Perioperative Methadone in Orthopedic Surgery: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Randomized Controlled Trials
3.2. Non-Randomized Studies
3.2.1. Pediatric Spine (Prospective Cohorts with Historical Controls)
3.2.2. Pediatric Spine (Retrospective Cohorts)
3.2.3. Other Surgical Settings
3.2.4. Stratification Summary
4. Discussion
4.1. Analgesic Efficacy
4.2. Safety Profile
4.3. Clinical Impact
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Kock, M. Expanding our horizons: Transition of acute postoperative pain to persistent pain and establishment of chronic postsurgical pain services. Anesthesiology 2009, 111, 461–463. [Google Scholar] [CrossRef]
- Callesen, T.; Bech, K.; Kehlet, H. Prospective study of chronic pain after groin hernia repair. Br. J. Surg. 1999, 86, 1528–1531. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Jackson, M.; Kavanagh, B.P.; Sandler, A.N. Acute pain after thoracic surgery predicts long-term post-thoracotomy pain. Clin. J. Pain. 1996, 12, 50–55. [Google Scholar] [CrossRef]
- Pluijms, W.A.; Steegers, M.A.; Verhagen, A.F.; Scheffer, G.J.; Wilder-Smith, O.H. Chronic post-thoracotomy pain: A retrospective study. Acta Anaesthesiol. Scand. 2006, 50, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Tasmuth, T.; Estlanderb, A.M.; Kalso, E. Effect of present pain and mood on the memory of past postoperative pain in women treated surgically for breast cancer. Pain 1996, 68, 343–347. [Google Scholar] [CrossRef]
- Fletcher, D.; Stamer, U.M.; Pogatzki-Zahn, E.; Zaslansky, R.; Tanase, N.V.; Perruchoud, C.; Kranke, P.; Komann, M.; Lehman, T.; Meissner, W.; et al. Chronic postsurgical pain in Europe: An observational study. Eur. J. Anaesthesiol. 2015, 32, 725–734. [Google Scholar] [CrossRef]
- Pak, D.J.; Yong, R.J.; Kaye, A.D.; Urman, R.D. Chronification of Pain: Mechanisms, Current Understanding, and Clinical Implications. Curr. Pain. Headache Rep. 2018, 22, 9. [Google Scholar] [CrossRef]
- Simanski, C.J.; Althaus, A.; Hoederath, S.; Kreutz, K.W.; Hoederath, P.; Lefering, R.; Pape-Kohler, C.; Neugebauer, E.A. Incidence of chronic postsurgical pain (CPSP) after general surgery. Pain. Med. 2014, 15, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Sieberg, C.B.; Simons, L.E.; Edelstein, M.R.; DeAngelis, M.R.; Pielech, M.; Sethna, N.; Hresko, M.T. Pain prevalence and trajectories following pediatric spinal fusion surgery. J. Pain. 2013, 14, 1694–1702. [Google Scholar] [CrossRef]
- Yang, J.; Gao, H.; Wang, C.; Zhou, J. Related Factors and Risk Prediction of Chronic Pain after Knee Replacement. Ann. Ital. Chir. 2024, 95, 934–943. [Google Scholar] [CrossRef]
- Andreoletti, H.; Dereu, D.; Combescure, C.; Rehberg, B. A systematic review and meta-analysis of three risk factors for chronic postsurgical pain: Age, sex and preoperative pain. Minerva Anestesiol. 2022, 88, 827–841. [Google Scholar] [CrossRef]
- Soffin, E.M.; Waldman, S.A.; Stack, R.J.; Liguori, G.A. An Evidence-Based Approach to the Prescription Opioid Epidemic in Orthopedic Surgery. Anesth. Analg. 2017, 125, 1704–1713. [Google Scholar] [CrossRef]
- Murphy, G.S.; Szokol, J.W. Intraoperative Methadone in Surgical Patients: A Review of Clinical Investigations. Anesthesiology 2019, 131, 678–692. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.C.; Vieira, J.E.; de Orange, F.A.; Ashmawi, H.A. Intraoperative Methadone Reduces Pain and Opioid Consumption in Acute Postoperative Pain: A Systematic Review and Meta-analysis. Anesth. Analg. 2019, 129, 1723–1732. [Google Scholar] [CrossRef]
- Nunn, K.P.; Velazquez, A.A.; Bebawy, J.F.; Ma, K.; Sinedino, B.E.; Goel, A.; Pereira, S.M. Perioperative Methadone for Spine Surgery: A Scoping Review. J. Neurosurg. Anesthesiol. 2025, 37, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, A.; Durieux, M.E.; Nemergut, E.C. Intraoperative methadone improves postoperative pain control in patients undergoing complex spine surgery. Anesth. Analg. 2011, 112, 218–223. [Google Scholar] [CrossRef]
- Murphy, G.S.; Avram, M.J.; Greenberg, S.B.; Shear, T.D.; Deshur, M.A.; Dickerson, D.; Bilimoria, S.; Benson, J.; Maher, C.E.; Trenk, G.J.; et al. Postoperative Pain and Analgesic Requirements in the First Year after Intraoperative Methadone for Complex Spine and Cardiac Surgery. Anesthesiology 2020, 132, 330–342. [Google Scholar] [CrossRef]
- Martin, D.P.; Samora, W.P., 3rd; Beebe, A.C.; Klamar, J.; Gill, L.; Bhalla, T.; Veneziano, G.; Thung, A.; Tumin, D.; Barry, N.; et al. Analgesic effects of methadone and magnesium following posterior spinal fusion for idiopathic scoliosis in adolescents: A randomized controlled trial. J. Anesth. 2018, 32, 702–708. [Google Scholar] [CrossRef]
- Arti, H.; Mehdinasab, S.A. The comparison effects of intra-articular injection of different opioids on postoperative pain relieve after arthroscopic anterior cruciate ligament reconstruction: A randomized clinical trial study. J. Res. Med. Sci. 2011, 16, 1176–1182. [Google Scholar]
- Arti, H.; Arti, S. The Effects of Intraarticular Opioids in pain relief after Arthroscopic Menisectomy: A Randomized Clinical Trial Study. Pak. J. Med. Sci. 2013, 29, 625–628. [Google Scholar] [CrossRef]
- Tams, C.; Dooley, F.C.; Sangari, T.S.; Gonzalez-Rodriguez, S.N.; Stoker, R.E.; Phillips, S.A.; Koenig, M.; Wishin, J.M.; Molinari, S.C.; Blakemore, L.C.; et al. Methadone and a Clinical Pathway in Adolescent Idiopathic Scoliosis Surgery: A Historically Controlled Study. Glob. Spine J. 2020, 10, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Myung, K.; Packiasabapathy, S.; Yu, J.S.; Jacobson, J.E.; Whittaker, S.C.; Castelluccio, P.; Drayton Jackson, M.; Sadhasivam, S. Methadone-based Multimodal Analgesia Provides the Best-in-class Acute Surgical Pain Control and Functional Outcomes With Lower Opioid Use Following Major Posterior Fusion Surgery in Adolescents With Idiopathic Scoliosis. Pediatr. Qual. Saf. 2020, 5, e336. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Aruldhas, B.W.; Packiasabapathy, S.; Overholser, B.R.; Zhang, P.; Zang, Y.; Renschler, J.S.; Fitzgerald, R.E.; Quinney, S.K. A Novel Perioperative Multidose Methadone-Based Multimodal Analgesic Strategy in Children Achieved Safe and Low Analgesic Blood Methadone Levels Enabling Opioid-Sparing Sustained Analgesia With Minimal Adverse Effects. Anesth. Analg. 2021, 133, 327–337. [Google Scholar] [CrossRef]
- Mok, V.; Sweetman, S.; Hernandez, B.; Casias, T.; Hylton, J.; Krause, B.M.; Noonan, K.J.; Walker, B.J. Scheduled methadone reduces overall opioid requirements after pediatric posterior spinal fusion: A single center retrospective case series. Paediatr. Anaesth. 2022, 32, 1159–1165. [Google Scholar] [CrossRef]
- Shaw, K.A.; Fletcher, N.D.; Devito, D.P.; Schmitz, M.L.; Fabregas, J.; Gidwani, S.; Chhatbar, P.; Murphy, J.S. In-hospital opioid usage following posterior spinal fusion for adolescent idiopathic scoliosis: Does methadone offer an advantage when used with an ERAS pathway? Spine Deform. 2021, 9, 1021–1027. [Google Scholar] [CrossRef]
- Kirk, A.M.; Barré, A.M.; Prusick, V.W.; Conley, C.; Muchow, R.D. Is Next-day Discharge Safe After Posterior Spinal Fusion for Adolescent Idiopathic Scoliosis? J. Pediatr. Orthop. 2025, 45, e37–e42. [Google Scholar] [CrossRef]
- Chan, F.J.; Schwartz, A.M.; Wong, J.; Chen, C.; Tiwari, B.; Kim, S.J. Use of Chronic Methadone Before Total Knee Arthroplasty. J. Arthroplast. 2017, 32, 2105–2107. [Google Scholar] [CrossRef]
- Petrosan, A.; Zassman, S.; Cohn, S.; Guerra, M.; Soares, K.; Kennedy, J.; Abdelghany, O.; Gutman, E. Impact of Intravenous Methadone Administered Intraoperatively on Postoperative Opioid Utilization. Ann. Pharmacother. 2021, 55, 1341–1346. [Google Scholar] [CrossRef]
- Waelkens, P.; Alsabbagh, E.; Sauter, A.; Joshi, G.P.; Beloeil, H. Pain management after complex spine surgery: A systematic review and procedure-specific postoperative pain management recommendations. Eur. J. Anaesthesiol. 2021, 38, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, J.E.; Swiergosz, A.; Bhimani, R.B.; Brown, S.; Smith, L.S.; Derhake, B.; Malkani, A.L. Optimizing Postoperative Pain Management in Total Knee Arthroplasty with Preoperative Methadone: A Prospective, Randomized Study. J. Arthroplast. 2025. [Google Scholar] [CrossRef] [PubMed]
- Anz, A.; Smith, M.J.; Stoker, A.; Linville, C.; Markway, H.; Branson, K.; Cook, J.L. The effect of bupivacaine and morphine in a coculture model of diarthrodial joints. Arthrosc. J. Arthrosc. Relat. Surg. 2009, 25, 225–231. [Google Scholar] [CrossRef]
- Stein, C.; Comisel, K.; Haimerl, E.; Yassouridis, A.; Lehrberger, K.; Herz, A.; Peter, K. Analgesic effect of intraarticular morphine after arthroscopic knee surgery. N. Engl. J. Med. 1991, 325, 1123–1126. [Google Scholar] [CrossRef]
- Gagnon, B.; Almahrezi, A.; Schreier, G. Methadone in the treatment of neuropathic pain. Pain Res. Manag. 2003, 8, 149–154. [Google Scholar] [CrossRef]
- Dunn, L.K.; Yerra, S.; Fang, S.; Hanak, M.F.; Leibowitz, M.K.; Alpert, S.B.; Tsang, S.; Durieux, M.E.; Nemergut, E.C.; Naik, B.I. Safety profile of intraoperative methadone for analgesia after major spine surgery: An observational study of 1478 patients. J. Opioid Manag. 2018, 14, 83–87. [Google Scholar] [CrossRef]
- Raja, S.N.; Sivanesan, E.; Guan, Y. Central Sensitization, N-methyl-D-aspartate Receptors, and Human Experimental Pain Models: Bridging the Gap between Target Discovery and Drug Development. Anesthesiology 2019, 131, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Tassou, A.; Richebe, P.; Rivat, C. Mechanisms of chronic postsurgical pain. Reg. Anesth. Pain. Med. 2025, 50, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Kopecky, E.A. Opioid Pharmacology: Developmental Effects on Opioid Metabolism. Clin. J. Pain. 2019, 35, 481–486. [Google Scholar] [CrossRef]
- Boisvert-Plante, V.; Poulin-Harnois, C.; Ingelmo, P.; Einhorn, L.M. What we know and what we don’t know about the perioperative use of methadone in children and adolescents. Paediatr. Anaesth. 2023, 33, 185–192. [Google Scholar] [CrossRef] [PubMed]
Study First Author (Year) | Study Design | Population (N) | Surgical Context | Methadone Dose/Timing | Comparison Group(s) | Outcomes Reported | Main Findings |
---|---|---|---|---|---|---|---|
Gottschalk (2011) [16] | RCT | 29 adults | Multilevel thoracolumbar spine fusion | 0.2 mg/kg IV before incision | Continuous sufentanil infusion (0.25 μg/kg/h after loading dose) | Opioid use, pain scores, adverse effects | Methadone ↓ opioid use ~50% at 48–72 h; ↓ pain scores; no ↑ adverse effects |
Murphy (2017) [17] | RCT | 120 adults | Posterior spinal fusion | 0.2 mg/kg IV at induction | 2 mg IV hydromorphone at closure | Opioid use, pain scores | Methadone ↓ opioid use POD1–3; ↓ pain scores |
Martin (2018) [18] | RCT | 60 adolescents | Posterior spinal fusion | 0.1 mg/kg IV over 15 min (with remifentanil) | Remifentanil alone or remifentanil + magnesium | Opioid use, pain scores | Methadone group ↓ total opioid use vs. controls; pain scores NS |
Arti (2011) [19] | RCT | 150 adults | Arthroscopic ACL reconstruction | 5 mg intra-articular methadone | 5 mg morphine, 37.5 mg pethidine, 100 mg tramadol, saline | Opioid use, pain scores | Morphine provided superior analgesia vs. methadone; methadone not superior to tramadol/pethidine |
Arti (2013) [20] | RCT | 140 adults | Arthroscopic meniscectomy | 5 mg intra-articular methadone | 5 mg morphine, 50 mg meperidine, saline | Opioid use, pain scores | Morphine ↓ pain and analgesic requests vs. methadone; methadone less effective |
Tams (2020) [21] | Historically controlled trial | 60 adolescents | Posterior spinal fusion (AIS) | 0.25–0.4 mg/kg IV intraop + multimodal (gabapentin, acetaminophen) | Historical controls without methadone pathway | Pain scores, opioid use, LOS | Methadone pathway ↓ pain scores, ↓ opioid use by 76%, ↓ LOS by 1 day |
Ye (2020) [22] | Retrospective matched cohort | 122 adolescents | Posterior spinal fusion (AIS) | Scheduled postop IV methadone (multimodal pathway) | Intrathecal morphine + adjuncts | Opioid use, LOS, bowel function, pain scores | Methadone group ↓ opioid use, ↓ LOS, faster bowel recovery |
Sadhasivam (2021) [23] | Prospective single-arm study | 38 children | Posterior spinal fusion and pectus excavatum | 0.1 mg/kg intraop then q12h × 3–5 doses | No comparator (single-arm study within multimodal regimen) | Opioid use, safety (respiratory, QT) | Very low opioid requirements; no respiratory depression or QT issues |
Mok (2022) [24] | Retrospective cohort | 87 adolescents | Posterior spinal fusion | Pre-incisional methadone + scheduled postop vs. PCA-based regimens | PCA opioids only; PCA + single-dose methadone | Opioid use, pain scores, LOS | Scheduled methadone group used significantly less opioids; pain/LOS NS |
Shaw (2021) [25] | Retrospective matched cohort | 78 adolescents | Posterior spinal fusion (ERAS pathway) | Single intraop IV methadone | ERAS without methadone | Opioid use, pain scores | No significant difference in opioid use or pain |
Kirk (2024) [26] | Retrospective cohort | 111 adolescents | Posterior spinal fusion (AIS) | Single intraop IV methadone | No methadone | LOS, ED visits, readmissions | Methadone group more likely to discharge POD1; no ↑ readmissions or ED visits |
Chan (2017) [27] | Retrospective case–control | 36 adults | TKA in methadone-maintenance patients | Chronic methadone users vs. opioid-naïve controls | Opioid-naïve TKA patients | Opioid use, LOS | Methadone-maintenance pts required more opioids, longer LOS |
Petrosan (2021) [28] | Prospective matched cohort | 240 adults | Mixed surgeries (orthopedic subgroup included) | Intraop IV methadone | Matched controls (no methadone) | Opioid use, pain scores | Overall ↑ opioid use with methadone; in opioid-naïve subgroup, methadone ↓ opioid use and pain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.F.; Lee, E.; Babaei, M.; Lee, P. Perioperative Methadone in Orthopedic Surgery: A Scoping Review. Healthcare 2025, 13, 2431. https://doi.org/10.3390/healthcare13192431
Yang AF, Lee E, Babaei M, Lee P. Perioperative Methadone in Orthopedic Surgery: A Scoping Review. Healthcare. 2025; 13(19):2431. https://doi.org/10.3390/healthcare13192431
Chicago/Turabian StyleYang, Albert F., Emily Lee, Mahsa Babaei, and Paul Lee. 2025. "Perioperative Methadone in Orthopedic Surgery: A Scoping Review" Healthcare 13, no. 19: 2431. https://doi.org/10.3390/healthcare13192431
APA StyleYang, A. F., Lee, E., Babaei, M., & Lee, P. (2025). Perioperative Methadone in Orthopedic Surgery: A Scoping Review. Healthcare, 13(19), 2431. https://doi.org/10.3390/healthcare13192431