Interactive Conversational Agents for Perinatal Health: A Mixed Methods Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Eligibility Criteria
2.3. Search Strategy
2.4. Data Collection
2.5. Data Extraction
2.6. Data Synthesis
3. Results
3.1. Primary Outcomes Measured
3.2. Other Outcomes Measured
3.3. Quality Assessment
4. Discussion
4.1. Main Findings
4.2. Strengths
4.3. Limitations
4.4. Future Research Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Databases Search Strategy
Database Limit: Limit Results to Publications Date Between 23 July 2021 and 9 November 2022 | Search Strategy | Results |
1 | (“chat bot?” or chatterbot? or chatbot? or medbot? or “chatter bot?” or smart bot? or smartbot?).ti,ab,kw,kf | 574 |
2 | (Conversational adj2 (host or coach or avatar or advisor or “Artificial Intelligence” or interface or avatar or agent? or system or computer or humanoid or character or bot? or AI)).ti,ab,kw,kf | 475 |
3 | ((virtual or intelligent or chat or computer or AI or “artificial intelligence” or relational or embodied) adj2 agent?).ti,ab,kw,kf | 1022 |
4 | ((Conversational OR Virtual OR Voice OR “Artificial Intelligence” OR Digital) adj2 assistan*).ti,ab,kw,kf | 1528 |
5 | 1 or 2 or 3 or 4 | 3186 |
6 | Exp perinatal Care/OR Perinatology/OR exp “Infant, Newborn”/ OR Pregnant Women/OR Pregnancy/OR Obstetrics/ | 1451583 |
7 | newborn?.ti,ab,kw,kf OR Neonat*.ti,ab,kw,kf OR Pregnan*.ti,ab,kw,kf OR Perinat*.ti,ab,kw,kf OR Matern*.ti,ab,kw,kf OR Postpartum.ti,ab,kw,kf OR Postnatal.ti,ab,kw,kf OR Childbirth?.ti,ab,kw,kf OR Obstetric?.ti,ab,kw,kf OR “post natal”.ti,ab,kw,kf | 1268687 |
8 | 6 or 7 | 1907674 |
9 | 5 AND 8 | 77 |
10 | limit 9 to ed = 20210723-20221109 | 8 |
# | Search Strategy | Results |
1 | (“chat bot$” OR chatterbot$ OR chatbot$ OR medbot$ OR “chatter bot$” OR “smart bot$” OR smartbot$):ti,ab,kw | 576 |
2 | (Conversational NEAR/2 (host OR coach OR avatar OR advisor OR “Artificial Intelligence” OR interface OR avatar OR agent$ OR system OR computer OR humanoid OR character OR bot$ OR AI)):ti,ab,kw | 419 |
3 | ((virtual OR intelligent OR chat OR computer OR AI OR “artificial intelligence” OR relational OR embodied) NEAR/2 agent$):ti,ab,kw | 1054 |
4 | ((Conversational OR Virtual OR Voice OR “Artificial Intelligence” OR Digital) NEAR/2 assistan*):ti,ab,kw | 1841 |
5 | #1 OR #2 OR #3 OR #4 | 3566 |
6 | ‘perinatal care’/exp OR ‘newborn’/de OR ‘pregnant woman’/de OR ‘obstetric procedure’/de OR ‘postnatal care’/exp OR ‘pregnancy’/de OR ‘hildbirth’/de OR ‘perinatology’/de OR ‘puerperium’/de | 1,481,462 |
7 | newborn$:ti,ab,kw OR Neonat*:ti,ab,kw OR Pregnan*:ti,ab,kw OR Perinat*:ti,ab,kw OR Matern*:ti,ab,kw OR Postpartum:ti,ab,kw OR Postnatal:ti,ab,kw OR Childbirth$:ti,ab,kw OR Obstetric$:ti,ab,kw OR “post natal”:ti,ab,kw OR puerperium:ti,ab,kw | 1,633,076 |
8 | #6 OR #7 | 2,168,193 |
9 | #5 AND #8 | 98 |
10 | #9 AND [23-07-2021]/sd | 16 |
# | Search Strategy | Results |
1 | TI (“chat bot?” OR chatterbot? OR chatbot? OR medbot? OR “chatter bot?” OR smart bot? OR smartbot?) OR AB (“chat bot?” OR chatterbot? OR chatbot? OR medbot? OR “chatter bot?” OR smart bot? OR smartbot?) | 306 |
2 | TI (Conversational N2 (host OR coach OR avatar OR advisor OR “Artificial Intelligence” OR interface OR avatar OR agent? OR system OR computer OR humanoid OR character OR bot? OR AI)) OR AB (Conversational N2 (host OR coach OR avatar OR advisor OR “Artificial Intelligence” OR interface OR avatar OR agent? OR system OR computer OR humanoid OR character OR bot? OR AI)) | 194 |
3 | TI ((virtual OR intelligent OR chat OR computer OR AI OR “artificial intelligence” OR relational OR embodied) N2 agent?) OR AB ((virtual OR intelligent OR chat OR computer OR AI OR “artificial intelligence” OR relational OR embodied) N2 agent?) | 306 |
4 | TI ((Conversational OR Virtual OR Voice OR “Artificial Intelligence” OR Digital) N2 assistan*) OR AB ((Conversational OR Virtual OR Voice OR “Artificial Intelligence” OR Digital) N2 assistan*) | 981 |
5 | S1 OR S2 OR S3 OR S4 | 1637 |
6 | MH “Perinatal Care” OR MH “Maternal-Child Care” OR MH Perinatology OR MH “Expectant Mothers” OR MH “Infant, Newborn+” OR MH “Postnatal Care” OR MH “Prepregnancy Care” OR MH “Obstetric Care” OR MH “Childbirth” OR MH” Postnatal Period” OR MH Puerperium OR MH Pregnancy | 367,369 |
7 | TI newborn# OR AB newborn# OR TI Neonat* OR AB Neonat* OR TI Pregnan* OR AB Pregnan* OR TI Perinat* OR AB Perinat* OR TI Matern* OR AB Matern* TI newborn# OR AB newborn# OR TI Neonat* OR AB Neonat* OR TI Pregnan* OR AB Pregnan* OR TI Perinat* OR AB Perinat* OR TI Matern* OR AB Matern* | 307,158 |
8 | S6 OR S7 | 471,873 |
9 | S5 AND S8 | 36 |
10 | S9 AND DT 20210723-20221109 | 2 |
# | Search Strategy | Results |
1 | TS = (“chat bot$” OR chatterbot$ OR chatbot$ OR medbot$ OR “chatter bot$” OR smart bot$ OR smartbot$) | 7667 |
2 | TS = (Conversational NEAR/2 (host OR coach OR avatar OR advisor OR “Artificial Intelligence” OR interface OR avatar OR agent$ OR system OR computer OR humanoid OR character OR bot$ OR AI)) | 940 |
3 | TS = ((virtual OR intelligent OR chat OR computer OR AI OR “artificial intelligence” OR relational OR embodied) NEAR/2 agent$) | 1389 |
4 | TS = ((Conversational OR Virtual OR Voice OR “Artificial Intelligence” OR Digital) NEAR/2 assistan*) | 949 |
5 | #1 OR #2 OR #3 OR #4 | 10,146 |
6 | TS = (newborn$ OR Neonat* OR Pregnan* OR Perinat* OR Matern* OR Postpartum OR Postnatal OR Childbirth$ OR Obstetric$ OR “post natal” OR puerperium) | 91,419 |
7 | #5 AND #6 | 39 |
# | Search Strategy | Results |
1 | chatbots WN CV | 527 |
2 | “chat bot*” WN TI OR chatterbot* WN TI OR chatbot* WN TI OR medbot* WN TI OR “chatter bot*” WN TI OR smart bot* WN TI OR smartbot* WN TI OR “chat bot*” WN AU OR chatterbot* WN AU OR chatbot* WN AU OR medbot* WN AU OR “chatter bot*” WN AU OR smart bot* WN AU OR smartbot* WN AU | 591 |
3 | (Conversational NEAR/2 host) WN TI OR (Conversational NEAR/2 coach) WN TI OR (Conversational NEAR/2 avatar) WN TI OR (Conversational NEAR/2 advisor) WN TI OR (Conversational NEAR/2 Intelligence) WN TI OR (Conversational NEAR/2 interface) WN TI OR (Conversational NEAR/2 avatar) WN TI OR (Conversational NEAR/2 agent*) WN TI OR (Conversational NEAR/2 system) WN TI OR (Conversational NEAR/2 computer) WN TI OR (Conversational NEAR/2 humanoid) WN TI OR (Conversational NEAR/2 character) WN TI OR (Conversational NEAR/2 bot*) WN TI OR (Conversational NEAR/2 AI) WN TI OR (Conversational NEAR/2 host) WN AU OR (Conversational NEAR/2 coach) WN AU OR (Conversational NEAR/2 avatar) WN AU OR (Conversational NEAR/2 advisor) WN AU OR (Conversational NEAR/2 Intelligence) WN AU OR (Conversational NEAR/2 interface) WN AU OR (Conversational NEAR/2 avatar) WN AU OR (Conversational NEAR/2 agent*) WN AU OR (Conversational NEAR/2 system) WN AU OR (Conversational NEAR/2 computer) WN AU OR (Conversational NEAR/2 humanoid) WN AU OR (Conversational NEAR/2 character) WN AU OR (Conversational NEAR/2 bot*) WN AU OR (Conversational NEAR/2 AI) WN AU | 224 |
4 | (virtual NEAR/2 agent) WN TI OR (intelligent NEAR/2 agent) WN TI OR (chat NEAR/2 agent) WN TI OR (computer NEAR/2 agent) WN TI OR (AI NEAR/2 agent) WN TI OR (“artificial intelligence” NEAR/2 agent) WN TI OR (relational NEAR/2 agent) WN TI OR (embodied NEAR/2 agent) WN TI OR (virtual NEAR/2 agent) WN AU OR (intelligent NEAR/2 agent) WN AU OR (chat NEAR/2 agent) WN AU OR (computer NEAR/2 agent) WN AU OR (AI NEAR/2 agent) WN AU OR (“artificial intelligence” NEAR/2 agent) WN AU OR (relational NEAR/2 agent) WN AU OR (embodied NEAR/2 agent) WN AU | 115 |
5 | (Conversational NEAR/2 assistan*) WN TI OR (Virtual NEAR/2 assistan*) WN TI OR (Voice NEAR/2 assistan*) WN TI OR (“Artificial Intelligence” NEAR/2 assistan*) WN TI OR (Digital NEAR/2 assistan*) WN TI OR (Conversational NEAR/2 assistan*) WN AB OR (Virtual NEAR/2 assistan*) WN TI OR (Voice NEAR/2 assistan*) WN AB OR (“Artificial Intelligence” NEAR/2 assistan*) WN AB OR (Digital NEAR/2 assistan*) WN AB | 1402 |
6 | #1 OR #2 OR #3 OR #4 OR #5 | 2386 |
7 | newborn* WN TI OR newborn* WN AB OR Neonat* WN TI OR Neonat* WN AB OR Pregnan* WN TI OR Pregnan* WN AB OR Perinat* WN TI OR Perinat* WN AB OR Matern* WN TI OR Matern* WN AB OR Postpartum WN TI OR Postpartum WN AB OR Postnatal WN TI OR Postnatal WN AB OR Childbirth* WN TI OR Childbirth* WN AB OR Obstetric* WN TI OR Obstetric* WN AB OR “post natal” WN TI OR “post natal” WN AB OR puerperium WN TI OR puerperium WN AB | 16,208 |
8 | #6 AND #7 | 5 |
# | Search Strategy | Results |
1 | “All Metadata”:chatbot AND (Pregnant OR pregnancy OR perinatal) | 3 |
# | Search | # Results Screened |
1 | “Conversational agent” AND (Pregnant OR pregnancy OR perinatal) | 20 |
2 | Conversational AND assistant AND (Pregnant OR pregnancy OR perinatal) | 20 |
3 | chatbot AND (Pregnant OR pregnancy OR perinatal) | 20 |
4 | chatbots AND (Pregnant OR pregnancy OR perinatal) | 20 |
Total number of results | 80 |
References
- Coen, S.; Banister, E. What a Difference Sex and Gender Make: A Gender, Sex and Health Research Casebook; CIHR Institute of Gender and Health: Canada, 2012. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Women’s Health. Fact Sheets. Available online: https://www.who.int/fr/news-room/fact-sheets/detail/women-s-health (accessed on 13 February 2023).
- Potter, R.G.; Parker, M.P. Predicting the time required to conceive. Popul. Stud. 1964, 18, 99–116. [Google Scholar] [CrossRef]
- Gnoth, C.; Godehardt, D.; Godehardt, E.; Frank-Herrmann, P.; Freundl, G. Time to pregnancy: Results of the German prospective study and impact on the management of infertility. Hum. Reprod. 2003, 18, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.R.; Yim, I.S. A systematic review of concepts related to women’s empowerment in the perinatal period and their associations with perinatal depressive symptoms and premature birth. BMC Pregnancy Childbirth 2017, 17, 347. [Google Scholar] [CrossRef] [PubMed]
- BC Reproductive Mental Health Program; Williams, J. Best Practice Guidelines for Mental Health Disorders in the Perinatal Period. 2014. Available online: http://www.bcwomens.ca/Professional-Resources-site/Documents/Best%20Practice%20Guidelines%20for%20Mental%20Health%20Disorders%20in%20the%20Perinatal%20Period%20%282014%29.pdf (accessed on 15 January 2023).
- Wallwiener, S.; Müller, M.; Doster, A.; Laserer, W.; Reck, C.; Pauluschke-Fröhlich, J.; Brucker, S.Y.; Wallwiener, C.W.; Wallwiener, M. Pregnancy eHealth and mHealth: User proportions and characteristics of pregnant women using Web-based information sources—A cross-sectional study. Arch. Gynecol. Obstet. 2016, 294, 937–944. [Google Scholar] [CrossRef]
- Fabrizio, B.; Maria Rosaria, G.; Silvio, B.; De Elisabetta, V.; de Chiara, W.; Giuseppe La, T.; Lamberto, M.; Gabriele, M.; Tullia, T.; Maria Valeria, T.; et al. Pregnancy e-health: A multicenter Italian cross-sectional study on internet use and decision-making among pregnant women. J. Epidemiol. Community Health 2013, 67, 1013. [Google Scholar] [CrossRef]
- Johnson, S.A. ‘Intimate mothering publics’: Comparing face-to-face support groups and Internet use for women seeking information and advice in the transition to first-time motherhood. Cult. Health Sex. 2015, 17, 237–251. [Google Scholar] [CrossRef]
- Kaneho, A.E.A.; Zrira, N.; Bokonda, P.L.; Ouazzani-Touhami, K. A Survey on Existing Chatbots for Pregnant Women’s Healthcare. In Proceedings of the 2022 IEEE 3rd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Fez, Morocco, 1–2 December 2022; pp. 1–6. [Google Scholar]
- Aziz, A.; Zork, N.; Aubey, J.J.; Baptiste, C.D.; D’Alton, M.E.; Emeruwa, U.N.; Fuchs, K.M.; Goffman, D.; Gyamfi-Bannerman, C.; Haythe, J.H.; et al. Telehealth for High-Risk Pregnancies in the Setting of the COVID-19 Pandemic. Am. J. Perinatol. 2020, 37, 800–808. [Google Scholar] [CrossRef]
- Stone, P.; Brooks, R.; Brynjolfsson, E.; Calo, R.; Etzioni, O.; Hager, G.; Hirschberg, J.; Kalyanakrishnan, S.; Kamar, E.; Kraus, S. Artificial intelligence and life in 2030: The one hundred year study on artificial intelligence. arXiv 2022, arXiv:2211.06318. [Google Scholar]
- McTear, M.F. Spoken dialogue technology: Enabling the conversational user interface. ACM Comput. Surv. (CSUR) 2002, 34, 90–169. [Google Scholar] [CrossRef]
- Laranjo, L.; Dunn, A.G.; Tong, H.L.; Kocaballi, A.B.; Chen, J.; Bashir, R.; Surian, D.; Gallego, B.; Magrabi, F.; Lau, A.Y.S.; et al. Conversational agents in healthcare: A systematic review. J. Am. Med. Inform. Assoc. JAMIA 2018, 25, 1248–1258. [Google Scholar] [CrossRef]
- Chung, K.; Cho, H.Y.; Kim, Y.R.; Jhung, K.; Koo, H.S.; Park, J.Y. Medical Help-Seeking Strategies for Perinatal Women With Obstetric and Mental Health Problems and Changes in Medical Decision Making Based on Online Health Information: Path Analysis. J. Med. Internet Res. 2020, 22, e14095. [Google Scholar] [CrossRef] [PubMed]
- Hämeen-Anttila, K.; Jyrkkä, J.; Enlund, H.; Nordeng, H.; Lupattelli, A.; Kokki, E. Medicines information needs during pregnancy: A multinational comparison. BMJ Open 2013, 3, e002594. [Google Scholar] [CrossRef] [PubMed]
- Hämeen-Anttila, K.; Nordeng, H.; Kokki, E.; Jyrkkä, J.; Lupattelli, A.; Vainio, K.; Enlund, H. Multiple information sources and consequences of conflicting information about medicine use during pregnancy: A multinational Internet-based survey. J. Med. Internet Res. 2014, 16, e60. [Google Scholar] [CrossRef]
- Barreto, I.C.d.H.C.; Barros, N.B.S.; Theophilo, R.L.; Viana, V.F.; Silveira, F.R.d.V.; Souza, O.d.; Sousa, F.J.G.d.; Oliveira, A.M.B.d.; Andrade, L.O.M.d. Development and evaluation of the GISSA Mother-Baby ChatBot application in promoting child health. Ciência Saúde Coletiva 2021, 26, 1679–1690. [Google Scholar] [CrossRef]
- Bickmore, T.; Zhang, Z.; Reichert, M.; Julce, C.; Jack, B. Promotion of preconception care among adolescents and young adults by conversational agent. J. Adolesc. Health 2020, 67, S45–S51. [Google Scholar] [CrossRef]
- Chinkam, S.; Steer-Massaro, C.; Herbey, I.; Zhang, Z.; Bickmore, T.; Shorten, A. The Perspectives of Women and Their Health-Care Providers Regarding Using an ECA to Support Mode of Birth Decisions. J. Perinat. Educ. 2021, 30, 135–144. [Google Scholar] [CrossRef]
- Chung, K.; Cho, H.; Park, J. A Chatbot for Perinatal Women’s and Partners’ Obstetric and Mental Health Care: Development and Usability Evaluation Study. JMIR Med. Inform. 2021, 9, e18607. [Google Scholar] [CrossRef]
- Edwards, R.A.; Bickmore, T.; Jenkins, L.; Foley, M.; Manjourides, J. Use of an interactive computer agent to support breastfeeding. Matern. Child Health J. 2013, 17, 1961–1968. [Google Scholar] [CrossRef]
- Gardiner, P.M.; McCue, K.D.; Negash, L.M.; Cheng, T.; White, L.F.; Yinusa-Nyahkoon, L.; Jack, B.W.; Bickmore, T.W. Engaging women with an embodied conversational agent to deliver mindfulness and lifestyle recommendations: A feasibility randomized control trial. Patient Educ. Couns. 2017, 100, 1720–1729. [Google Scholar] [CrossRef]
- Gardiner, P.; Bickmore, T.; Yinusa-Nyahkoon, L.; Reichert, M.; Julce, C.; Sidduri, N.; Martin-Howard, J.; Woodhams, E.; Aryan, J.; Zhang, Z. Using health information technology to engage African American women on nutrition and supplement use during the preconception period. Front. Endocrinol. 2021, 11, 571705. [Google Scholar] [CrossRef]
- Jack, B.; Bickmore, T.; Hempstead, M.; Yinusa-Nyahkoon, L.; Sadikova, E.; Mitchell, S.; Gardiner, P.; Adigun, F.; Penti, B.; Schulman, D.; et al. Reducing Preconception Risks Among African American Women with Conversational Agent Technology. J. Am. Board Fam. Med. 2015, 28, 441–451. [Google Scholar] [CrossRef]
- Jack, B.W.; Bickmore, T.; Yinusa-Nyahkoon, L.; Reichert, M.; Julce, C.; Sidduri, N.; Martin-Howard, J.; Zhang, Z.; Woodhams, E.; Fernandez, J. Improving the health of young African American women in the preconception period using health information technology: A randomised controlled trial. Lancet Digit. Health 2020, 2, e475–e485. [Google Scholar] [CrossRef]
- Maeda, E.; Miyata, A.; Boivin, J.; Nomura, K.; Kumazawa, Y.; Shirasawa, H.; Saito, H.; Terada, Y. Promoting fertility awareness and preconception health using a chatbot: A randomized controlled trial. Reprod. Biomed. Online 2020, 41, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, J.L.Z.; da Costa, C.A.; Janssen, L.P. Evaluating the use of chatbot during pregnancy: A usability study. Healthc. Anal. 2022, 2, 100072. [Google Scholar] [CrossRef]
- Wong, J.; Foussat, A.C.; Ting, S.; Acerbi, E.; van Elburg, R.M.; Chien, C.M. A chatbot to engage parents of preterm and term infants on parental stress, parental sleep, and infant feeding: Usability and feasibility study. JMIR Pediatr. Parent. 2021, 4, e30169. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.N.; Fàbregues, S.; Bartlett, G.; Boardman, F.; Cargo, M.; Dagenais, P.; Gagnon, M.-P.; Griffiths, F.; Nicolau, B.; O’Cathain, A.; et al. The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Educ. Inf. 2018, 34, 285–291. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Nguyen, Q.C.; Aparicio, E.M.; Jasczynski, M.; Doig, A.C.; Yue, X.; Mane, H.; Srikanth, N.; Gutierrez, F.X.M.; Delcid, N.; He, X. Rosie, a Health Education Question-and-Answer Chatbot for New Mothers: Randomized Pilot Study. JMIR Form. Res. 2024, 8, e51361. [Google Scholar] [CrossRef]
- Suharwardy, S.; Ramachandran, M.; Leonard, S.A.; Gunaseelan, A.; Lyell, D.J.; Darcy, A.; Robinson, A.; Judy, A. Feasibility and impact of a mental health chatbot on postpartum mental health: A randomized controlled trial. AJOG Glob. Rep. 2023, 3, 100165. [Google Scholar] [CrossRef]
- Hussain, T.; Smith, P.; Yee, L.M. Mobile Phone–Based Behavioral Interventions in Pregnancy to Promote Maternal and Fetal Health in High-Income Countries: Systematic Review. JMIR Mhealth Uhealth 2020, 8, e15111. [Google Scholar] [CrossRef] [PubMed]
- Koulouri, T.; Macredie, R.D.; Olakitan, D. Chatbots to Support Young Adults’ Mental Health: An Exploratory Study of Acceptability. ACM Trans. Interact. Intell. Syst. 2022, 12, 11. [Google Scholar] [CrossRef]
- Cheah, M.H.; Gan, Y.N.; Altice, F.L.; Wickersham, J.A.; Shrestha, R.; Salleh, N.A.M.; Ng, K.S.; Azwa, I.; Balakrishnan, V.; Kamarulzaman, A.; et al. Testing the Feasibility and Acceptability of Using an Artificial Intelligence Chatbot to Promote HIV Testing and Pre-Exposure Prophylaxis in Malaysia: Mixed Methods Study. JMIR Hum. Factors 2024, 11, e52055. [Google Scholar] [CrossRef] [PubMed]
- El Ayadi, A.M.; Singh, P.; Duggal, M.; Kumar, V.; Kaur, J.; Sharma, P.; Vosburg, K.B.; Diamond-Smith, N.G. Feasibility and acceptability of Saheli, a WhatsApp Chatbot, on COVID-19 vaccination among pregnant and breastfeeding women in rural North India. BMJ Innov. 2023, 9, 195. [Google Scholar] [CrossRef]
- Martínez-Borba, V.; Suso-Ribera, C.; Osma, J. Usability, acceptability, and feasibility of two technology-based devices for mental health screening in perinatal care: A Comparison of web versus app. In Pervasive Computing Paradigms for Mental Health: 9th International Conference, MindCare 2019, Buenos Aires, Argentina, April 23–24, 2019, Proceedings 9; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Chae, J.; Kim, H.K. Internet-based prenatal interventions for maternal health among pregnant women: A systematic review and meta-analysis. Child. Youth Serv. Rev. 2021, 127, 106079. [Google Scholar] [CrossRef]
- Kim, H.K. The Effects of Artificial Intelligence Chatbots on Women’s Health: A Systematic Review and Meta-Analysis. Healthcare 2024, 12, 534. [Google Scholar] [CrossRef]
- Davis, J.A.; Ohan, J.L.; Gregory, S.; Kottampally, K.; Silva, D.; Prescott, S.L.; Finlay-Jones, A.L. Perinatal Women’s Perspectives of, and Engagement in, Digital Emotional Well-Being Training: Mixed Methods Study. J. Med. Internet Res. 2023, 25, e46852. [Google Scholar] [CrossRef]
- Inkster, B.; Kadaba, M.; Subramanian, V. Understanding the impact of an AI-enabled conversational agent mobile app on users’ mental health and wellbeing with a self-reported maternal event: A mixed method real-world data mHealth study. Front. Glob. Women’s Health 2023, 4, 1084302. [Google Scholar] [CrossRef]
- Sagstad, M.H.; Morken, N.-H.; Lund, A.; Dingsør, L.J.; Nilsen, A.B.V.; Sorbye, L.M. Quantitative User Data From a Chatbot Developed for Women With Gestational Diabetes Mellitus: Observational Study. JMIR Form. Res. 2022, 6, e28091. [Google Scholar] [CrossRef]
- Shaw, J.; Abejirinde, I.-O.O.; Agarwal, P.; Shahid, S.; Martin, D. Digital health and equitable access to care. PLoS Digit. Health 2024, 3, e0000573. [Google Scholar] [CrossRef]
- Badr, J.; Motulsky, A.; Denis, J.-L. Digital health technologies and inequalities: A scoping review of potential impacts and policy recommendations. Health Policy 2024, 146, 105122. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Sharma, B.; Chaudhary, K. Digital literacy: A review of literature. Int. J. Technoethics (IJT) 2020, 11, 65–94. [Google Scholar] [CrossRef]
- Robinson, L.; Cotten, S.R.; Ono, H.; Quan-Haase, A.; Mesch, G.; Chen, W.; Schulz, J.; Hale, T.M.; Stern, M.J. Digital inequalities and why they matter. Inf. Commun. Soc. 2015, 18, 569–582. [Google Scholar] [CrossRef]
- Singh, S.U.; Namin, A.S. A survey on chatbots and large language models: Testing and evaluation techniques. Nat. Lang. Process. J. 2025, 10, 100128. [Google Scholar] [CrossRef]
- Bachmann, M.; Duta, I.; Mazey, E.; Cooke, W.; Vatish, M.; Davis Jones, G. Exploring the capabilities of ChatGPT in women’s health: Obstetrics and gynaecology. npj Womens Health 2024, 2, 26. [Google Scholar] [CrossRef]
- Mennickent, D.; Rodríguez, A.; Opazo, M.C.; Riedel, C.A.; Castro, E.; Eriz-Salinas, A.; Appel-Rubio, J.; Aguayo, C.; Damiano, A.E.; Guzmán-Gutiérrez, E.; et al. Machine learning applied in maternal and fetal health: A narrative review focused on pregnancy diseases and complications. Front. Endocrinol. 2023, 14, 1130139. [Google Scholar] [CrossRef]
- Kwok, W.H.; Zhang, Y.; Wang, G. Artificial intelligence in perinatal mental health research: A scoping review. Comput. Biol. Med. 2024, 108685. [Google Scholar] [CrossRef]
Studies | Country | Topics Covered | Study Population | Study Participants | Name of Chatbot | Functionalities | Study Design |
---|---|---|---|---|---|---|---|
Barreto, 2021 [18] | Brazil | Child health promotion | Mothers of new-borns | 142 | GISSA Mother-Baby | Text | Cross-sectional research with mixed study |
Bickmore, 2020 [19] | USA | Preconception care risks | Female, Black, or African American aged 18–34 years, not pregnant | 262 | Gabby | Text Voice Avatar | Experimental study: randomized clinical trial |
Chinkam, 2021 [20] | USA | Mode of birth after cesarean | Women with a previous cesarean and their prenatal providers | 20 | – | Audio Text Voice Avatar | Qualitative study |
Chung, 2021 [21] | Republic of Korea | Obstetric and mental health care | Men aged between 38 and 40 years and women aged from 27 to 43 years | 15 | Dr. Joy | Text Voice | Observational study: descriptive study |
Edwards, 2013 [22] | USA | Intent to breastfeed, attitudes towards breastfeeding, breastfeeding self-efficacy, exclusive breastfeeding expectation | Primipara, pregnant in the third trimester with one fetus, 18 years of age or older | 15 | Tanya | Text Avatar | Experimental study: randomized clinical trial |
Gardiner, 2017 [23] | USA | Lifestyle changes | Women, 18–50 years | 57 | Gabby | Audio Text Avatar | Mixed study |
Gardiner, 2021 [24] | USA | Preconception health risks | African American or Black women, ages 18–34 years | 229 | Gabby | Text Avatar | Experimental study: randomized clinical trial |
Jack, 2015 [25] | USA | Preconception health risks | African American or Black women, 18–34 years of age | 77 | Gabby | Audio Text Avatar | Experimental study: randomized clinical trial |
Jack, 2020 [26] | USA | Preconception related risks | African American or Black women | 528 | Gabby | Text Voice Avatar | Experimental study: randomized clinical trial |
Maeda, 2020 [27] | Japan | Fertility and preconception health | Women aged between 20 and 34 years | 927 | – | Text | Experimental study: randomized clinical trial |
Montenegro, 2022 [28] | Brazil | Preconception health | Pregnant women in the prenatal or postnatal stages | 20 | Maria | Text | Mixed study |
Wong, 2021 [29] | Singapore | Stress, sleep, infant feeding | Parents (women) aged ≥21 years | 26 | ClaimIt | Text | Observational descriptive study: multi-stage |
Studies | Usability/ Feasibility | Preconception Risks | Knowledge | Breastfeeding | |
---|---|---|---|---|---|
Barreto, 2021 [18] | ∗ | – | – | – | |
Bickmore, 2020 [19] | ∗ | – | – | – | |
Chung, 2021 [21] | √ | – | – | – | |
Edwards, 2013 [22] | – | – | – | √ | |
Gardiner, 2017 [23] | √ | – | √ | – | |
Gardiner, 2021 [24] | At 6 months | – | √ | – | – |
At 12 months | – | 0 | – | – | |
Jack, 2015 [25] | At 6 months | – | √ | – | – |
Jack, 2020 [26] | At 6 months | – | √ | – | – |
At 12 months | – | √ | – | – | |
Maeda, 2020 [27] | Intervention vs. control 1 (no chatbot) | – | – | √ | – |
Intervention vs. control 2 (PDF document on irrelevant topic) | – | – | – | – | |
Montenegro, 2022 [28] | ∗ | – | – | – | |
Wong, 2021 [29] | ∗ | – | – | – |
Studies | Antecedents | Healthy Behaviors | Health Status or Health Services Utilization |
---|---|---|---|
Barreto, 2021 [18] | N/A | – | – |
Bickmore, 2020 [19] |
| – | – |
Chinkam, 2021 [20] |
| – | – |
Chung, 2021 [21] |
| – | – |
Edwards, 2013 [22] |
| – | – |
Gardiner, 2017 [23] |
|
| – |
Gardiner, 2020 [24] |
| – | – |
Jack, 2020 [26] |
| – |
|
Jack, 2015 [25] |
| – | – |
Maeda, 2020 [27] | – | – |
|
Montenegro, 2022 [28] |
| – | – |
Wong, 2021 [29] |
| – | – |
Authors | Study Design | Quantitative RCT | Quantitative Descriptive | Mixed Methods | Qualitative |
---|---|---|---|---|---|
Barreto, 2021 [18] | Cross-sectional research with mixed study | (4/5) **** | |||
Bickmore, 2020 [19] | Experimental study: randomized clinical trial | (3/5) *** | |||
Chinkam, 2021 [20] | Qualitative study | (5/5) ***** | |||
Chung, 2021 [21] | Observational study: descriptive study | (2/5) ** | |||
Edwards, 2013 [22] | Experimental study: randomized clinical trial | (4/5) **** | |||
Gardiner, 2017 [23] | Mixed study | (2/5) ** | |||
Gardiner, 2020 [24] | Experimental study: randomized clinical trial | (2/5) ** | |||
Jack, 2015 [25] | Experimental study: randomized clinical trial | (4/5) **** | |||
Jack, 2020 [26] | Experimental study: randomized clinical trial | (5/5) ***** | |||
Maeda, 2020 [27] | Experimental study: randomized clinical trial | (5/5) ***** | |||
Montenegro, 2022 [28] | Mixed study | (3/5) *** | |||
Wong, 2021 [29] | Observational descriptive study: multi-stage | (2/5) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amil, S.; Da, S.-M.-A.-R.; Plaisimond, J.; Roch, G.; Sasseville, M.; Bergeron, F.; Gagnon, M.-P. Interactive Conversational Agents for Perinatal Health: A Mixed Methods Systematic Review. Healthcare 2025, 13, 363. https://doi.org/10.3390/healthcare13040363
Amil S, Da S-M-A-R, Plaisimond J, Roch G, Sasseville M, Bergeron F, Gagnon M-P. Interactive Conversational Agents for Perinatal Health: A Mixed Methods Systematic Review. Healthcare. 2025; 13(4):363. https://doi.org/10.3390/healthcare13040363
Chicago/Turabian StyleAmil, Samira, Sié-Mathieu-Aymar-Romaric Da, James Plaisimond, Geneviève Roch, Maxime Sasseville, Frédéric Bergeron, and Marie-Pierre Gagnon. 2025. "Interactive Conversational Agents for Perinatal Health: A Mixed Methods Systematic Review" Healthcare 13, no. 4: 363. https://doi.org/10.3390/healthcare13040363
APA StyleAmil, S., Da, S.-M.-A.-R., Plaisimond, J., Roch, G., Sasseville, M., Bergeron, F., & Gagnon, M.-P. (2025). Interactive Conversational Agents for Perinatal Health: A Mixed Methods Systematic Review. Healthcare, 13(4), 363. https://doi.org/10.3390/healthcare13040363