Transformative Insights into Community-Acquired Pressure Injuries Among the Elderly: A Big Data Analysis
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Variables
2.3. Data Analysis
3. Findings
4. Discussion
4.1. Managerial Implications
4.2. Study Limitation
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peltonen, L.M.; Pruinelli, L.; Ronquillo, C.; Nibber, R.; Peresmitre, E.L.; Block, L.; Deforest, H.; Lewis, A.; Alhuwail, D.; Ali, S.; et al. The current state of Nursing Informatics—An international cross-sectional survey. Finn. J. ehealth eWelfare 2019, 11, 220–231. [Google Scholar] [CrossRef]
- Flaks-Manov, N.; Topaz, M.; Hoshen, M.; Balicer, R.D.; Shadmi, E. Identifying patients at highest-risk: The best timing to apply a readmission predictive model. BMC Med. Inform. Decis. Mak. 2019, 19, 118. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Rose, L.; Afonso, E.; Benbenishty, J.; Blackwood, B.; Boulanger, C.; Calvino-Gunther, S.; Chaboyer, W.; Coyer, F.; Llaurado-Serra, M.; et al. Epidemiology and outcome of pressure injuries in critically ill patients with chronic obstructive pulmonary disease: A propensity score adjusted analysis. Int. J. Nurs. Stud. 2022, 129, 104222. [Google Scholar] [CrossRef] [PubMed]
- Corbett, L.Q.; Funk, M.; Fortunato, G.; O’Sullivan, D.M. Pressure injury in a community population: A descriptive study. J. Wound Ostomy Cont. Nurs. 2017, 44, 221–227. [Google Scholar] [CrossRef]
- Haesler, E.; Swanson, T.; Ousey, K.; Carville, K. Clinical indicators of wound infection and biofilm: Reaching international consensus. J. Wound Care 2019, 28, s4–s12. [Google Scholar] [CrossRef]
- Coyer, F.; Labeau, S.; Blot, S. Preventing pressure injuries among patients in the intensive care unit: Insights gained. Intensive Care Med. 2022, 48, 1787–1789. [Google Scholar] [CrossRef]
- Fernando-Canavan, L.; Gust, A.; Hsueh, A.; Tran-Duy, A.; Kirk, M.; Brooks, P.; Knight, J. Measuring the economic impact of hospital-acquired complications on an acute health service. Aust. Health Rev. 2020, 45, 135–142. [Google Scholar] [CrossRef]
- Nghiem, S.; Campbell, J.; Walker, R.M.; Byrnes, J.; Chaboyer, W. Pressure injuries in Australian public hospitals: A cost of illness study. Int. J. Nurs. Stud. 2022, 130, 104191. [Google Scholar] [CrossRef]
- Hauck, K.D.; Wang, S.; Vincent, C.; Smith, P.C. Healthy life-years lost and excess bed-days due to 6 patient safety incidents: Empirical evidence from English hospitals. Med. Care 2017, 55, 125–130. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.Y.; Lee, E. Risk factors for newly acquired pressure ulcer and the impact of nurse staffing on pressure ulcer incidence. J. Nurs. Manag. 2022, 30, O1–O9. [Google Scholar] [CrossRef]
- Yon, Y.; Mikton, C.R.; Gassoumis, Z.D.; Wilber, K.H. Elder abuse prevalence in community settings: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e147–e156. [Google Scholar] [CrossRef] [PubMed]
- Haesler, E. Skin care to reduce the risk of pressure injuries. Wound Pract. Res. J. Aust. Wound Manag. Assoc. 2018, 26, 111–113. [Google Scholar]
- Jackson, D.; Durrant, L.; Bishop, E.; Walthall, H.; Betteridge, R.; Gardner, S.; Coulton, W.; Hutchinson, M.; Neville, S.; Davidson, P.M.; et al. Pain associated with pressure injury: A qualitative study of community-based, home-dwelling individuals. J. Adv. Nurs. 2017, 73, 3061–3069. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, K.; Sim, J.; Clifton, R. Systematic review of pressure injury prevalence in Australian and New Zealand hospitals. Collegian 2021, 28, 310–323. [Google Scholar] [CrossRef]
- Haesler, E. Evidence Summary: Pressure Injuries: Preventing medical device related pressure injuries. Wound Pract. Res. J. Aust. Wound Manag. Assoc. 2017, 25, 214–216. [Google Scholar]
- Kirkland-Khyn, H.; Teleten, O.; Joseph, R.; Maguina, P. A Descriptive Study of Hospital-and Community-acquired Pressure Ulcers/Injuries. Wound Manag. Prev. 2019, 65, 14–19. [Google Scholar] [CrossRef]
- Khor, H.M.; Tan, J.; Saedon, N.I.; Kamaruzzaman, S.B.; Chin, A.V.; Poi, P.J.; Tan, M.P. Determinants of mortality among older adults with pressure ulcers. Arch. Gerontol. Geriatr. 2014, 59, 536–541. [Google Scholar] [CrossRef]
- Kayser, S.A.; VanGilder, C.A.; Ayello, E.A.; Lachenbruch, C. Prevalence and analysis of medical device-related pressure injuries: Results from the international pressure ulcer prevalence survey. Adv. Ski. Wound Care 2018, 31, 276–285. [Google Scholar] [CrossRef]
- Walker, R.M.; Gillespie, B.M.; McInnes, E.; Moore, Z.; Eskes, A.M.; Patton, D.; Harbeck, E.L.; White, C.; Scott, I.A.; Chaboyer, W. Prevention and treatment of pressure injuries: A meta-synthesis of Cochrane Reviews. J. Tissue Viabil. 2020, 29, 227–243. [Google Scholar] [CrossRef]
- Burkhart, L.; Skemp, L.; Siddiqui, S.; Bates-Jensen, B. Developing a decision support tool to prevent community-acquired pressure injuries in spinal cord injury in ambulatory care: A nurse-led protocol for mix methods research. Nurs. Outlook 2021, 69, 127–135. [Google Scholar] [CrossRef]
- Elli, C.; Novella, A.; Nobili, A.; Ianes, A.; Pasina, L. Factors associated with a high-risk profile for developing pressure injuries in long-term residents of nursing homes. Med. Princ. Pract. 2022, 31, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Nakagami, G.; Yokota, S.; Kitamura, A.; Takahashi, T.; Morita, K.; Noguchi, H.; Ohe, K.; Sanada, H. Supervised machine learning-based prediction for in-hospital pressure injury development using electronic health records: A retrospective observational cohort study in a university hospital in Japan. Int. J. Nurs. Stud. 2021, 119, 103932. [Google Scholar] [CrossRef] [PubMed]
- Padula, W.V.; Armstrong, D.G.; Pronovost, P.J.; Saria, S. Predicting pressure injury risk in hospitalised patients using machine learning with electronic health records: A US multilevel cohort study. BMJ Open 2024, 14, e08254024. [Google Scholar] [CrossRef] [PubMed]
- Tayyib, N.; Asiri, M.Y.; Danic, S.; Sahi, S.L.; Lasafin, J.; Generale, L.F.; Malubay, A.; Viloria, P.; Palmere, M.G.; Parbo, A.R.; et al. The effectiveness of the SKINCARE bundle in preventing medical-device related pressure injuries in critical care units: A clinical trial. Adv. Ski. Wound Care 2021, 34, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Aloweni, F.; Gunasegaran, N.; Lim, S.H.; Leow, B.W.; Agus, N.; Goh, I.H.; Ang, S.Y. Socio-economic and environmental factors associated with community-acquired pressure injuries: A mixed method study. J. Tissue Viabil. 2024, 33, 27–42. [Google Scholar] [CrossRef]
- Howe, I.I.I.E.G.; Elenberg, F. Ethical challenges posed by big data. Innov. Clin. Neurosci. 2020, 17, 24. [Google Scholar]
- Hamdan, A.; Hamdan-Mansour, A.M. Community versus Hospital Acquired Pressure Injuries: An Assessment of Predisposing Risk Factors. Malays. J. Med. Health Sci. 2020, 16, 170–176. [Google Scholar]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef]
- Moda Vitoriano Budri, A.; Moore, Z.; Patton, D.; O’Connor, T.; Nugent, L.; Mc Cann, A.; Avsar, P. Impaired mobility and pressure ulcer development in older adults: Excess movement and too little movement—Two sides of the one coin? J. Clin. Nurs. 2020, 29, 2927–2944. [Google Scholar] [CrossRef]
- Galvão, E.C.; Püschel, V.A. Multimedia application in mobile platform for teaching the measurement of central venous pressure. Rev. Esc. Enferm. USP 2012, 46, 107–115. [Google Scholar] [CrossRef]
- Friedman, L.; Avila, S.; Friedman, D.; Meltzer, W. Association between type of residence and clinical signs of neglect in older adults. Gerontology 2019, 65, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Güler, E.K.; Eşer, İ.; Khorshid, L.; Yücel, Ş.Ç. Nursing diagnoses in elderly residents of a nursing home: A case in Turkey. Nurs. Outlook 2012, 60, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.J.; Albur, M.; Eberl, M.; Cuff, S.M. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med. Inform. Decis. Mak. 2019, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Doyle, O.M.; Leavitt, N.; Rigg, J.A. Finding undiagnosed patients with hepatitis C infection: An application of artificial intelligence to patient claims data. Sci. Rep. 2020, 10, 10521. [Google Scholar] [CrossRef]
- Shortliffe, E.H.; Sepúlveda, M.J. Clinical decision support in the era of artificial intelligence. JAMA 2018, 320, 2199–2200. [Google Scholar] [CrossRef]
- Salomé, G.M.; Ferreira, L.M. Developing a mobile app for prevention and treatment of pressure injuries. Adv. Ski. Wound Care 2018, 31, 1–6. [Google Scholar] [CrossRef]
- Benevides, J.L.; Coutinho, J.F.; Pascoal, L.C.; Joventino, E.S.; Martins, M.C.; Gubert, F.D.; Alves, A.M. Development and validation of educational technology for venous ulcer care. Rev. Esc. Enferm. USP 2016, 50, 0309–0316. [Google Scholar] [CrossRef]
- Deckro, J.; Phillips, T.; Davis, A.; Hehr, A.T.; Ochylski, S. Big data in the veterans health administration: A nursing informatics perspective. J. Nurs. Scholarsh. 2021, 53, 288–295. [Google Scholar] [CrossRef]
- Jull, A.; McCall, E.; Chappell, M.; Tobin, S. Measuring hospital-acquired pressure injuries: A surveillance program for monitoring performance improvement and estimating annual prevalence. Int. J. Nurs. Stud. 2016, 58, 71–79. [Google Scholar] [CrossRef]
Sub Population | Events | % |
---|---|---|
Positive Skin Assessment (Within 36 h) | 2448 | 5.5% |
Negative Skin Assessment (Within 36 h) | 18,471 | 41.5% |
Readmission | 2831 | 6.3% |
Missing Skin Assessment | 20,745 | 46.6% |
Total Basic Population | 44,495 |
Variable | Missing | * Number of Patients and % | |
---|---|---|---|
Ulcer area | 174 | Less than 15 patients | |
Trochanter | 126 (5.1) | ||
Ear | Less than 15 | ||
Abdomen | Less than 15 | ||
Back | 15 (0.6) | ||
Chest | Less than 15 | ||
Arm | Less than 15 | ||
Foot | 19 (0.8) | ||
Shoulder | Less than 15 | ||
Face | Less than 15 | ||
Genitalia | Less than 15 | ||
Sacrum | 290 (11.8) | ||
Buttock | 1393 (56.9) | ||
Spine | Less than 15 | ||
Ankle | 265 (10.8) | ||
Neck | Less than 15 | ||
Leg | 96 (3.9) | ||
Degree of pressure injury | 1 | 254 | 681 (31.0) |
2 | 901 (41.1) | ||
3 | 396 (18.0) | ||
4 | 216 (9.8) | ||
Necrotic Tissue | No | 2253 (92.0) | |
Yes | 195 (8.0) | ||
Serotic Tissue | No | 2222 (90.8) | |
Yes | 226 (9.2) | ||
Bloody Tissue | No | 2383 (97.3) | |
Yes | 65 (2.7) | ||
Granolithic Tissue | No | 2266 (92.6) | |
Yes | 182 (7.4) | ||
Epithelial Tissue | No | 1996 (81.5) | |
Yes | 452 (18.5) | ||
Infected Tissue | No | 2285 (93.3) | |
Yes | 163 (6.7) |
Characteristics | Adjusted OR | Adjusted OR CI | Adjusted p-Value | Unadjusted OR | Unadjusted OR CI |
---|---|---|---|---|---|
Age on admission | 1.0102 | [1.01, 1.01] | 0.0000 | 1.039 | [1.04, 1.04] |
Multi-pharmacy | 1.0132 | [1.01, 1.02] | 0.0001 | 1.0224 | [1.02, 1.03] |
Albumin level (lab) | 0.9459 | [0.94, 0.95] | 0.0000 | 0.9167 | [0.91, 0.92] |
Red cell Distribution Width | 1.0623 | [1.04, 1.09] | 0.0000 | 1.1141 | [1.1, 1.13] |
Systolic blood pressure | 0.9952 | [0.99, 1.0] | 0.0008 | 0.9871 | [0.99, 0.99] |
Intestinal functions | 1.9262 | [1.62, 2.29] | 0.0000 | 10.1404 | [9.2, 11.17] |
Eating habits | 1.6759 | [1.41, 1.99] | 0.0000 | 9.0266 | [8.23, 9.9] |
Mobility | 6.263 | [5.0, 7.84] | 0.0000 | 20.3565 | [17.71, 23.4] |
Conscious state | 1.1814 | [1.0, 1.39] | 0.0477 | 6.6144 | [5.97, 7.33] |
Assessment of Senses | 1.8584 | [1.56, 2.21] | 0.0000 | 3.6194 | [3.23, 4.05] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafran-Tikva, S.; Gabay, G.; Kagan, I. Transformative Insights into Community-Acquired Pressure Injuries Among the Elderly: A Big Data Analysis. Healthcare 2025, 13, 153. https://doi.org/10.3390/healthcare13020153
Shafran-Tikva S, Gabay G, Kagan I. Transformative Insights into Community-Acquired Pressure Injuries Among the Elderly: A Big Data Analysis. Healthcare. 2025; 13(2):153. https://doi.org/10.3390/healthcare13020153
Chicago/Turabian StyleShafran-Tikva, Sigal, Gillie Gabay, and Ilya Kagan. 2025. "Transformative Insights into Community-Acquired Pressure Injuries Among the Elderly: A Big Data Analysis" Healthcare 13, no. 2: 153. https://doi.org/10.3390/healthcare13020153
APA StyleShafran-Tikva, S., Gabay, G., & Kagan, I. (2025). Transformative Insights into Community-Acquired Pressure Injuries Among the Elderly: A Big Data Analysis. Healthcare, 13(2), 153. https://doi.org/10.3390/healthcare13020153