Effects of Neurophysiotherapy Based on Physical Activity on Cognitive and Psychosocial Functioning in Patients with Acquired Brain Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Instruments
2.3.1. Executive Function
- Direct and inverse digit subtest of the Barcelona Test [29]: This test allows for a highly sensitive assessment of working memory and has been widely used in the field of neuropsychology to detect brain pathologies [30]. It consists of repeating orally a series of digits that increase in quantity, first directly and then inversely.
- Five-digit test [31]: This test was used to assess inhibitory control and consists of four tests: reading and counting, referring to automatic processes, and choice and alternation, referring to controlled processes. The last two tests are the most rigorous in assessing the abilities evaluated by the test.
- The modified six-item subtest of the Behavioural Assessment of Dysexecutive Syndrome (BADS) [34,35]: This test detects prefrontal syndrome, with the prefrontal area of the brain involved in dual execution, planning, organization, and problem solving. It consists of working autonomously for 10 min completing three types of tasks (dictation, arithmetic problems, and image naming), which are subdivided into part A and part B, with a series of rules whose violation influences the test score. The multiplicity of processes involved in this test makes it particularly sensitive to executive functions.
- Trail Making Test (tests A and B) [36]: This test, which evaluates cognitive flexibility and processing speed, consists of tracing trails through a set of numbers for part A (from 1 to 25) and a series of numbers–letters for part B (from 1-A to 12-L) with an established pattern. It has been widely used in the field of neuropsychology since its appearance [37] and also with a population similar to that of the present study [38,39].
2.3.2. Psychosocial Aspect Evaluation
- The CAVIDACE test [40]: Specifically, the Emotional Well-being and Personal Development subscales were used. It is an instrument designed and validated specifically for this type of population that is used to measure quality of life in people with ABI from a comprehensive perspective, taking into account the context and personal factors of each individual [41]. The internal consistency values (Cronbach’s Alpha) were between 0.78 and 0.85.
- The quality of life test proposed by the World Health Organization, WHOQOL-BREF [42], as the abbreviated version adapted to Spanish [43]. This test provides a profile of the subjective perception of global quality of life and general health. In addition, it has several subscales that refer to physical health, psychological aspects, personal relationships, and environment. The internal consistency values (Cronbach’s Alpha) were between 0.81 and 0.92.
- The brief version adapted to Spanish of the Profile of Mood States (POMS) questionnaire [44]: This questionnaire was used to assess mood. It consists of assessing with a 4-point Likert-type scale 30 items referring to 6 scales (Anger, Fatigue, Vigor, Friendliness, Tension, and Depression). The internal consistency values (Cronbach’s Alpha) were between 0.76 and 0.89.
2.4. Procedure
2.4.1. Conventional Neurophysiotherapy Protocol (CN) (Groups A1 and B1)
2.4.2. Conventional Neurophysiotherapy and Repetitive Task Training Protocol (CN+RT) (Groups A2 and B2)
2.4.3. Neuropsychology Protocol (Groups A and C)
2.4.4. Data Analysis
3. Results
3.1. Analysis of the Results According to Three Groups
3.2. Analysis of the Results According to Five Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| OBJ PHASE 1 | OBJ PHASE 2 | |
| GROUP A2 | ||
| 6 | Affected heel support | Support foot affection |
| 7 | Step foot affection | Passage length |
| 8 | Support foot affection | X |
| 9 | Step foot affection | Weight transfer |
| GROUP B2 | ||
| 13 | Support foot affection | X |
| 14 | Weight transfer | Support foot affection |
| 15 | I pass with affection | X |
| 16 | I pass with affection | X |
| Note: X = The objective of phase 1 was not achieved, and work continued based on the same objective in phase 2. | ||
References
- Lynch, D.G.; Narayan, R.K.; Li, C. Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review. J. Clin. Med. 2023, 12, 2179. [Google Scholar] [CrossRef]
- Iqubal, A.; Bansal, P.; Iqubal, M.K.; Pottoo, F.H.; Haque, S.E. An Overview and Therapeutic Promise of Nutraceuticals Against Sports-Related Brain Injury. Curr. Mol. Pharmacol. 2022, 15, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Minjoz, S.; Ottaviani, E.; Phalempin, V.; Barathon, G.; Pellissier, S.; Hot, P. Reducing Decision-Making Deficits in Patients with Brain Injury: Effect of Slow-Paced Breathing. Appl. Neuropsychol. Adult 2023, 32, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Nash, S.; Luauté, J.; Bar, J.Y.; Sancho, P.O.; Hours, M.; Chossegros, L.; Tournier, C.; Charnay, P.; Mazaux, J.M.; Boisson, D. Cognitive and Behavioural Post-Traumatic Impairments: What Is the Specificity of a Brain Injury? A Study within the ESPARR Cohort. Ann. Phys. Rehabil. Med. 2014, 57, 600–617. [Google Scholar] [CrossRef]
- Reddi, S.; Thakker-Varia, S.; Alder, J.; Giarratana, A.O. Status of Precision Medicine Approaches to Traumatic Brain Injury. Neural Regen. Res. 2022, 17, 2166–2171. [Google Scholar] [CrossRef]
- Goldman, L.; Siddiqui, E.M.; Khan, A.; Jahan, S.; Rehman, M.U.; Mehan, S.; Sharma, R.; Budkin, S.; Kumar, S.N.; Sahu, A.; et al. Understanding Acquired Brain Injury: A Review. Biomedicines 2022, 10, 2167. [Google Scholar] [CrossRef]
- Zhong, H.; Feng, Y.; Shen, J.; Rao, T.; Dai, H.; Zhong, W.; Zhao, G. Global burden of traumatic brain injury in 204 countries and territories from 1990 to 2021. Am. J. Prev. Med. 2025, 68, 754–763. [Google Scholar] [CrossRef]
- He, Q.; Wang, W.; Zhang, Y.; Xiong, Y.; Tao, C.; Ma, L.; Ma, J.; You, C.; Wang, C. Global, regional, and national burden of stroke, 1990–2021: A systematic analysis for global burden of disease 2021. Stroke 2024, 55, 2815–2824. [Google Scholar] [CrossRef]
- Strandberg, T. Adults with Acquired Traumatic Brain Injury: Experiences of a Changeover Process and Consequences in Everyday Life. Soc. Work. Health Care 2009, 48, 276–297. [Google Scholar] [CrossRef]
- Zheng, R.Z.; Qi, Z.X.; Wang, Z.; Xu, Z.Y.; Wu, X.H.; Mao, Y. Clinical Decision on Disorders of Consciousness after Acquired Brain Injury: Stepping Forward. Neurosci. Bull. 2023, 39, 138–162. [Google Scholar] [CrossRef]
- Kim, H.S.; Lim, K.B.; Yoo, J.; Kim, Y.W.; Lee, S.W.; Son, S.; Kim, C.; Kim, J. The Efficacy of Computerized Cognitive Rehabilitation in Improving Attention and Executive Functions in Acquired Brain Injury Patients, in Acute and Postacute Phase. Eur. J. Phys. Rehabil. Med. 2021, 57, 551–559. [Google Scholar] [CrossRef]
- Seelochan, A.; Paramlall, M.; Tyagi, H.; Kandasamy, R.; Bakar, I.; Holloway, C.; Harding, S.; Gadhvi, A. How Does Self-Report of Anxiety Symptoms Compare with Observer Assessments after Acquired Brain Injury? BJPsych Open 2021, 7, S288. [Google Scholar] [CrossRef]
- Dhakal, R.; Baniya, M.; Solomon, R.M.; Rana, C.; Ghimire, P.; Hariharan, R.; Makower, S.G.; Meng, W.; Halpin, S.; Xie, S.Q.; et al. TEleRehabilitation Nepal (TERN) for People with Spinal Cord Injury and Acquired Brain Injury: A Feasibility Study. Rehabil. Process Outcome 2022, 11, 11795727221126070. [Google Scholar] [CrossRef] [PubMed]
- Dornonville de la Cour, F.L.; Bærentzen, M.B.; Forchhammer, B.; Tibæk, S.; Norup, A. Reducing Fatigue Following Acquired Brain Injury: A Feasibility Study of High Intensity Interval Training for Young Adults. Dev. Neurorehabil. 2022, 25, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, K.K.; Pamula, S.; Nolan, K.J. Changes in Center of Pressure after Robotic Exoskeleton Gait Training in Adults with Acquired Brain Injury. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 4666–4669. [Google Scholar] [CrossRef]
- Verheul, F.; Gosselt, I.; Spreij, L.; Visser-Meily, A.; Te Winkel, S.; Rentinck, I.; Nijboer, T. Can Serious Play and Clinical Cognitive Assessment Go Together? On the Feasibility and User-Experience of Virtual Reality Simulations in Paediatric Neurorehabilitation. J. Pediatr. Rehabil. Med. 2022, 15, 265–274. [Google Scholar] [CrossRef]
- Valentini, F.; Fabio, V.; Boccia, M.; Tanzilli, A.; Iannetti, M.; Cinelli, M.C.; De Angelis, C.; Fasotti, L.; Formisano, R.; Guariglia, C.; et al. Two Ecological Tools for Testing Slowness of Information Processing in Italian Patients with Moderate-to-Severe Traumatic Brain Injury. Arch. Clin. Neuropsychol. 2022, 37, 677–691. [Google Scholar] [CrossRef]
- Kersey, J.; Hammel, J.; Baum, C.; Huebert, K.; Malagari, E.; Terhorst, L.; McCue, M.; Skidmore, E.R. Effect of Interventions on Activity and Participation Outcomes for Adults with Brain Injury: A Scoping Review. Disabil. Rehabil. 2022, 36, 21–31. [Google Scholar] [CrossRef]
- Moreno Legast, G.; Durand, A.; Aboulafia Brakha, T.; Schnider, A.; Guggisberg, A.G. Intensive Multi-Disciplinary Outpatient Rehabilitation for Facilitating Return-to-Work after Acquired Brain Injury: A Case-Control Study. J. Rehabil. Med. 2022, 54, 416. [Google Scholar] [CrossRef]
- Gilbert, C.; Mooradian, G.; Citorik, A.; Gilmore, N.; Kiran, S. Multi-Level Outcomes for Young Adults with Acquired Brain Injury through a Remote Intensive Cognitive Rehabilitation Approach: A Pilot Intervention Study. Brain Inj. 2022, 36, 206–220. [Google Scholar] [CrossRef]
- Bayley, M.T.; Janzen, S.; Harnett, A.; Bragge, P.; Togher, L.; Kua, A.; Patsakos, E.; Turkstra, L.S.; Teasell, R.; Kennedy, M.; et al. INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury: What‘s Changed from 2014 to Now? J. Head Trauma Rehabil. 2023, 38, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rauwenhoff, J.C.; Bol, Y.; van Heugten, C.M.; Batink, T.; Geusgens, C.A.; van den Hout, A.J.; Smits, P.; Verwegen, C.R.; Visser, A.; Peeters, F. Acceptance and Commitment Therapy for People with Acquired Brain Injury: Rationale and Description of the BrainACT Treatment. Clin. Rehabil. 2023, 37, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Gingrich, N.; Bosancich, J.; Schmidt, J.; Sakakibara, B.M. Capability, Opportunity, Motivation, and Social Participation after Stroke. Top. Stroke Rehabil. 2022, 30, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Galarza, C.; Obregón, J. Neuropsychological rehabilitation for traumatic brain injury: A systematic review. J. Clin. Med. 2025, 14, 1287. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Suárez, A.; Pérez-Rodríguez, M.; Silva-José, C.; Rodríguez-Romero, B. Effectiveness of an Exercise Therapy Program Based on Sports in Adults With Acquired Brain Injury: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2025, 106, 333–341. [Google Scholar] [CrossRef]
- Haynes, A.; Johnson, L.; Ashpole, R.; Mamo, A.; Chagpar, S.; Williams, G.; Clanchy, K.; Waters, N.; Vassallo, G.; Scheinberg, A.; et al. The long road back to physical activity: The experience of people with moderate-to-severe traumatic brain injury. Disabil. Rehabil. 2025, 47, 5077–5088. [Google Scholar] [CrossRef]
- Ato, M.; Lopez, J.J.; Benavente, A. A Classification System for Research Designs in Psychology. An. Psicol. 2013, 29, 1038–1059. [Google Scholar] [CrossRef]
- Evensen, J.; Lundgaard, H.; Sveen, U.; Hestad, K.; Arnesveen, B. The Applicability of the Patient-Specific Functional Scale (PSFS) in Rehabilitation for Patients with Acquired Brain Injury (ABI)—A Cohort Study. J. Multidiscip. Healthc. 2020, 13, 1121–1132. [Google Scholar] [CrossRef]
- Peña Casanova, J.; Guardia, J.; Bertrán-Serra, I.; Manero, R.; Jarne, A. Shortened Version of the Barcelona Test (I): Subtest and Normal Profiles. Neurologia 1997, 12, 99–111. [Google Scholar]
- van Heugten, C.; Caldenhove, S.; Crutsen, J.; Winkens, I. An Overview of Outcome Measures Used in Neuropsychological Rehabilitation Research on Adults with Acquired Brain Injury. Neuropsychol. Rehabil. 2020, 30, 1598–1623. [Google Scholar] [CrossRef]
- Sedó, M.A. Five Digit Test. Manual; TEA Ediciones: Madrid, Spain, 2007. [Google Scholar]
- Shears, C.; Gauvain, M. Acquired Brain Injury Results in Specific Impairment of Planning Knowledge. Brain Impair. 2015, 16, 28–45. [Google Scholar] [CrossRef]
- Vakil, E.; Lev-Ran, C. Baseline Performance and Learning Rate of Conceptual and Perceptual Skill-Learning Tasks: The Effect of Moderate to Severe Traumatic Brain Injury. J. Clin. Exp. Neuropsychol. 2014, 36, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Alderman, N.; Burgess, P.W.; Emslie, H.; Evans, J.J. Behavioural Assessment of the Dysexecutive Syndrome; Thames Valley Test Company: Bury St Edmunds, UK, 1998. [Google Scholar]
- Wilson, B.; Evans, J.J.; Emslie, H.; Alderman, N.; Burgess, P. The Development of an Ecologically Valid Test for Assessing Patients with a Dysexecutive Syndrome. Neuropsychol. Rehabil. 2010, 8, 213–228. [Google Scholar] [CrossRef]
- Poveda, B.; Abrahams, S.; Baksh, R.A.; MacPherson, S.E.; Evans, J.J. An Investigation of the Validity of the Edinburgh Social Cognition Test (ESCoT) in Acquired Brain Injury (ABI). J. Int. Neuropsychol. Soc. 2022, 28, 1016–1028. [Google Scholar] [CrossRef]
- Espenes, J.; Hessen, E.; Eliassen, I.V.; Waterloo, K.; Eckerström, M.; Sando, S.B.; Timón, S.; Wallin, A.; Fladby, T.; Kirsebom, B.-E. Demographically Adjusted Trail Making Test Norms in a Scandinavian Sample from 41 to 84 Years. Clin. Neuropsychol. 2020, 34, 110–126. [Google Scholar] [CrossRef]
- Bartfai, A.; Elg, M.; Schult, M.-L.; Markovic, G. Predicting Outcome for Early Attention Training after Acquired Brain Injury. Front. Hum. Neurosci. 2022, 16, 768830. [Google Scholar] [CrossRef]
- Ekdahl, N.; Godbolt, A.K.; Deboussard, C.N.; Lannsjö, M.; Stålnacke, B.-M.; Stenberg, M.; Ulfarsson, T.; Möller, M.C. Cognitive Reserve, Early Cognitive Screening, and Relationship to Long-Term Outcome after Severe Traumatic Brain Injury. J. Clin. Med. 2022, 11, 2046. [Google Scholar] [CrossRef]
- Verdugo, M.; Gómez, L.; Fernández, M.; Aguayo, V.; Arias, B. CAVIDACE Scale: Assessment of Quality of Life in People with Brain Injury; INICO Publications: Salamanca, Spain, 2018; Available online: https://gredos.usal.es/handle/10366/153670 (accessed on 19 August 2025).
- Fernández, M.; Gómez, L.E.; Arias, V.B.; Aguayo, V.; Amor, A.M.; Andelic, N.; Verdugo, M.A. A New Scale for Measuring Quality of Life in Acquired Brain Injury. Qual. Life Res. 2019, 28, 801–814. [Google Scholar] [CrossRef]
- World Health Organization. The World Health Organization Quality of Life (WHOQOL)-BREF, 2012 Revision; WHO: Geneva, Switzerland, 2004; Available online: https://pesquisa.bvsalud.org/portal/resource/pt/who-77773 (accessed on 19 August 2025).
- Torres, H.M.; Quezada, V.M.; Rioseco, H.R.; Ducci, V.M.E. Quality of Life of Elder Subjects Living in Basic Social Dwellings. Rev. Méd. Chile 2008, 136, 325–333. [Google Scholar] [CrossRef]
- Andrade, E.; Arce, C.; De Francisco, C.; Torrado, J.; Garrido, J. Short Spanish Version of the POMS Questionnaire for Adult Athletes and General Population. Rev. Psicol. Deporte 2013, 22, 95–102. [Google Scholar]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. American Heart Association Stroke Council. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef]
- Arias Cuadrado, A. Stroke Rehabilitation: Assessment, Prognosis and Treatment. Galicia Clin. 2009, 70, 25–40. [Google Scholar]
- French, B.; Thomas, L.H.; Coupe, J.; McMahon, N.E.; Connell, L.; Harrison, J.; Sutton, C.J.; Tishkovskaya, S.; Watkins, C.L. Repetitive Task Training for Improving Functional Ability after Stroke. Cochrane Database Syst. Rev. 2016, 11, CD006073. [Google Scholar] [CrossRef] [PubMed]
- Kelly, G.; Wales, L.; Owen, L.; Perkins, A. Young People‘s Experiences of Returning to Physical Leisure Activities after a Severe Acquired Brain Injury. Phys. Occup. Ther. Pediatr. 2022, 43, 389–402. [Google Scholar] [CrossRef] [PubMed]
- López, L.P.; Coll-Andreu, M.; Torras-Garcia, M.; Font-Farré, M.; Oviedo, G.R.; Capdevila, L.; Guerra-Balic, M.; Portell-Cortés, I.; Costa-Miserachs, D.; Morris, T.P. Aerobic exercise and cognitive function in chronic severe traumatic brain injury survivors: A within-subject ABA intervention study. BMC Sports Sci. Med. Rehabil. 2024, 16, 201. [Google Scholar] [CrossRef]
- Pérez Rodríguez, M.; Gutiérrez-Suárez, A.; Arias, J.Á.R.; Andreu-Caravaca, L.; Pérez-Tejero, J. Effects of Exercise Programs on Functional Capacity and Quality of Life in People with Acquired Brain Injury: A Systematic Review and Meta-Analysis. Phys. Ther. 2023, 103, pzac153. [Google Scholar] [CrossRef]
- Adey-Wakeling, Z.; Jolliffe, L.; O‘Shannessy, E.; Hunter, P.; Morarty, J.; Cameron, I.D.; Liu, E.; Lannin, N.A. Activity, Participation, and Goal Awareness after Acquired Brain Injury: A Prospective Observational Study of Inpatient Rehabilitation. Ann. Rehabil. Med. 2021, 45, 413–421. [Google Scholar] [CrossRef]
- Kenah, K.; Bernhardt, J.; Cumming, T.; Spratt, N.; Luker, J.; Janssen, H. Boredom in Patients with Acquired Brain Injuries during Inpatient Rehabilitation: A Scoping Review. Disabil. Rehabil. 2018, 40, 2713–2722. [Google Scholar] [CrossRef]
- Kinsella, E.L.; Muldoon, O.T.; Fortune, D.G.; Haslam, C. Collective Influences on Individual Functioning: Multiple Group Memberships, Self-Regulation, and Depression after Acquired Brain Injury. Neuropsychol. Rehabil. 2020, 30, 1059–1073. [Google Scholar] [CrossRef]
| ID | Age (Years) | Sex | Diagnosis | mRS (0–6) | GCS | Education Level | Intervention Group |
|---|---|---|---|---|---|---|---|
| 1 | 24 | M | HS | 4 | 14 | S | A1 |
| 2 | 56 | F | IS | 3 | 15 | S | A1 |
| 3 | 74 | M | HS | 4 | 14 | U | A1 |
| 4 | 77 | M | TBI | 2 | 14 | U | A1 |
| 5 | 85 | M | IS | 4 | 14 | S | A1 |
| 6 | 58 | F | IS | 4 | 15 | U | A2 |
| 7 | 67 | M | HS | 2 | 15 | S | A2 |
| 8 | 45 | F | HS | 4 | 13 | U | A2 |
| 9 | 69 | F | IS | 2 | 13 | U | A2 |
| 10 | 66 | F | HS | 3 | 15 | U | B1 |
| 11 | 70 | M | BT | 4 | 13 | S | B1 |
| 12 | 45 | M | HS | 3 | 15 | U | B1 |
| 13 | 87 | F | IS | 3 | 15 | U | B2 |
| 14 | 47 | M | TBI | 4 | 14 | S | B2 |
| 15 | 35 | M | TBI | 4 | 13 | S | B2 |
| 16 | 89 | F | IS | 3 | 11 | P | B2 |
| 17 | 30 | M | BT | 2 | 15 | U | C |
| 18 | 53 | M | HS | 2 | 15 | U | C |
| 19 | 49 | M | TBI | 3 | 14 | S | C |
| Group A (n = 9) | Group B (n = 7) | Group C (n = 3) | ||||
|---|---|---|---|---|---|---|
| M | SD | M | SD | M | SD | |
| BT-Direct Digits-Pre | 5.20 | 0.84 | 5.75 | 0.95 | 6.00 | 1.73 |
| BT-Digits Direct-Post | 5.80 | 0.44 | 5.75 | 0.95 | 5.67 | 1.53 |
| BT-Inverse Digits Pre | 3.20 | 0.83 | 3.75 | 0.95 | 4.67 | 1.52 |
| BT-Inverse Digits Post | 4.40 | 1.51 | 4.00 | 0.81 | 4.67 | 1.52 |
| TMT-A_pre | 132.00 | 57.90 | 73.00 | 31.18 | 76.00 | 63.32 |
| TMT-A_post | 117.60 | 91.63 | 76.25 | 36.13 | 79.33 | 61.33 |
| TMT-B_pre | 327.40 | 172.99 | 299.00 | 222.42 | 118.00 | 62.00 |
| TMT-B_post | 308.60 | 180.90 | 288.25 | 214.29 | 137.00 | 82.82 |
| T. Hanoi (sec) pre | 193.40 | 231.30 | 207.50 | 261.91 | 81.33 | 42.36 |
| T. Hanoi (sec) post | 46.60 | 22.14 | 76.75 | 49.01 | 120.33 | 104.83 |
| T. Hanoi (mov) pre | 14.60 | 5.72 | 16.75 | 8.18 | 12.00 | 6.24 |
| T. Hanoi (mov) post | 10.00 | 4.12 | 13.25 | 6.13 | 13.67 | 11.54 |
| FDT-Inhibition-pre | 6.20 | 2.86 | 7.25 | 2.50 | 6.67 | 2.08 |
| FDT-Inhibition-post | 7.00 | 2.91 | 8.50 | 0.70 | 7.00 | 3.00 |
| FDT-Flexibility-pre | 5.80 | 2.58 | 7.25 | 2.75 | 5.67 | 2.88 |
| FDT-Flexibility-post | 7.40 | 2.60 | 5.50 | 2.38 | 7.67 | 2.31 |
| Group A (n = 9) | Group B (n = 7) | Group C (n = 3) | ||||
|---|---|---|---|---|---|---|
| M | SD | M | SD | M | SD | |
| CAVIDACE-EW-pre | 16.71 | 4.07 | 17.80 | 3.70 | 15.67 | 6.42 |
| CAVIDACE-EW-post | 19.29 | 2.36 | 20.40 | 1.82 | 18.67 | 1.52 |
| CAVIDACE-PD-pre | 16.43 | 2.76 | 13.60 | 3.21 | 16.67 | 2.88 |
| CAVIDACE-PD-post | 17.29 | 2.75 | 16.40 | 3.91 | 16.67 | 7.10 |
| BADS-pre | 1.86 | 1.57 | 2.00 | 2.34 | 1.00 | 1.00 |
| BADS-post | 3.43 | 2.22 | 2.60 | 2.30 | 0.67 | 0.57 |
| WHOQOL-Total-pre | 87.43 | 11.01 | 96.80 | 15.78 | 99.33 | 6.64 |
| WHOQOL-Total-post | 93.71 | 7.50 | 98.60 | 15.66 | 102.0 | 14.00 |
| WHOQOL-PH-pre | 20.29 | 3.45 | 22.60 | 5.56 | 28.33 | 2.08 |
| WHOQOL-PH-post | 25.43 | 2.37 | 24.20 | 3.83 | 28.33 | 3.78 |
| WHOQOL-Psi-pre | 21.14 | 2.96 | 23.80 | 3.90 | 24.00 | 1.00 |
| WHOQOL-Psi-post | 22.14 | 2.80 | 23.00 | 4.30 | 23.00 | 4.58 |
| WHOQOL-Rel-pre | 9.14 | 2.41 | 11.00 | 2.56 | 10.67 | 1.52 |
| WHOQOL-Rel-post | 11.14 | 1.86 | 11.00 | 1.87 | 10.33 | 1.53 |
| WHOQOL-Env-pre | 28.14 | 4.33 | 31.80 | 5.31 | 32.33 | 2.51 |
| WHOQOL-Env-post | 28.29 | 2.43 | 32.40 | 4.33 | 33.00 | 4.36 |
| POMS-Tension-pre | 4.43 | 4.90 | 5.40 | 4.51 | 0.67 | 0.57 |
| POMS-Tension-post | 2.71 | 3.40 | 3.40 | 4.10 | 2.67 | 3.06 |
| POMS-Depression-pre | 5.29 | 6.21 | 2.20 | 2.96 | 1.33 | 1.53 |
| POMS-Depression-post | 3.00 | 2.94 | 1.80 | 1.64 | 2.33 | 3.21 |
| POMS-Cholera-pre | 3.14 | 5.00 | 3.60 | 4.50 | 3.90 | 4.50 |
| POMS-Cholera-post | 2.00 | 3.31 | 2.00 | 1.87 | 1.33 | 1.53 |
| POMS-Vigor-pre | 10.14 | 3.67 | 14.40 | 2.88 | 14.67 | 3.78 |
| POMS-Vigor-post | 13.00 | 2.31 | 14.00 | 4.00 | 13.67 | 2.08 |
| POMS-Fatigue-pre | 7.14 | 4.71 | 6.00 | 5.87 | 9.80 | 1.78 |
| POMS-Fatigue-post | 5.71 | 3.81 | 3.80 | 3.70 | 1.67 | 2.88 |
| POMS- Friendliness -pre | 14.43 | 3.50 | 16.40 | 2.60 | 15.33 | 0.57 |
| POMS-Friendliness-post | 14.00 | 2.08 | 15.40 | 3.36 | 13.67 | 3.21 |
| Group A1 (n = 5) | Group A2 (n = 4) | Group B1 (n = 3) | Group B2 (n = 4) | Group C (n = 3) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| M | SD | M | SD | M | SD | M | SD | M | SD | |
| TB-Direct Digits-Pre | 5.40 | 0.89 | 4.00 | 0.81 | 6.67 | 0.57 | 4.75 | 1.26 | 6.00 | 1.73 |
| TB-Digits Direct-Post | 5.80 | 1.09 | 5.00 | 1.41 | 6.00 | 1.00 | 5.00 | 0.82 | 5.67 | 1.52 |
| TB-Inverse Digits Pre | 2.80 | 0.83 | 3.25 | 0.95 | 4.00 | 1.00 | 3.00 | 0.81 | 4.67 | 1.52 |
| TB-Inverse Digits Post | 4.00 | 0.70 | 4.25 | 2.06 | 4.00 | 1.00 | 3.25 | 0.95 | 4.67 | 1.52 |
| TMT-A_pre | 228.00 | 159.65 | 115.33 | 75.72 | 120.67 | 139.75 | 83.00 | 29.30 | 76.00 | 63.31 |
| TMT-A_post | 222.50 | 153.26 | 71.33 | 36.47 | 90.67 | 74.00 | 84.33 | 39.57 | 79.33 | 61.33 |
| TMT-B_pre | 390.33 | 211.52 | 221.00 | 26.23 | 82.00 | 65.81 | 371.33 | 206.92 | 118.00 | 62.00 |
| TMT-B_post | 383.33 | 210.31 | 184.33 | 26.76 | 114.00 | 32.47 | 346.33 | 220.54 | 137.00 | 82.81 |
| T.Hanoi (sec) pre | 337.25 | 305.97 | 112.33 | 27.61 | 345.50 | 359.91 | 334.75 | 306.33 | 81.33 | 42.36 |
| T.Hanoi (sec) post | 107.00 | 143.29 | 67.33 | 8.73 | 111.50 | 68.58 | 85.25 | 48.78 | 120.33 | 104.83 |
| T.Hanoi (mov) pre | 11.75 | 4.19 | 16.33 | 5.85 | 313.50 | 405.17 | 10.50 | 7.23 | 12.00 | 6.24 |
| T.Hanoi (mov) post | 12.50 | 5.26 | 8.00 | 1.73 | 18.50 | 3.53 | 13.25 | 6.13 | 13.67 | 11.54 |
| FDT-Inhibition-pre | 5.25 | 3.59 | 6.50 | 0.70 | 5.00 | 4.24 | 7.00 | 3.00 | 0.00 | 0.01 |
| FDT-Inhibition-post | 4.25 | 2.98 | 9.50 | 0.70 | 5.00 | 4.24 | 8.00 | 0.00 | 1.67 | 2.88 |
| FDT-Flexibility-pre | 5.25 | 3.30 | 5.50 | 0.70 | 6.00 | 4.24 | 6.67 | 3.05 | 15.67 | 6.42 |
| FDT-Flexibility-post | 5.50 | 4.20 | 8.00 | 0.01 | 6.50 | 3.53 | 4.33 | 0.57 | 18.67 | 1.52 |
| Group 1 (n = 5) | Group 2 (n = 4) | Group 3 (n = 3) | Group 4 (n = 4) | Group 5 (n = 3) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| M | SD | M | SD | M | SD | M | SD | M | SD | |
| CAVIDACE-EW-pre | 14.60 | 1.51 | 18.50 | 4.50 | 15.67 | 4.61 | 18.75 | 2.75 | 15.67 | 6.42 |
| CAVIDACE-EW-post | 17.60 | 1.34 | 20.50 | 2.38 | 17.00 | 3.60 | 21.25 | 1.25 | 18.67 | 1.52 |
| CAVIDACE-PD-pre | 15.40 | 3.84 | 17.00 | 3.36 | 14.00 | 1.00 | 12.75 | 4.11 | 16.67 | 2.88 |
| CAVIDACE-PD-post | 16.20 | 1.92 | 18.50 | 3.00 | 14.67 | 4.16 | 17.25 | 3.09 | 16.67 | 7.09 |
| BADS-pre | 1.67 | 2.08 | 2.00 | 1.41 | 2.50 | 3.53 | 1.67 | 2.08 | 1.00 | 1.00 |
| BADS-post | 2.33 | 3.21 | 4.25 | 0.95 | 3.50 | 3.53 | 2.00 | 1.73 | 0.67 | 0.57 |
| WHOQOL-Total-pre | 86.20 | 12.65 | 88.00 | 6.97 | 74.33 | 15.04 | 102.50 | 10.24 | 99.33 | 6.65 |
| WHOQOL-Total-post | 89.40 | 7.70 | 96.00 | 5.88 | 76.67 | 14.29 | 103.25 | 13.52 | 102.00 | 14.00 |
| WHOQOL-PH-pre | 22.80 | 3.89 | 19.50 | 4.20 | 17.33 | 2.30 | 25.50 | 3.87 | 28.33 | 2.08 |
| WHOQOL-PH-post | 24.00 | 3.67 | 25.50 | .57 | 18.67 | 3.21 | 26.00 | 2.44 | 28.33 | 3.78 |
| WHOQOL-Psi-pre | 20.00 | 2.91 | 22.00 | 2.16 | 17.33 | 4.61 | 25.25 | 2.98 | 24.00 | 1.00 |
| WHOQOL-Psi-post | 20.40 | 2.30 | 23.00 | 2.94 | 17.00 | 3.60 | 24.75 | 3.09 | 23.00 | 4.58 |
| WHOQOL-Rel-pre | 8.00 | 1.41 | 10.00 | 2.58 | 7.67 | 2.30 | 12.25 | 2.06 | 10.67 | 1.52 |
| WHOQOL-Rel-post | 10.20 | 1.48 | 12.25 | 1.25 | 8.00 | 2.64 | 11.50 | 1.73 | 10.33 | 1.52 |
| WHOQOL-Env-pre | 27.20 | 4.43 | 30.25 | 4.78 | 28.00 | 5.56 | 32.00 | 5.41 | 32.33 | 2.51 |
| WHOQOL-Env-post | 28.00 | 1.58 | 29.00 | 2.94 | 27.00 | 4.00 | 32.75 | 4.92 | 33.00 | 4.35 |
| POMS-Tension-pre | 3.40 | 2.19 | 4.50 | 6.60 | 10.33 | .57 | 2.33 | 2.30 | 0.67 | 0.57 |
| POMS-Tension-post | 1.80 | 1.09 | 3.00 | 4.76 | 8.00 | 3.46 | 1.00 | 1.73 | 2.67 | 3.05 |
| POMS-Depression-pre | 5.80 | 3.56 | 5.25 | 8.61 | 8.67 | 6.65 | 0.33 | 0.57 | 1.33 | 1.52 |
| POMS-Depression-post | 3.00 | 1.58 | 2.25 | 3.86 | 7.00 | 7.93 | 1.33 | 1.52 | 2.33 | 3.21 |
| POMS-Cholera-pre | 2.40 | 2.51 | 4.00 | 6.16 | 10.00 | 5.56 | 1.00 | 1.73 | 0.00 | 0.00 |
| POMS-Cholera-post | 1.20 | 1.30 | 2.25 | 4.50 | 6.33 | 4.93 | 1.00 | 1.73 | 1.33 | 1.52 |
| POMS-Vigor-pre | 10.00 | 4.69 | 8.25 | 3.86 | 8.00 | 6.08 | 16.33 | 1.52 | 14.67 | 3.78 |
| POMS-Vigor-post | 10.60 | 3.91 | 13.50 | 1.73 | 7.67 | 4.16 | 16.67 | 2.08 | 13.67 | 2.08 |
| POMS-Fatigue-pre | 6.80 | 3.90 | 8.00 | 5.41 | 9.67 | 2.51 | 4.33 | 7.50 | 0.00 | 0.00 |
| POMS-Fatigue-post | 4.40 | 2.51 | 6.00 | 4.76 | 8.67 | 2.51 | 1.33 | 1.52 | 1.67 | 2.88 |
| POMS- Friendliness -pre | 14.80 | 0.447 | 14.25 | 4.92 | 12.33 | 4.04 | 17.67 | 2.30 | 15.33 | 0.577 |
| POMS-Friendliness-post | 13.40 | 2.30 | 14.50 | 1.00 | 11.33 | 3.51 | 17.00 | 3.00 | 13.67 | 3.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Sánchez, V.; Cuesta-Aguilar, J.; Asensio-Pérez, D.; Gálvez-Guerrero, D.; Morales-Blanca, L.; Cubero-Lama, E.M.; Moreu-Pérez-Artacho, G.R.; Hernández-Mendo, A.; Reigal, R.E. Effects of Neurophysiotherapy Based on Physical Activity on Cognitive and Psychosocial Functioning in Patients with Acquired Brain Injury. Healthcare 2025, 13, 2610. https://doi.org/10.3390/healthcare13202610
Morales-Sánchez V, Cuesta-Aguilar J, Asensio-Pérez D, Gálvez-Guerrero D, Morales-Blanca L, Cubero-Lama EM, Moreu-Pérez-Artacho GR, Hernández-Mendo A, Reigal RE. Effects of Neurophysiotherapy Based on Physical Activity on Cognitive and Psychosocial Functioning in Patients with Acquired Brain Injury. Healthcare. 2025; 13(20):2610. https://doi.org/10.3390/healthcare13202610
Chicago/Turabian StyleMorales-Sánchez, Verónica, Javier Cuesta-Aguilar, Daniel Asensio-Pérez, Desirée Gálvez-Guerrero, Lorena Morales-Blanca, Eva María Cubero-Lama, Gerardo Ricardo Moreu-Pérez-Artacho, Antonio Hernández-Mendo, and Rafael E. Reigal. 2025. "Effects of Neurophysiotherapy Based on Physical Activity on Cognitive and Psychosocial Functioning in Patients with Acquired Brain Injury" Healthcare 13, no. 20: 2610. https://doi.org/10.3390/healthcare13202610
APA StyleMorales-Sánchez, V., Cuesta-Aguilar, J., Asensio-Pérez, D., Gálvez-Guerrero, D., Morales-Blanca, L., Cubero-Lama, E. M., Moreu-Pérez-Artacho, G. R., Hernández-Mendo, A., & Reigal, R. E. (2025). Effects of Neurophysiotherapy Based on Physical Activity on Cognitive and Psychosocial Functioning in Patients with Acquired Brain Injury. Healthcare, 13(20), 2610. https://doi.org/10.3390/healthcare13202610

