Changes and Correlations Between the Width and Height of the Hard Palate During Rapid Maxillary Expansion with a Printed Tooth-Borne Expander
Abstract
1. Introduction
2. Materials and Methods
- Skeletal class I—ANB = [0–4°], with a relative share of 60.7%;
- Skeletal class II—ANB > 4°, with a relative share of 21.4%;
- Skeletal class III—ANB < 0°, with a relative share of 17.9%.
- Normodivergent type—MP/SN = [29–35°], with a share of 32.1%;
- Hypodivergent type—MP/SN < 29°, with a share of 32.1%;
- Hyperdivergent type—MP/SN > 35°, accounting for 35.7%.
2.1. Ethics Statement
2.2. Clinical Considerations
2.3. Inclusion Criteria
- Patients must be diagnosed with MTD and with uni- or bilateral posterior crossbite and the absence of other severe craniofacial malformations;
- Complete documentation (including whole-skull CBCT scans at the initial phase and the end of the treatment phase with RME);
- Informed consent after the treatment plan (non-extraction treatment) was presented, discussed, and accepted, as certified by the signature of the patient (or parent);
- Strictly followed the treatment protocol, without missed control appointments;
- Patients must be without agenesis and previous orthopaedic or orthodontic treatments.
2.4. Clinical Protocol for the Application of a DDMPTBE
2.5. Reference Planes, Variables, and Measurement Methods
2.6. Statistical Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MTD | Maxillary transverse deficiency |
| RME | Rapid maxillary expansion |
| CAD/CAM | Computer-aided design and computer-aided manufacturing |
| HHE | Hybrid Hyrax expander |
| DDMPTBE | Digitally designed metal-printed tooth-borne expanders |
| CBCT | Cone-beam computed tomography |
| AI | Artificial intelligence |
| CR | Centre of resistance |
| 2D | Two-dimensional |
| TSD | Transverse skeletal discrepancy |
| CVM | Cervical vertebral maturation |
| MxOW | Maxillary occlusal width |
| MxAW | Maxillary alveolar width |
| MxBW | Maxillary basal width |
| MnAW | Mandibular alveolar width |
| NCW | Nasal cavity width |
| HPW | Hard palatal width |
| PH | Palatal height |
| TDI | Transverse discrepancy index |
| ANG-16 | Angulation of tooth 16 |
| ANG-26 | Angulation of tooth 26 |
| R2 | Coefficient of determination |
References
- Abate, A.; Ugolini, A.; Bruni, A.; Quinzi, V.; Lanteri, V. Three-Dimensional Assessment on Digital Cast of Spontaneous Upper First Molar Distorotation after Ni-Ti Leaf Springs Expander and Rapid Maxillary Expander: A Two-Centre Randomized Controlled Trial. Orthod. Craniofac. Res. 2025, 28, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Palomo, J.M.; Matthaios, S.; Tsolakis, A.I. Dental and Skeletal Side Effects of Oral Appliances Used for the Treatment of Obstructive Sleep Apnea and Snoring in Adult Patients-A Systematic Review and Meta-Analysis. J. Pers. Med. 2022, 12, 483. [Google Scholar] [CrossRef]
- Celikoglu, M.; Bayram, M.; Sekerci, A.E.; Buyuk, S.K.; Toy, E. Comparison of Pharyngeal Airway Volume among Different Vertical Skeletal Patterns: A Cone-Beam Computed Tomography Study. Angle Orthod. 2014, 84, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.Y.; Darkhanbayeva, N.; Min, H.K.; Kim, K.A.; Kim, S.J. Multidimensional Characterization of Craniofacial Skeletal Phenotype of Obstructive Sleep Apnea in Adults. Eur. J. Orthod. 2024, 47, cjae041. [Google Scholar] [CrossRef]
- Sawchuk, D.; Currie, K.; Vich, M.L.; Palomo, J.M.; Flores-Mir, C. Diagnostic Methods for Assessing Maxillary Skeletal and Dental Transverse Deficiencies: A Systematic Review. Korean J. Orthod. 2016, 46, 331. [Google Scholar] [CrossRef]
- Angelieri, F.; Franchi, L.; Cevidanes, L.H.S.; Gonçalves, J.R.; Nieri, M.; Wolford, L.M.; McNamara, J.A. Cone Beam Computed Tomography Evaluation of Midpalatal Suture Maturation in Adults. Int. J. Oral. Maxillofac. Surg. 2017, 46, 1557–1561. [Google Scholar] [CrossRef]
- Revelo, B.; Fishman, L.S. Maturational Evaluation of Ossification of the Midpalatal Suture. Am. J. Orthod. Dentofac. Orthop. 1994, 105, 288–292. [Google Scholar] [CrossRef]
- dos Santos Oliveira, R.; de Oliveira, C.J.M.; Panzarella, F.K.; Junqueira, J.L.C. Maturation Stages of the Sutures in the Median Palatine Evaluated with Cone-Beam Computed Tomography. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 567–572. [Google Scholar] [CrossRef]
- Zevnik, L.K.; Primozic, J. Morphological Characteristics of the Palate According to Mid-Palatal Suture Maturational Stage on Cone-Beam Computed Tomography Images: A Cross-Sectional Study. Int. Orthod. 2025, 23, 100935. [Google Scholar] [CrossRef]
- Mutinelli, S.; Manfredi, M.; Guiducci, A.; Denotti, G.; Cozzani, M. Anchorage onto Deciduous Teeth: Effectiveness of Early Rapid Maxillary Expansion in Increasing Dental Arch Dimension and Improving Anterior Crowding. Prog. Orthod. 2015, 16, 22. [Google Scholar] [CrossRef]
- Cozzani, M.; Antonini, S.; Lupini, D.; Decesari, D.; Anelli, F.; Doldo, T. A New Proposal: A Digital Flow for the Construction of a Haas-Inspired Rapid Maxillary Expander (HIRME). Materials 2020, 13, 2898. [Google Scholar] [CrossRef]
- Cozzani, M.; Rosa, M.; Cozzani, P.; Siciliani, G. Deciduous Dentition-Anchored Rapid Maxillary Expansion in Crossbite and Non-Crossbite Mixed Dentition Patients: Reaction of the Permanent First Molar. Prog. Orthod. 2003, 4, 15–22. [Google Scholar] [CrossRef]
- Braun, S.; Bottrel, J.A.; Lee, K.G.; Lunazzi, J.J.; Legan, H.L. The Biomechanics of Rapid Maxillary Sutural Expansion. Am. J. Orthod. Dentofac. Orthop. 2000, 118, 257–261. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Barbato, E.; Cosentino, L.; Ferraro, C.M.; Leonardi, R. Alveolar Bone Changes after Rapid Maxillary Expansion with Tooth-Born Appliances: A Systematic Review. Eur. J. Orthod. 2018, 40, 296–303. [Google Scholar] [CrossRef]
- Coloccia, G.; Inchingolo, A.D.; Inchingolo, A.M.; Malcangi, G.; Montenegro, V.; Patano, A.; Marinelli, G.; Laudadio, C.; Limongelli, L.; Di Venere, D.; et al. Effectiveness of Dental and Maxillary Transverse Changes in Tooth-Borne, Bone-Borne, and Hybrid Palatal Expansion through Cone-Beam Tomography: A Systematic Review of the Literature. Medicina 2021, 57, 288. [Google Scholar] [CrossRef]
- Weissheimer, A.; De Menezes, L.M.E.; Mezomo, M.; Dias, D.M.; De Lima, E.M.S.; Rizzatto, S.M.D. Immediate Effects of Rapid Maxillary Expansion with Haas-Type and Hyrax-Type Expanders: A Randomized Clinical Trial. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 366–376. [Google Scholar] [CrossRef]
- Fastuca, R.; Lorusso, P.; Lagravère, M.O.; Michelotti, A.; Portelli, M.; Zecca, P.A.; D’Antò, V.; Militi, A.; Nucera, R.; Caprioglio, A. Digital Evaluation of Nasal Changes Induced by Rapid Maxillary Expansion with Different Anchorage and Appliance Design. BMC Oral Health 2017, 17, 113. [Google Scholar] [CrossRef] [PubMed]
- Pasqua, B.d.P.M.; André, C.B.; Paiva, J.B.; Tarraf, N.E.; Wilmes, B.; Rino-Neto, J. Dentoskeletal Changes Due to Rapid Maxillary Expansion in Growing Patients with Tooth-Borne and Tooth-Bone-Borne Expanders: A Randomized Clinical Trial. Orthod. Craniofac. Res. 2022, 25, 476–484. [Google Scholar] [CrossRef]
- Yoon, A.; Payne, J.; Suh, H.; Phi, L.; Chan, A.; Oh, H. A Retrospective Analysis of the Complications Associated with Miniscrew-Assisted Rapid Palatal Expansion. AJO-DO Clin. Companion 2022, 2, 423–430. [Google Scholar] [CrossRef]
- Wang, C.; Xiang, X.; Mao, Q.; Liu, C. CAD/CAM Design and 3D Printing of a Personalised Rapid Palatal Expander for Maxillary Transverse Deficiency. J. Pak. Med. Assoc. 2024, 74, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Paľovčík, M.; Tomášik, J.; Zsoldos, M.; Thurzo, A. 3D-Printed Accessories and Auxiliaries in Orthodontic Treatment. Appl. Sci. 2025, 15, 78. [Google Scholar] [CrossRef]
- Yu, X.; Li, J.; Yu, L.; Wang, Y.; Gong, Z.; Pan, J. A Fully Digital Workflow for the Design and Manufacture of a Class of Metal Orthodontic Appliances. Heliyon 2024, 10, e32064. [Google Scholar] [CrossRef]
- Yordanova-Kostova, G.R.; Emiliyanov, E.; Yanev, N. Digital Laser-Sintered Expander in Adolescent Patient with Hyperdontia and Molar Impaction. Case Rep. Dent. 2023, 2023, 8824900. [Google Scholar] [CrossRef] [PubMed]
- Yanev, N.; Yordanova, G.; Emiliyanov, E. CBCT Evaluation Methods in Orthodontics—Review and Clinical Correlation. J. IMAB 2024, 30, 5680–5687. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Kolokitha, O.E.; Papadopoulou, E.; Tsolakis, A.I.; Kilipiris, E.G.; Palomo, J.M. Artificial Intelligence as an Aid in CBCT Airway Analysis: A Systematic Review. Life 2022, 12, 1894. [Google Scholar] [CrossRef]
- Rasteau, S.; Ernenwein, D.; Savoldelli, C.; Bouletreau, P. Artificial Intelligence for Oral and Maxillo-Facial Surgery: A Narrative Review. J. Stomatol. Oral. Maxillofac. Surg. 2022, 123, 276–282. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Jia, L.; Xu, X.; Guo, J. The Relationship between Three-Dimensional Craniofacial and Upper Airway Anatomical Variables and Severity of Obstructive Sleep Apnoea in Adults. Eur. J. Orthod. 2022, 44, 78–85. [Google Scholar] [CrossRef]
- Ugolini, A.; Abate, A.; Donelli, M.; Gaffuri, F.; Bruni, A.; Maspero, C.; Lanteri, V. Spontaneous Mandibular Dentoalveolar Changes after Rapid Maxillary Expansion (RME), Slow Maxillary Expansion (SME), and Leaf Expander—A Systematic Review. Children 2024, 11, 501. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Pascadopoli, M.; Dicorato, S.; Todaro, C.; Nardi, M.G.; Gallo, S.; Gandini, P.; Scribante, A. Bone Modifications Induced by Rapid Maxillary Expander: A Three-Dimensional Cephalometric Pilot Study Comparing Two Different Cephalometric Software Programs. Appl. Sci. 2022, 12, 4313. [Google Scholar] [CrossRef]
- Viarani, V.; Festa, P.; Galasso, G.; D’Antò, V.; Putrino, A.; Mariani, A.; Bompiani, G.; Galeotti, A. Randomized Controlled Clinical Trial to Evaluate Skeletal and Dental Treatment Effects of Rapid Maxillary Expansion in Children: Comparison Between Two-Band Expander and Bonded Palatal Expander. Appl. Sci. 2025, 15, 7187. [Google Scholar] [CrossRef]
- Emiliyanov, E.; Yordanova-Kostova, G. Analysing Treatment Results by Superimposition of CBCTs. Knowl.-Int. J. 2023, 61, 593–597. [Google Scholar]
- Caldas, L.D.; Takeshita, W.M.; Machado, A.W.; Bittencourt, M.A.V. Effect of Rapid Maxillary Expansion on Nasal Cavity Assessed with Cone-Beam Computed Tomography. Dent. Press J. Orthod. 2020, 25, 39–45. [Google Scholar] [CrossRef]
- Colino-Gallardo, P.; Del Fresno-Aguilar, I.; Castillo-Montaño, L.; Colino-Paniagua, C.; Baptista-Sánchez, H.; Criado-Pérez, L.; Alvarado-Lorenzo, A. Skeletal and Dentoalveolar Changes in Growing Patients Treated with Rapid Maxillary Expansion Measured in 3D Cone-Beam Computed Tomography. Biomedicines 2023, 11, 3305. [Google Scholar] [CrossRef]
- Garib, D.; Miranda, F.; Palomo, J.M.; Pugliese, F.; da Cunha Bastos, J.C.; Dos Santos, A.M.; Janson, G. Orthopedic Outcomes of Hybrid and Conventional Hyrax Expanders: Secondary Data Analysis from a Randomized Clinical Trial. Angle Orthod. 2021, 91, 178–186. [Google Scholar] [CrossRef]
- Karanxha, L.; Cantarella, D.; Paredes, N.A.; Hamanaka, R.; Del Fabbro, M.; Moon, W. Premolar and Molar Inclination Changes Following Micro-Implant-Assisted Maxillary Skeletal Expander (MSE): A Three-Dimensional Analysis and Visualization. Appl. Sci. 2022, 12, 8742. [Google Scholar] [CrossRef]
- Iwasaki, T.; Papageorgiou, S.N.; Yamasaki, Y.; Ali Darendeliler, M.; Papadopoulou, A.K. Nasal Ventilation and Rapid Maxillary Expansion (RME): A Randomized Trial. Eur. J. Orthod. 2021, 43, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, A.; Muwaquet Rodriguez, S.; Hijazi Alsadi, T. The Role of Rapid Maxillary Expansion in the Management of Obstructive Sleep Apnoea: Monitoring Respiratory Parameters—A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 14, 116. [Google Scholar] [CrossRef] [PubMed]
- Kavand, G.; Lagravère, M.; Kula, K.; Stewart, K.; Ghoneima, A. Retrospective CBCT Analysis of Airway Volume Changes after Bone-Borne vs. Tooth-Borne Rapid Maxillary Expansion. Angle Orthod. 2019, 89, 566–574. [Google Scholar] [CrossRef]
- Lucchese, A.; Carinci, F.; Brunelli, G.; Monguzzi, R. An in Vitro Study of Resistance to Corrosion in Brazed and Laser-Welded Orthodontic Appliances. Eur. J. Inflamm. 2011, 9, 67–72. [Google Scholar]
- Si, J.; Hu, X.; Du, Y.; Wei, M.; Xu, L.; Li, B.; Chen, X.; Li, X. Rapid Maxillary Expansion Treatment Increases Mid-Facial Depth in Early Mixed Dentition. Front. Pediatr. 2023, 10, 1028968. [Google Scholar] [CrossRef]






| Variable | Definition |
|---|---|
| MxOW—Maxillary Occlusal Width | The distance between the central fossa of the upper first molars |
| MxAW—Maxillary Alveolar Width | The distance between the centres of resistance (CRs) of the upper first molars |
| MxBW—Maxillary Basal Width | The distance between the intersection of the horizontal line passing through the top of the palate with the maxillary lateral wall |
| MnAW—Mandibular Alveolar Width | The distance between the centres of resistance (CRs) of the lower first molars |
| NCW—Nasal Cavity Width | The distance between the widest parts of the lateral nasal walls |
| HPW—Hard Palatal Width | The distance between the most lateral points of the bony palate |
| PH—Palatal Height | The perpendicular distance from MxOW to the suture of the hard palate |
| TDI—Transverse Discrepancy Index | The difference between MxAW1 and MnAW1 TDI < −2.5 mm with no discrepancy when TDI > −2 mm. |
| Variable | Definition |
|---|---|
| ANG-16—Angulation of tooth 16 | The inner angle between the axial tooth plane (defined from F16, the midpoint of the central fossa, to R16, the midpoint between the roots) and the plane that defines the HPW. |
| ANG-26—Angulation of tooth 26 | The inner angle between the axial tooth plane (defined from F26, the midpoint of the central fossa, to R26, the midpoint between the roots) and the plane that defines the HPW. |
| Variable | n | Before Treatment | After Treatment | p | ||
|---|---|---|---|---|---|---|
| SD | SD | |||||
| NCW | 28 | 29.79 | 2.64 | 31.19 | 2.39 | <0.001 |
| MxBW | 28 | 60.64 | 4.09 | 62.23 | 3.86 | <0.001 |
| MxAW | 28 | 40.73 | 3.07 | 44.42 | 3.19 | <0.001 |
| MxOW | 28 | 43.32 | 3.25 | 46.95 | 3.32 | <0.001 |
| HPW | 28 | 25.75 | 3.41 | 26.94 | 3.36 | <0.001 |
| PH | 28 | 17.48 | 3.38 | 16.73 | 3.27 | <0.001 |
| Variable | n | SD | Min | Max | |
|---|---|---|---|---|---|
| NCW | 28 | 1.40 | 0.93 | 0.12 | 3.60 |
| MxBW | 28 | 1.59 | 1.64 | −2.42 | 3.97 |
| MxAW | 28 | 3.68 | 1.45 | −0.37 | 6.03 |
| MxOW | 28 | 3.64 | 1.31 | 0.88 | 6.43 |
| HPW | 28 | 1.19 | 1.25 | −1.60 | 4.00 |
| PH | 28 | −0.75 | 0.97 | −2.76 | 1.58 |
| Variable | n | SD | Min | Max | |
|---|---|---|---|---|---|
| ANG-16 | 28 | 0.60 | 6.42 | −10.60 | 18.30 |
| ANG-26 | 28 | 2.19 | 4.51 | −6.00 | 12.60 |
| Unstandardised Coefficients | Standardised Coefficients | ||||
|---|---|---|---|---|---|
| B | Std. Error | Beta | t | p | |
| d_ang16 | 0.118 | 0.030 | 0.576 | 3.878 | 0.001 |
| d_ang26 | 0.138 | 0.043 | 0.475 | 3.198 | 0.004 |
| Constant | 3.262 | 0.213 | 15.300 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgieva, M.; Emiliyanov, E.; Yordanova, G. Changes and Correlations Between the Width and Height of the Hard Palate During Rapid Maxillary Expansion with a Printed Tooth-Borne Expander. Healthcare 2025, 13, 2756. https://doi.org/10.3390/healthcare13212756
Georgieva M, Emiliyanov E, Yordanova G. Changes and Correlations Between the Width and Height of the Hard Palate During Rapid Maxillary Expansion with a Printed Tooth-Borne Expander. Healthcare. 2025; 13(21):2756. https://doi.org/10.3390/healthcare13212756
Chicago/Turabian StyleGeorgieva, Mirela, Emanuel Emiliyanov, and Greta Yordanova. 2025. "Changes and Correlations Between the Width and Height of the Hard Palate During Rapid Maxillary Expansion with a Printed Tooth-Borne Expander" Healthcare 13, no. 21: 2756. https://doi.org/10.3390/healthcare13212756
APA StyleGeorgieva, M., Emiliyanov, E., & Yordanova, G. (2025). Changes and Correlations Between the Width and Height of the Hard Palate During Rapid Maxillary Expansion with a Printed Tooth-Borne Expander. Healthcare, 13(21), 2756. https://doi.org/10.3390/healthcare13212756

