Salinas-Pérez, J.A.; Gutiérrez-Colosía, M.R.; Iruin-Sanz, Á.; Salvador-Carulla, L. Use of a Decision Support System for Benchmarking Analysis and Organizational Improvement of Regional Mental Health Care: Efficiency, Stability and Entropy Assessment of the Mental Health Ecosystem of Gipuzkoa (Basque Country, Spain). PLoS ONE 2022, 17, e0265669. [Google Scholar] [CrossRef] [PubMed]
- Semrau, M.; Alem, A.; Ayuso-Mateos, J.L.; Chisholm, D.; Gureje, O.; Hanlon, C.; Jordans, M.; Kigozi, F.; Lund, C.; Petersen, I.; et al. Strengthening Mental Health Systems in Low- and Middle-Income Countries: Recommendations from the Emerald Programme. BJPsych Open 2019, 5, e73. [Google Scholar] [CrossRef] [PubMed]
- Kas, M.J.H.; Penninx, B.W.J.H.; Knudsen, G.M.; Cuthbert, B.; Falkai, P.; Sachs, G.S.; Ressler, K.J.; Bałkowiec-Iskra, E.; Butlen-Ducuing, F.; Leboyer, M.; et al. Precision Psychiatry Roadmap: Towards a Biology-Informed Framework for Mental Disorders. Mol. Psychiatry 2025, 30, 3846–3855. [Google Scholar] [CrossRef]
- McGorry, P.D.; Mei, C.; Chanen, A.; Hodges, C.; Alvarez-Jimenez, M.; Killackey, E. Designing and Scaling up Integrated Youth Mental Health Care. World Psychiatry 2022, 21, 61–76. [Google Scholar] [CrossRef]
- Ferrara, P.; Andreone, V.; Bandini, F.; Del Sette, M.; Longoni, M.; Marconi, R.; Mariani, C.A.; Pezzella, F.R.; Quatrale, R.; Zanferrari, C.; et al. The Role of Neurology in the Development of Community Healthcare within the Italian National Health Service. The Position of the Italian Society of Neurology (SIN). Neurol. Sci. 2025, 46, 3363–3375. [Google Scholar] [CrossRef]
- Tanase, E.; Laitin, S.M.D.; Ilie, A.C.; Ion, R.; Surducan, D.-A.; Bucur, A.; Marc, F.; Folescu, R.; Ursoniu, S. Assessing the Impact of Psychiatric Deinstitutionalization and Substance Use on Patient Outcomes: A Multi-Faceted Analysis. Healthcare 2025, 13, 1700. [Google Scholar] [CrossRef]
- Dumke, L.; Wilker, S.; Hecker, T.; Neuner, F. Barriers to Accessing Mental Health Care for Refugees and Asylum Seekers in High-Income Countries: A Scoping Review of Reviews Mapping Demand and Supply-Side Factors onto a Conceptual Framework. Clin. Psychol. Rev. 2024, 113, 102491. [Google Scholar] [CrossRef]
- Jakubowska, A. Depressive Disorders and EU Labour Resources—The Problem of Lost Productivity in Highly Developed Economies. Psychiatry Int. 2024, 5, 169–187. [Google Scholar] [CrossRef]
- Simon, J.; Boyer, P.; Caldas-de-Almeida, J.M.; Knapp, M.; McCrone, P.; Gorwood, P.; Oertel, W.; Arango, C.; Treasure, J.; Young, A.H.; et al. Viewpoint: Assessing the Value of Mental Health Treatments in Europe. Eur. Psychiatry 2023, 66, e59. [Google Scholar] [CrossRef]
- Fiorillo, A. A Roadmap for Better and Personalized Mental Health Care in Europe: The Priorities of the European Psychiatric Association. Eur. Psychiatry 2025, 68, e60. [Google Scholar] [CrossRef]
- Garattini, L.; Barbato, A.; D’Avanzo, B.; Nobili, A. Including Mental Health Care in a Model of European Health System. Epidemiol. Psychiatr. Sci. 2023, 32, e12. [Google Scholar] [CrossRef]
- Wienand, D.; Wijnen, L.I.; Heilig, D.; Wippel, C.; Arango, C.; Knudsen, G.M.; Goodwin, G.M.; Simon, J. Excess Physical Disease Burden Associated with Selected Mental Health Disorders in Europe. Eur. J. Public Health 2023, 33, ckad160.065. [Google Scholar] [CrossRef]
- Al Ketbi, L.B.; Shuaib, F.M.; Al Nuaimi, J.M.; Al Alawi, N.S.; Nagelkerke, N.; Al Zarooni, A.A.R.; AlShamsi, N.; Fahmawee, T.; AlHashaikeh, B.; AlKetbi, R.; et al. The Burden and Determinants of Mental Health Disorders in Abu Dhabi, United Arab Emirates: A Retrospective Cohort. Arch. Public Health 2025, 83, 73. [Google Scholar] [CrossRef]
- Wienand, D.; Wijnen, L.I.; Heilig, D.; Wippel, C.; Arango, C.; Knudsen, G.M.; Goodwin, G.M.; Simon, J. Comorbid Physical Health Burden of Serious Mental Health Disorders in 32 European Countries. BMJ Ment. Health 2024, 27, e301021. [Google Scholar] [CrossRef]
- Löchner, J.; Moshe, I.; Schiepek, G.; Schuller, B.W.; Schoedel, R.; Rodgar, M.; Wac, K.; Seizer, L. Tracking Health-Related Quality of Life Dynamics: Advances in Ambulatory Assessment Methods. Brain Behav. Immun. Integr. 2024, 6, 100061. [Google Scholar] [CrossRef]
- Laloux, P.; Gisle, L.; D’hoore, W.; Charafeddine, R.; Van der Heyden, J. The Importance of Including a Mental Health Dimension in a Multimorbidity Indicator: An Analysis of Belgian Health Survey Data. BMC Public Health 2024, 24, 3465. [Google Scholar] [CrossRef] [PubMed]
- Schoenweger, P.; Kirschneck, M.; Biersack, K.; Di Meo, A.-F.; Reindl-Spanner, P.; Prommegger, B.; Ditzen-Janotta, C.; Henningsen, P.; Krcmar, H.; Gensichen, J.; et al. Community Indicators for Mental Health in Europe: A Scoping Review. Front. Public Health 2023, 11, 1188494. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Mental Health Systems Capacity in European Union Member States, Iceland and Norway. Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2024-9529-49301-73695 (accessed on 24 November 2025).
- Ren, K.; Lan, J.; Ge, L.; Zhou, L. The Impact of Intergenerational Support on the Mental Health of Older Adults: A Discussion of Three Dimensions of Support. Front. Public Health 2025, 13, 1467463. [Google Scholar] [CrossRef]
- Gaebel, W.; Lukies, R.; Kerst, A.; Stricker, J.; Zielasek, J.; Diekmann, S.; Trost, N.; Gouzoulis-Mayfrank, E.; Bonroy, B.; Cullen, K.; et al. Upscaling E-Mental Health in Europe: A Six-Country Qualitative Analysis and Policy Recommendations from the EMEN Project. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 1005–1016. [Google Scholar] [CrossRef]
- World Health Organization. European Health Report 2024: Keeping Health High on the Agenda; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- OECD. Health at a Glance: Europe 2024: State of Health in the EU Cycle; OECD: Paris, France, 2024. [Google Scholar]
- Moitra, M.; Owens, S.; Hailemariam, M.; Wilson, K.S.; Mensa-Kwao, A.; Gonese, G.; Kamamia, C.K.; White, B.; Young, D.M.; Collins, P.Y. Global Mental Health: Where We Are and Where We Are Going. Curr. Psychiatry Rep. 2023, 25, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Arias, D.; Saxena, S.; Verguet, S. Quantifying the Global Burden of Mental Disorders and Their Economic Value. EClinicalMedicine 2022, 54, 101675. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Fan, A.; Yang, Z.; Fan, D. Global Burden of Mental Disorders in 204 Countries and Territories, 1990–2021: Results from the Global Burden of Disease Study 2021. BMC Psychiatry 2025, 25, 486. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. From Cradle to Cane: WHO’s New European Health Report Warns of Lifelong Health Crises across the Region. Available online: https://www.who.int/europe/news/item/25-02-2025-from-cradle-to-cane--who-s-new-european-health-report-warns-of-lifelong-health-crises-across-the-region (accessed on 24 November 2025).
- World Health Organization. Mental Health in All Policies: Address Challenges and Design Shared Solutions. Available online: https://www.who.int/europe/news-room/events/item/2025/06/16/default-calendar/mental-health-in-all-policies--address-challenges-and-design-shared-solutions (accessed on 24 November 2025).
- Kapur, N.; Tham, S.-G.; Turnbull, P.; Richards, N.; Rodway, C.; Clements, C.; Ibrahim, S.; Webb, R.T.; Ayers, T.; Cannon, E.; et al. Quality Improvement for Suicide Prevention and Self-Harm Intervention: Addressing the Implementation Gap and Saving Lives. Lancet Psychiatry 2025, 12, 303–309. [Google Scholar] [CrossRef]
- Nadeem Parpio, Y.; Nuruddin, R.; Ali, T.S.; Mohammad, N.; Khan, U.R.; Shahzad, S.; Khan, M.M.; Aslam, M. Suicide Prevention Program on Suicidal Behaviors and Mental Wellbeing among School Aged Adolescents: A Scoping Review. Front. Public Health 2025, 13, 1506321. [Google Scholar] [CrossRef]
- O’Neill, A.; Stapley, E.; Rehman, I.; Humphrey, N. Adolescent Help-Seeking: An Exploration of Associations with Perceived Cause of Emotional Distress. Front. Public Health 2023, 11, 1183092. [Google Scholar] [CrossRef]
- Oblak, L. Public Mental Health Stigma and Suicide Rates across Europe. Front. Public Health 2025, 13, 1554072. [Google Scholar] [CrossRef]
- European Commission. Wellbeing and Mental Health at School—Guidelines for Education Policymakers; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- OECD. Subjective Well-Being Measurement: Current Practice and New Frontiers. Available online: https://www.oecd.org/en/publications/subjective-well-being-measurement_4e180f51-en.html (accessed on 24 November 2025).
- OECD. Strengthening Health Systems: A Practical Handbook for Resilience Testing; OECD: Paris, France, 2024. [Google Scholar]
- European Commission. Strengthening Health Systems. Available online: https://international-partnerships.ec.europa.eu/policies/human-development/strengthening-health-systems_en (accessed on 24 November 2025).
- Dionisie, V.; Puiu, M.G.; Manea, M.C.; Moisa, E.; Dumitru, A.M.; Ibadula, L.; Mares, A.M.; Varlam, C.I.; Manea, M. Factors Associated with the Revolving Door Phenomenon in Patients with Schizophrenia: Results from an Acute Psychiatric Hospital in Romania. Front. Psychiatry 2025, 15, 1496750. [Google Scholar] [CrossRef]
- Iliuta, F.P.; Manea, M.; Mares, A.M.; Varlam, C.I.; Lacau, R.M.; Stefanescu, A.; Ciobanu, C.A.; Ciobanu, A.M.; Manea, M.C. Understanding the Patient Landscape: A Ten-Year Retrospective Examination of Electroconvulsive Therapy in Romania’s Largest Psychiatric Hospital. Biomedicines 2024, 12, 1028. [Google Scholar] [CrossRef]




| Kaiser–Meyer–Olkin Measure of Sampling Adequacy | 0.747 | |
| Bartlett’s Test of Sphericity | Approx. Chi-Square | 9259.266 |
| df | 153 | |
| Sig. | 0.000 | |
| Variable | Initial | Extraction | Variable | Initial | Extraction | Variable | Initial | Extraction |
|---|---|---|---|---|---|---|---|---|
| DT | 1.000 | 0.888 | DSUICID | 1.000 | 0.716 | EXTPMENTAL | 1.000 | 0.963 |
| LEX | 1.000 | 0.707 | DALC | 1.000 | 0.594 | EXTPDEMENT | 1.000 | 0.595 |
| PGPH | 1.000 | 0.607 | DSNERV | 1.000 | 0.449 | EXTPALC | 1.000 | 0.914 |
| CHE | 1.000 | 0.762 | TSPEC | 1.000 | 0.872 | EXTPDRUG | 1.000 | 0.829 |
| HBTI | 1.000 | 0.699 | PSIHSPEC | 1.000 | 0.937 | EXTPSCHIZ | 1.000 | 0.859 |
| DDRUG | 1.000 | 0.685 | EXTPT | 1.000 | 0.982 | EXTPAFECT | 1.000 | 0.935 |
| Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
| 1 | 8.910 | 49.501 | 49.501 | 8.910 | 49.501 | 49.501 | 8.855 | 49.196 | 49.196 |
| 2 | 3.113 | 17.294 | 66.794 | 3.113 | 17.294 | 66.794 | 3.089 | 17.159 | 66.355 |
| 3 | 1.971 | 10.949 | 77.744 | 1.971 | 10.949 | 77.744 | 2.050 | 11.389 | 77.744 |
| 4 | 0.887 | 4.925 | 82.669 | ![]() | |||||
| 5 | 0.784 | 4.356 | 87.024 | ||||||
| 6 | 0.570 | 3.165 | 90.190 | ||||||
| 7 | 0.457 | 2.540 | 92.730 | ||||||
| 8 | 0.418 | 2.323 | 95.053 | ||||||
| 9 | 0.306 | 1.698 | 96.751 | ||||||
| 10 | 0.231 | 1.284 | 98.035 | ||||||
| 11 | 0.162 | 0.900 | 98.935 | ||||||
| 12 | 0.087 | 0.484 | 99.420 | ||||||
| 13 | 0.051 | 0.282 | 99.702 | ||||||
| 14 | 0.032 | 0.179 | 99.881 | ||||||
| 15 | 0.009 | 0.052 | 99.932 | ||||||
| 16 | 0.008 | 0.045 | 99.977 | ||||||
| 17 | 0.004 | 0.022 | 99.999 | ||||||
| 18 | 0.000 | 0.001 | 100.000 | ||||||
| Variable | C1—Institutionalized Psychiatric Burden | C2—Health System Functionality and Health Perception | C3—Suicidal Vulnerability Associated with Addictive Behaviours |
|---|---|---|---|
| EXTPT | 0.991 | 0.011 | −0.015 |
| EXTPMENTAL | 0.974 | 0.004 | 0.123 |
| EXTPAFECT | 0.961 | 0.021 | 0.107 |
| PSIHSPEC | 0.956 | 0.147 | −0.041 |
| EXTPALC | 0.937 | 0.004 | 0.188 |
| DT | 0.929 | 0.027 | −0.155 |
| EXTPSCHIZ | 0.925 | −0.058 | 0.013 |
| TSPEC | 0.913 | 0.079 | −0.177 |
| EXTPDRUG | 0.896 | 0.070 | 0.143 |
| EXTPDEMENT | 0.766 | −0.031 | 0.084 |
| CHE | 0.185 | 0.833 | 0.182 |
| LEX | 0.124 | 0.824 | −0.114 |
| HBTI | 0.384 | −0.687 | 0.280 |
| PGPH | 0.008 | 0.647 | −0.433 |
| DSNERV | −0.046 | 0.634 | 0.213 |
| DALC | 0.029 | 0.089 | 0.765 |
| DSUICID | −0.090 | −0.373 | 0.754 |
| DDRUG | 0.240 | 0.487 | 0.625 |
| Variable | Cluster Centre 1 | Cluster Centre 2 | Cluster Centre 3 |
|---|---|---|---|
| REGR factor score 1 for analysis 1 | 4.35172 | −0.64020 | 0.91305 |
| REGR factor score 2 for analysis 1 | 0.07757 | 1.00930 | 0.65024 |
| REGR factor score 3 for analysis 1 | 1.15383 | 2.92396 | −1.83183 |
| Iteration a | Change in Cluster Centres | ||
|---|---|---|---|
| 1 | 2 | 3 | |
| 1 | 0.584 | 2.035 | 1.738 |
| 2 | 0.487 | 0.121 | 0.114 |
| 3 | 0.000 | 0.083 | 0.068 |
| 4 | 0.000 | 0.048 | 0.040 |
| 5 | 0.000 | 0.021 | 0.017 |
| 6 | 0.000 | 0.044 | 0.036 |
| 7 | 0.000 | 0.023 | 0.019 |
| 8 | 0.000 | 0.031 | 0.026 |
| 9 | 0.000 | 0.000 | 0.000 |
| Variable | Cluster Centre 1 | Cluster Centre 2 | Cluster Centre 3 |
|---|---|---|---|
| REGR factor score 1 for analysis 1 | 3.49545 | −0.35191 | −0.11026 |
| REGR factor score 2 for analysis 1 | 0.22935 | −0.11828 | 0.07337 |
| REGR factor score 3 for analysis 1 | 0.58482 | 0.87855 | −0.81218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Țîbîrnă, A.; Iliuta, F.P.; Manea, M.C.; Manea, M. Multivariate Patterns in Mental Health Burden and Psychiatric Resource Allocation in Europe: A Principal Component Analysis. Healthcare 2025, 13, 3126. https://doi.org/10.3390/healthcare13233126
Țîbîrnă A, Iliuta FP, Manea MC, Manea M. Multivariate Patterns in Mental Health Burden and Psychiatric Resource Allocation in Europe: A Principal Component Analysis. Healthcare. 2025; 13(23):3126. https://doi.org/10.3390/healthcare13233126
Chicago/Turabian StyleȚîbîrnă, Andrian, Floris Petru Iliuta, Mihnea Costin Manea, and Mirela Manea. 2025. "Multivariate Patterns in Mental Health Burden and Psychiatric Resource Allocation in Europe: A Principal Component Analysis" Healthcare 13, no. 23: 3126. https://doi.org/10.3390/healthcare13233126
APA StyleȚîbîrnă, A., Iliuta, F. P., Manea, M. C., & Manea, M. (2025). Multivariate Patterns in Mental Health Burden and Psychiatric Resource Allocation in Europe: A Principal Component Analysis. Healthcare, 13(23), 3126. https://doi.org/10.3390/healthcare13233126


