Muscle Mass Mediates the Effect of Physical Activity and Sedentary Behavior on Metabolic Syndrome, with Differences by Gender
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Definition of Metabolic Syndrome and Cardiometabolic Abnormalities
2.4. Skeletal Muscle Mass
2.5. Sedentary Behavior and Physical Activity
2.6. Risk Factors for Metabolic Syndrome as Covariates
2.7. Statistical Analysis
3. Results
3.1. Participant Characteristics by Gender
3.2. Correlations Among Skeletal Muiscle Mass, Sedentary Time, MVPA, and Cardiometabolic Variables
3.3. Simple Effects of Independent Variables, a Mediator, and Covariates on Metabolic Syndrome
3.4. Direct and Indirect Effects of Sedentary Time and Physical Activity on Cardiometabolic Abnormalities and Metabolic Syndrome, Mediated by Skeletal Muscle Mass
4. Discussion
Limitations of the Study and Future Recommendations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BIA | Bioelectrical Impedance Analysis |
BMI | Body Mass Index |
GPAQ | Global Physical Activity Questionnaire |
HDL | High-Density Lipoprotein |
KNHANES | Korean National Health and Nutrition Examination Survey |
MET | Metabolic Equivalent of Task |
MS | Metabolic Syndrome |
MVPA | Moderate-to-Vigorous Physical Activity |
References
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Yang, J.; Yang, Z.; Wang, S.; Sun, F.; Zhan, S. The cohort study on prediction of incidence of all-cause mortality by metabolic syndrome. PLoS ONE 2016, 11, e0154990. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jeong, J.; Yim, Y.; Smith, L.; Pizzol, D.; Hwang, J.; Yon, D.K. Family history of non-communicable diseases and the risk of cardiovascular-kidney-metabolic syndrome. Sci. Rep. 2025, 15, 20710. [Google Scholar] [CrossRef]
- Rus, M.; Crisan, S.; Andronie-Cioara, F.L.; Indries, M.; Marian, P.; Pobirci, O.L.; Ardelean, A.I. Prevalence and Risk Factors of Metabolic Syndrome: A Prospective Study on Cardiovascular Health. Medicina 2023, 59, 1711. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.Y.; Rhee, T.M.; Kim, C.S.; Lee, H.; Song, H.; Koh, Y.; Lee, S.P.; Choi, S.Y. Influence of lifestyle risk factors and genetic predisposition on metabolic syndrome risk in Korean adults. Sci. Rep. 2025, 15, 24060. [Google Scholar] [CrossRef]
- Park, M.J.; Yun, K.E.; Lee, G.E.; Cho, H.J.; Park, H.S. A cross-sectional study of socioeconomic status and the metabolic syndrome in Korean adults. Ann. Epidemiol. 2007, 17, 320–326. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Yang, L.; Shao, J.; Chen, D.; Cui, N.; Tang, L.; Fu, Y.; Xue, E.; Lai, C.; et al. Sedentary time and the risk of metabolic syndrome: A systematic review and dose-response meta-analysis. Obes. Rev. 2022, 23, e13510. [Google Scholar] [CrossRef]
- Edwardson, C.L.; Gorely, T.; Davies, M.J.; Gray, L.J.; Khunti, K.; Wilmot, E.G.; Yates, T.; Biddle, S.J. Association of sedentary behaviour with metabolic syndrome: A meta-analysis. PLoS ONE 2012, 7, e34916. [Google Scholar] [CrossRef]
- Zhang, G.L.; Lee, J. Associations of combined physical activity and body mass index with metabolic syndrome in American adults: From the National Health and Nutrition Examination Survey, 2017–2020. Am. J. Health Promot. 2025, 39, 598–608. [Google Scholar] [CrossRef]
- Kinoshita, K.; Ozato, N.; Yamaguchi, T.; Sudo, M.; Yamashiro, Y.; Mori, K.; Ishida, M.; Katsuragi, Y.; Sasai, H.; Yasukawa, T.; et al. Association of sedentary behaviour and physical activity with cardiometabolic health in Japanese adults. Sci. Rep. 2022, 12, 2262. [Google Scholar] [CrossRef]
- Min, J.; Chang, J.S.; Choi, J.Y.; Kong, I.D. Association between skeletal muscle mass, physical activity, and metabolic syndrome: The Korean National Health and Nutrition Examination Survey 2008–2011. Metab. Syndr. Relat. Disord. 2022, 20, 156–165. [Google Scholar] [CrossRef]
- World Health Organization. Global Physical Activity Questionnaire (GPAQ) Analysis Guide. Available online: https://www.who.int/docs/default-source/ncds/ncd-surveillance/gpaq-analysis-guide.pdf (accessed on 25 July 2025).
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour. Available online: https://iris.who.int/bitstream/handle/10665/336656/9789240015128-eng.pdf?sequence=1 (accessed on 14 September 2025).
- Pinto, A.J.; Bergouignan, A.; Dempsey, P.C.; Roschel, H.; Owen, N.; Gualano, B.; Dunstan, D.W. Physiology of sedentary behavior. Physiol. Rev. 2023, 103, 2561–2622. [Google Scholar] [CrossRef] [PubMed]
- Belanger, M.J.; Rao, P.; Robbins, J.M. Exercise, physical activity, and cardiometabolic health: Pathophysiologic insights. Cardiol. Rev. 2022, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Stump, C.S.; Henriksen, E.J.; Wei, Y.; Sowers, J.R. The metabolic syndrome: Role of skeletal muscle metabolism. Ann. Med. 2006, 38, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kim, J.H. Impact of skeletal muscle mass on metabolic health. Endocrinol. Metab. 2020, 35, 1–6. [Google Scholar] [CrossRef]
- Feraco, A.; Gorini, S.; Armani, A.; Camajani, E.; Rizzo, M.; Caprio, M. Exploring the role of skeletal muscle in insulin resistance: Lessons from cultured cells to animal models. Int. J. Mol. Sci. 2021, 22, 9327. [Google Scholar] [CrossRef]
- Turcotte, L.P.; Fisher, J.S. Skeletal muscle insulin resistance: Roles of fatty acid metabolism and exercise. Phys. Ther. 2008, 88, 1279–1296. [Google Scholar] [CrossRef]
- Atlantis, E.; Martin, S.A.; Haren, M.T.; Taylor, A.W.; Wittert, G.A.; Members of the Florey Adelaide Male Ageing Study. Inverse associations between muscle mass, strength, and the metabolic syndrome. Metabolism 2009, 58, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, P.; Karlamangla, A.S. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J. Clin. Endocrinol. Metab. 2011, 96, 2898–2903. [Google Scholar] [CrossRef]
- Kim, Y.H.; So, W.Y. A low arm and leg muscle mass to total body weight ratio is associated with an increased prevalence of metabolic syndrome: The Korea National Health and Nutrition Examination Survey 2010–2011. Technol. Health Care 2016, 24, 655–663. [Google Scholar] [CrossRef]
- Rosique-Esteban, N.; Babio, N.; Díaz-López, A.; Romaguera, D.; Alfredo Martínez, J.; Sanchez, V.M.; Schröder, H.; Estruch, R.; Vidal, J.; Buil-Cosiales, P.; et al. Leisure-time physical activity at moderate and high intensity is associated with parameters of body composition, muscle strength and sarcopenia in aged adults with obesity and metabolic syndrome from the PREDIMED-Plus study. Clin. Nutr. 2019, 38, 1324–1331. [Google Scholar] [CrossRef]
- de Santana, D.A.; Scolfaro, P.G.; Marzetti, E.; Cavaglieri, C.R. Lower extremity muscle hypertrophy in response to resistance training in older adults: Systematic review, meta-analysis, and meta-regression of randomized controlled trials. Exp. Gerontol. 2024, 198, 112639. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency, Korea Health Statistics 2022: Korea National Health and Nutrition Examination Survey (KNHANES IX-1). 2022. Available online: https://knhanes.kdca.go.kr/knhanes/archive/wsiStatsClct.do (accessed on 25 July 2025).
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef] [PubMed]
- InBody Co., Ltd. InBody970 User’s Manual for Measurement Guide and Setup. Available online: https://inbody.com/en//download_center/?qr=&page=3 (accessed on 17 September 2025).
- Kim, K.M.; Jang, H.C.; Lim, S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J. Intern. Med. 2016, 31, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shen, W.; Gallagher, D.; Jones, A., Jr.; Wang, Z.; Wang, J.; Heshka, S.; Heymsfield, S.B. Total-body skeletal muscle mass: Estimation by dual-energy X-ray absorptiometry in children and adolescents. Am. J. Clin. Nutr. 2006, 84, 1014–1020. [Google Scholar]
- Yi, Y.; Baek, J.Y.; Lee, E.; Jung, H.W.; Jang, I.Y. A comparative study of high-frequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry for estimating body composition. Life 2022, 12, 994. [Google Scholar] [CrossRef]
- Keating, X.D.; Zhou, K.; Liu, X.; Hodges, M.; Liu, J.; Guan, J.; Phelps, A.; Castro-Piñero, J. Reliability and concurrent validity of Global Physical Activity Questionnaire (GPAQ): A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 4128. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, C.; Min, J.; Kang, D.W.; Kim, J.Y.; Yang, H.I.; Park, J.; Lee, M.K.; Lee, M.Y.; Park, I.; et al. Development of the Korean Global Physical Activity Questionnaire: Reliability and validity study. Glob. Health Promot. 2020, 27, 44–55. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef]
- Gianoudis, J.; Bailey, C.A.; Daly, R.M. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. Osteoporos. Int. 2015, 26, 571–579. [Google Scholar] [CrossRef]
- Ashraf, F.U.N.; Ghouri, K.; Someshwar, F.; Kumar, S.; Kumar, N.; Kumari, K.; Bano, S.; Ahmad, S.; Khawar, M.H.; Ramchandani, L.; et al. Insulin resistance and coronary artery disease: Untangling the web of endocrine-cardiac connections. Cureus 2023, 15, e51066. [Google Scholar] [CrossRef]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The Role of inflammation in cardiovascular disease. Int. J. Mol. Sci. 2022, 23, 12906. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of oxidative stress in metabolic syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Bergouignan, A.; Rudwill, F.; Simon, C.; Blanc, S. Physical inactivity as the culprit of metabolic inflexibility: Evidence from bed-rest studies. J. Appl. Physiol. 2011, 111, 1201–1210. [Google Scholar] [CrossRef]
- Zisman, A.; Peroni, O.D.; Abel, E.D.; Michael, M.D.; Mauvais-Jarvis, F.; Lowell, B.B.; Wojtaszewski, J.F.; Hirshman, M.F.; Virkamaki, A.; Goodyear, L.J.; et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 2000, 6, 924–928. [Google Scholar] [CrossRef]
- Petersen, A.M.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Kurdiova, T.; Balaz, M.; Vician, M.; Maderova, D.; Vlcek, M.; Valkovic, L.; Srbecky, M.; Imrich, R.; Kyselovicova, O.; Belan, V.; et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: In vivo and in vitro studies. J. Physiol. 2014, 592, 1091–1107. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.R.; Hawley, J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc. Med. 2017, 2, e000143. [Google Scholar] [CrossRef]
- Radak, Z.; Chung, H.Y.; Goto, S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic. Biol. Med. 2008, 44, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Jaballah, A.; Soltani, I.; Bahia, W.; Dandana, A.; Hasni, Y.; Miled, A.; Ferchichi, S. The relationship between menopause and metabolic syndrome: Experimental and bioinformatics analysis. Biochem. Genet. 2021, 59, 1558–1581. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, W.B.; Forman, D.E.; Rich, M.W.; Kirkpatrick, J.; Krishnaswami, A.; Alexander, K.P.; Gerstenblith, G.; Cawthon, P.; de Filippi, C.R.; Goyal, P. Sarcopenia and cardiovascular diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.H.; Ng, S.H.; Koh, D.; Müller-Riemenschneider, F. Reliability and validity of the self- and interviewer-administered versions of the Global Physical Activity Questionnaire (GPAQ). PLoS ONE 2015, 10, e0136944. [Google Scholar] [CrossRef] [PubMed]
- Cleland, C.L.; Hunter, R.F.; Kee, F.; Cupples, M.E.; Sallis, J.F.; Tully, M.A. Validity of the global physical activity questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour. BMC Public Health 2014, 14, 1255. [Google Scholar] [CrossRef]
Variables | Categories | Men | Women | ||||
---|---|---|---|---|---|---|---|
Non-MS Group (n = 1543) | MS Group (n = 1025) | p | Non-MS Group (n = 2484) | MS Group (n = 904) | p | ||
Age (years) | 60.1 ± 11.7 (59.5–60.7) | 60.5 ± 11.1 (59.8–61.1) | 0.428 | 57.8 ± 11.0 (57.3–58.2) | 64.3 ± 10.4 (63.6–65.0) | <0.001 | |
Body mass index (kg/m2) | 23.6 ± 2.5 (23.4–23.7) | 26.5 ± 3.1 (26.3–26.7) | <0.001 | 23.1 ± 2.9 (23.0–23.3) | 26.5 ± 3.4 (26.3–26.7) | <0.001 | |
Skeletal muscle mass (% of weight) | 32.5 ± 2.6 (32.4–32.6) | 30.4 ± 2.2 (30.2–30.5) | <0.001 | 26.7 ± 2.6 (26.6–26.8) | 24.5 ± 2.2 (24.3–24.6) | <0.001 | |
Waist circumference (cm) | 85.7 ± 7.2 (85.3–86.0) | 94.8 ± 7.3 (94.3–95.2) | <0.001 | 79.3 ± 8.0 (79.0–79.7) | 90.2 ± 7.6 (89.7–90.7) | <0.001 | |
Systolic blood pressure (mmHg) | 121.0 ± 14.9 (120.3–121.7) | 128.1 ± 15.0 (127.2–129.0) | <0.001 | 116.8 ± 15.2 (116.2–117.4) | 128.2 ± 16.2 (127.1–129.2) | <0.001 | |
Diastolic blood pressure (mmHg) | 75.9 ± 9.2 (75.5–76.4) | 79.5 ± 10.2 (78.9–80.2) | <0.001 | 72.9 ± 8.8 (72.6–73.3) | 75.6 ± 9.0 (75.1–76.2) | <0.001 | |
Glucose (mg/dL) | 100.1 ± 18.7 (99.2–101.0) | 116.9 ± 30.4 (115.0–118.7) | <0.001 | 95.8 ± 14.4 (95.3–96.4) | 113.0 ± 28.1 (111.2–114.8) | <0.001 | |
Triglycerides (mg/dL) | 113.9 ± 59.3 (110.9–116.8) | 208.4 ± 147.0 (199.4–217.4) | <0.001 | 97.2 ± 42.9 (95.5–98.9) | 159.0 ± 93.0 (153.0–165.1) | <0.001 | |
HDL-cholesterol (mg/dL) | 55.3 ± 12.8 (54.7–55.9) | 45.0 ± 11.4 (44.3–45.7) | <0.001 | 64.8 ± 14.1 (64.3–65.4) | 50.2 ± 12.3 (49.4–51.0) | <0.001 | |
Family history of chronic disease | No/unknown | 641 (41.5) | 350 (34.1) | <0.001 | 711 (28.6) | 275 (30.4) | 0.308 |
Yes | 902 (58.5) | 675 (65.9) | 1773 (71.4) | 629 (69.6) | |||
Menopause | No | Not applicable | 777 (31.3) | 117 (12.9) | <0.001 | ||
Yes | Not applicable | 1707 (68.7) | 787 (87.1) | ||||
Marital status | Married | 1307 (84.7) | 829 (80.9) | 0.011 | 1898 (76.4) | 596 (65.9) | <0.001 |
Unmarried | 236 (15.3) | 196 (19.1) | 586 (23.6) | 308 (34.1) | |||
Education High school graduate or lower | 869 (56.3) | 634 (61.9) | 0.005 | 1592 (64.1) | 766 (84.7) | <0.001 | |
College or higher | 674 (43.7) | 391 (38.1) | 892 (35.9) | 138 (15.3) | |||
Household income | <median | 618 (40.1) | 456 (44.5) | 0.026 | 1075 (43.3) | 540 (59.7) | <0.001 |
≥median | 925 (59.9) | 569 (55.5) | 1409 (56.7) | 364 (40.3) | |||
Alcohol consumption | Non-drinker | 530 (34.3) | 321 (31.3) | 0.110 | 1543 (62.1) | 652 (72.1) | <0.001 |
Drinker | 1013 (65.7) | 704 (68.7) | 941 (37.9) | 252 (27.9) | |||
Smoking | Non-smoker | 1128 (73.1) | 693 (67.6) | 0.003 | 2402 (96.7) | 872 (96.5) | 0.733 |
Smoker | 415 (26.9) | 332 (32.4) | 82 (3.3) | 32 (3.5) | |||
Sedentary time (hours/day) | 8.5 ± 3.5 (8.3–8.7) | 8.8 ± 3.5 (8.5–9.0) | 0.071 | 8.2 ± 3.3 (8.0–8.3) | 8.9 ± 3.3 (8.7–9.1) | <0.001 | |
Total weekly MVPA (MET-minutes) | 986.5 ± 1541.8 (909.5–1063.5) | 818.8 ± 1484.2 (727.9–909.8) | 0.006 | 791.9 ± 1136.6 (747.2–836.6) | 584.6 ± 920.2 (524.5–644.7) | <0.001 | |
Weekly MVPA < 600 METs | 823 (53.3) | 610 (59.5) | 0.002 | 1383 (55.7) | 609 (67.4) | <0.001 | |
≥600 METs | 720 (46.7) | 415 (40.5) | 1101 (44.3) | 295 (32.6) | |||
Strength training < 2 days/week | 977 (63.3) | 752 (73.4) | <0.001 | 2026 (81.6) | 786 (86.9) | <0.001 | |
≥2 days/week | 566 (36.7) | 273 (26.6) | 458 (18.4) | 118 (13.1) | |||
Energy intake (Kcal) | 2053.5 ± 756.5 (2015.7–2091.3) | 2125.0 ± 839.3 (2073.6–2176.4) | 0.028 | 1554.0 ± 604.8 (1530.2–1577.8) | 1451.9 ± 560.9 (1415.3–1488.5) | <0.001 | |
Carbohydrate (% of energy intake) | 59.7 ± 12.8 (59.0–60.3) | 58.7 ± 13.4 (57.8–59.5) | 0.054 | 60.7 ± 12.3 (60.2–61.2) | 64.7 ± 11.7 (63.9–65.5) | <0.001 | |
Fat (% of energy intake) | 21.5 ± 8.7 (21.1–21.9) | 20.9 ± 8.3 (20.4–21.4) | 0.092 | 23.0 ± 9.5 (22.6–23.4) | 19.7 ± 8.9 (19.1–20.3) | <0.001 | |
Protein (% of energy intake) | 15.1 ± 3.8 (15.1–14.9) | 15.0 ± 3.8 (14.8–15.2) | 0.469 | 15.3 ± 4.1 (15.2–15.5) | 14.7 ± 3.8 (14.4–14.9) | <0.001 |
Age | BMI | SMM | WC | SBP | DBP | Glu | TG | HDLC | NMSC | ST | MVPA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 1 | |||||||||||
BMI | −0.035 ** | 1 | ||||||||||
SMM | −0.193 *** | −0.361 *** | 1 | |||||||||
WC | 0.127 *** | 0.853 *** | −0.152 *** | 1 | ||||||||
SBP | 0.328 *** | 0.197 *** | −0.094 *** | 0.265 *** | 1 | |||||||
DBP | −0.094 *** | 0.170 *** | 0.084 *** | 0.200 *** | 0.669 *** | 1 | ||||||
Glu. | 0.117 *** | 0.174 *** | −0.029 * | 0.244 *** | 0.149 *** | 0.071 *** | 1 | |||||
TG | −0.075 *** | 0.219 *** | 0.037 ** | 0.285 *** | 0.149 *** | 0.211 *** | 0.176 *** | 1 | ||||
HDLC | −0.091 *** | −0.286 *** | −0.071 *** | −0.391 *** | −0.106 *** | −0.069 *** | −0.174 *** | −0.418 *** | 1 | |||
NMSC | 0.232 *** | 0.538 *** | −0.195 *** | 0.636 *** | 0.407 *** | 0.273 *** | 0.422 *** | 0.486 *** | −0.510 *** | 1 | ||
ST | −0.010 | 0.060 *** | −0.039 ** | 0.096 *** | 0.003 | −0.002 | 0.024 | 0.062 *** | −0.063 *** | 0.076 *** | 1 | |
MVPA | −0.133 *** | 0.021 | 0.116 *** | −0.020 | −0.029 * | 0.028 * | −0.037 ** | −0.004 | 0.065 *** | −0.065 *** | −0.129 *** | 1 |
Group | X | M | Y | Direct Effect of X on Y (c’) | Indirect Effect of X on Y (a × b) | 95% CI of Indirect Effect | Mediation of M | |
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
Men (n = 2568) | Sedentary time | Skeletal muscle mass | Cardiometabolic abnormalities (MS criteria ≥ 1) | 0.021 | 0.007 | 0.003 | 0.013 | Full |
MVPA | −0.195 | −0.066 | −0.110 | −0.033 | Full | |||
Strength training | −0.250 | −0.074 | −0.118 | −0.036 | Full | |||
Sedentary time | Skeletal muscle mass | MS (MS criteria ≥ 3) | 0.006 | 0.007 | 0.003 | 0.011 | Full | |
MVPA | −0.143 | −0.060 | −0.095 | −0.032 | Full | |||
Strength training | −0.399 *** | −0.065 | −0.100 | −0.035 | Partial | |||
Women (n = 3388) | Sedentary time | Skeletal muscle mass | Cardiometabolic abnormalities (MS criteria ≥ 1) | 0.011 | 0.003 | 0.001 | 0.006 | Full |
MVPA | −0.125 | −0.014 | −0.031 | −0.002 | Full | |||
Strength training | −0.346 ** | −0.023 | −0.050 | −0.003 | Partial | |||
Sedentary time | Skeletal muscle mass | MS (MS criteria ≥ 3) | 0.057 *** | 0.001 | −0.001 | 0.004 | No | |
MVPA | −0.222 * | −0.007 | −0.022 | 0.004 | No | |||
Strength training | −0.173 | −0.013 | −0.037 | 0.007 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J. Muscle Mass Mediates the Effect of Physical Activity and Sedentary Behavior on Metabolic Syndrome, with Differences by Gender. Healthcare 2025, 13, 2432. https://doi.org/10.3390/healthcare13192432
Kim J. Muscle Mass Mediates the Effect of Physical Activity and Sedentary Behavior on Metabolic Syndrome, with Differences by Gender. Healthcare. 2025; 13(19):2432. https://doi.org/10.3390/healthcare13192432
Chicago/Turabian StyleKim, Jaehee. 2025. "Muscle Mass Mediates the Effect of Physical Activity and Sedentary Behavior on Metabolic Syndrome, with Differences by Gender" Healthcare 13, no. 19: 2432. https://doi.org/10.3390/healthcare13192432
APA StyleKim, J. (2025). Muscle Mass Mediates the Effect of Physical Activity and Sedentary Behavior on Metabolic Syndrome, with Differences by Gender. Healthcare, 13(19), 2432. https://doi.org/10.3390/healthcare13192432